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IAPT: Regression 
Regression analyses 
Regression is the rather strange name given to a set of methods for predicting one 
variable from another.  The data shown in Table 1 and come from a student project 
aimed at estimating body mass index (BMI) using only a tape measure.  In the full 
data, analysed later, we have abdominal circumference, mid upper arm circumference, 
and sex as possible predictors.  We shall start with the female subjects only and will 
look at abdominal circumference.   

BMI, also known as Quetelet’s index, is a measure of fatness defined for adults as 
weight in Kg divided by abdominal circumference in metres squared.  Can we predict 
BMI from abdominal circumference?  Figure 1 shows a scatter plot of BMI against 
abdominal circumference and there is clearly a strong relationship between them.  We 
could try to draw a line on the scatter diagram which would represent the relationship 
between them and enable us to predict one from the other.  We could draw many lines 
which might do this, as shown in Figure 2, but which line should we choose?  The 
method which we use to do this is simple linear regression.  This is a method to 
predict the mean value of one variable from the observed value of another.  In our 
example we shall estimate the mean BMI for women of any given abdominal 
circumference measurement.   

We do not treat the two variables, BMI and abdominal circumference, as being of 
equal importance, as we did for correlation coefficients.  We are predicting BMI from 
abdominal circumference and BMI is the outcome, dependent, y, or left hand side 
variable.  Abdominal circumference is the predictor, explanatory, independent, x, 
or right hand side variable.  Several different terms are used.  We predict the 
outcome variable from the observed value of the predictor variable. 

The relationship we estimate is called linear, because it makes a straight line on the 
graph.  A linear relationship takes the following form:  

  BMI = intercept + slope × abdominal circumference 

the intercept and slope are numbers which we estimate from the data.  
Mathematically, this is the equation of a straight line.  The intercept is the value of 
the outcome variable, BMI, when the predictor, abdominal circumference, is zero.  
The slope is the increase in the outcome variable associated with an increase of one 
unit in the when the predictor.   

To find a line which gives the best prediction, we need some criterion for best.  The 
one we use is to choose the line which makes the distance from the points to the line 
in the y direction a minimum.  These are the differences between the observed BMI 
and the BMI predicted by the line.  These are shown in Figure 3.  If the line goes 
through the cloud of points, some of these differences will be positive and some 
negative.  There are many lines which will make the sum zero, so we cannot just 
minimise the sum of the differences.  As we did when estimating variation using the 
variance and standard deviations (Week 1) we square the differences to get rid of the 
minus signs.  We choose the line which will minimise the sum of the squares of these 
differences.  We call this the principle of least squares and call the estimates that we 
obtain the least squares line or equation.  We also call this estimation by ordinary 
least squares or OLS.   
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Table 1.  Weight and abdominal circumference in 86 women (data of Malcolm 
Savage) 
Abdominal          Abdominal          Abdominal 
 circum-   BMI      circum-   BMI      circum-   BMI 
 ference (Kg/ht2)   ference (Kg/ht2)    ference (Kg/ht2) 
  (cm)               (cm)               (cm) 
  51.9    16.30      64.2    19.44      73.1    20.25 
  53.1    19.70      64.4    19.31      73.2    21.07 
  54.3    16.96      64.4    18.15      73.2    24.57 
  57.4    11.99      64.7    20.55      74.0    20.60 
  57.6    14.04      64.8    15.70      74.1    16.86 
  57.8    15.16      65.0    18.73      74.4    22.58 
  58.2    16.31      65.2    18.52      74.7    21.42 
  58.2    16.17      65.6    21.08      74.8    23.11 
  59.0    20.08      66.2    17.58      74.8    24.11 
  59.2    14.81      66.8    18.51      79.3    19.71 
  59.5    18.02      66.9    18.75      79.7    23.14 
  59.8    18.43      67.0    19.68      80.0    19.48 
  59.8    15.50      67.5    18.06      80.3    23.28 
  60.2    17.64      67.8    21.12      80.4    22.59 
  60.2    17.54      67.8    20.60      82.2    28.78 
  60.4    14.18      68.0    19.40      82.2    25.89 
  60.6    17.41      68.2    22.11      83.2    25.08 
  60.7    19.44      68.6    19.23      83.9    27.41 
  61.2    21.63      69.2    19.49      85.2    22.86 
  61.2    15.55      69.2    20.12      87.8    32.04 
  61.4    18.37      69.2    24.06      88.3    25.56 
  62.4    17.69      69.4    19.97      90.6    28.24 
  62.5    17.64      70.2    19.52      93.2    28.74 
  63.2    18.70      70.3    23.77     100.0    31.04 
  63.2    20.36      70.9    18.90     106.7    30.98 
  63.2    18.04      71.0    20.89     108.7    40.44 
  63.2    18.04      71.0    17.85 
  63.4    17.22      71.2    21.02 
  63.8    18.47      72.2    19.87 
  64.2    17.09      72.8    23.51 
 

10

20

30

40

B
M

I (
K

g/
m

2)

40 60 80 100 120
Abdominal circumference (cm)

 
Figure 1.  Scatter plot of BMI against abdominal circumference 
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Figure 2.  Scatter plot of BMI against abdominal circumference with possible lines to 
represent the relationship 

10

20

30

40

B
M

I (
K

g/
m

2)

40 60 80 100 120
Abdominal circumference (cm)

 
Figure 3.  Differences between the observed and predicted values of the outcome 
variable 
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Figure 4.  The least squares regression line for BMI and abdominal circumference 



4 

 There are many computer programs which will estimate the least squares equation 
and for the data of Table 1 this is  

  BMI = –4.15 + 0.35 × abdominal circumference 

This line is shown in Figure 4.  The estimate of the slope, 0.35, is also known as the 
regression coefficient.  Unlike the correlation coefficient, this is not a dimensionless 
number, but has dimensions and units depending on those of the variables.  The 
regression coefficient is the increase in BMI per unit increase in abdominal 
circumference, so is in kilogrammes per square metre per centimetre, BMI being in 
Kg/m2 and abdominal circumference in cm.  If we change the units in which we 
measure, we will change the regression coefficient.  For example, it we measured 
abdominal circumference in metres, the regression coefficient would be 35 Kg/m2/m.  
The intercept is in the same units as the outcome variable, here Kg/m2.   

In this example, the intercept is negative, which means that when abdominal 
circumference is zero the BMI is negative.  This is impossible, of course, but so is 
zero abdominal circumference.  We should be wary of attributing any meaning to an 
intercept which is outside the range of the data.  It is just a convenience for drawing 
the best line within the range of data that we have. 

Confidence intervals and P values in regression 
We can find confidence intervals and P values for the coefficients subject to 
assumptions.  These are that deviations from line should have a Normal distribution 
with uniform variance.  (In addition, as usual, the observations should be 
independent.)   

For the BMI data, the estimated slope = 0.35 Kg/m2/cm, with 95% CI = 0.31 to 0.40 
Kg/m2/cm, P<0.001.  The P value tests the null hypothesis that in the population from 
which these women come, the slope is zero.  The estimated intercept = –4.15 Kg/m2, 
95% CI = –7.11 to –1.18 Kg/m2.  Computer programs usually print a test of the null 
hypothesis that the intercept is zero, but this is not much use.  The P value for the 
slope is exactly the same as that for the correlation coefficient.   

Testing the assumptions of regression  
For our confidence intervals and P values to be valid, the data must conform to the 
assumptions that deviations from line should have a Normal distribution with uniform 
variance.  The observations must be independent, as usual.  Finally, our model of the 
data is that the line is straight, not curved, and we can check how well the data match 
this.   

We can check the assumptions about the deviations quite easily using techniques 
similar to those used for t tests.  First we calculate the differences between  the 
observed value of the outcome variable and the value predicted by the regression, the 
regression estimate.  We call these the deviations from the regression line, the 
residuals about the line, or just residuals.  These should have a Normal distribution 
and uniform variance, that is, their variability should be unrelated to the value of the 
predictor. 
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Figure 5.  Histogram and Normal plot for residuals for the BMI and abdominal 
circumference data 
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Figure 6.  Scatter plot of residual BMI against abdominal circumference and against 
the regression estimate 

 

We can check both of these assumptions graphically.  Figure 5 shows a histogram for 
the residuals for the BMI data.  The distribution is a fairly good fit to the Normal.  We 
can assess the uniformity of the variance by simple inspection of the scatter diagram 
in Figure 4.  There is nothing to suggest that variability increases as abdominal 
circumference increases, for example.  It appears quite uniform.  A better plot is of 
residual against the predictor variable, as shown in Figure 6.  Again, there is no 
relationship between variability and the predictor variable.  Figure 6 also shows a plot 
of the residual against the regression estimate, the value predicted by the regression.  
Some books prefer this version of the plot.  As you can see, the actual plot is identical, 
only the horizontal scale is changed.  The plot of residual against predictor should 
show no relationship between mean residual and predictor if the relationship is 
actually a straight line.  If there is such a relationship, usually that the residuals are 
higher or lower at the extremes of the plot than they are in the middle, this suggests 
that a straight line is not a good way to look at the data.  A curve might be better.   
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Multiple regression 
In this section I expand the idea of regression to describe using more than one 
predictor variable.   

I illustrated simple linear regression using the prediction of body mass index (BMI) 
from abdominal circumference in a population of adult women.  Figure 7 shows 
scatter diagrams of BMI against abdominal circumference and of BMI against mid 
upper arm circumference.  This time both men and women are included in the sample.  
The regression equations predicting BMI from abdominal circumference and from 
mid upper arm circumference are: 

BMI   =     –1.35        +       0.31×abdomen  
95% CI          –3.49 to 0.78         0.28 to 0.33 
                                                         P<0.001 

BMI   =     –4.59        +       1.09×arm  
95% CI          –7.12 to –2.07         0.98 to 1.20 
                                                         P<0.001 

Both abdominal and arm circumference are highly significant predictors of BMI.  
Could we get an even better prediction if we used both of them?  Multiple regression 
enables us to do this.  We can fit a regression equation with more than one predictor: 

BMI   =     –5.94        +       0.18×abdomen        +        0.59×arm 
95% CI          –8.10 to –3.77       0.14 to 0.22                  0.45 to 0.74 
                                                        P<0.001                        P<0.001 

This multiple regression equation predicts BMI better than either of the simple linear 
regressions.  We can tell this because the standard deviation of the residuals, what is 
left after the regression, is 2.01 Kg/m2 for the regression on abdomen and arm 
together, whereas it is 2.31 and 2.36 Kg/m2 for the separate regressions on abdomen 
and on arm respectively.   

The regression equation was found by an extension of the least squares method 
described for simple linear regression.  We find the coefficients which make the sum 
of the squared differences between the observed BMI and that predicted by the 
regression a minimum.  This is called ordinary least squares regression or OLS 
regression. 

Although both variables are highly significant, the coefficient of each has changed.  
Both coefficients have got closer to zero, going from 0.305 to 0.178 for abdomen and 
from 1.089 to 0.582 for arm circumference.  The reason for this is that abdominal and 
arm circumferences are themselves related, as Figure 8 shows.  The correlation is r = 
0.77, P<0.001.  Abdominal and arm circumferences each explains some of the 
relationship between BMI and the other.  When we have only one of them in the 
regression, it will include some of the relationship of BMI with the other.  When both 
are in the regression, each appears to have a relationship which is less strong than it 
really is.   
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Figure 7.  BMI against abdominal circumference and arm circumference in 202 adults 
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Figure 8.  Abdominal circumference against mid upper arm circumference in 202 
adults 
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Figure 9.  BMI for women and men 
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 Each predictor also reduces the significance of the other because they are related to 
one another as well as to BMI.  We cannot see this from the P values, because they 
are so small, but the t statistics on which they are based are 20.64 and 19.97 for the 
two separate regressions and 8.80 and 8.09 for the multiple regression.  Larger t 
statistics produce smaller P values.  It is quite possible for one of the variables to 
become not significant as a result of this, or even for both of them to do so.  We 
usually drop variables which are not significant out of the regression equation, one at 
the time, the variable with the highest P value first, and then repeat the regression. 

There is another possible predictor variable in the data, sex.  Figure 9 shows BMI for 
men and women.  This difference is not significant using regression of BMI on sex, or 
an equivalent two sample t test, P = 0.5.  If we include sex in the regression, as 
described for the energy expenditure data, using the variable ‘male’ = 1 if male and = 
0 if female, we get  

BMI   =     –6.44      +      0.18×abdomen      +      0.64×arm      –      1.39×male 
95% CI            –8.49 to –4.39    0.14 to 0.22                  0.50 to 0.78       –1.94 to –0.84 
                                                 P<0.001                             P<0.001               P<0.001 

This time the coefficients, confidence intervals and, although you can’t tell, the P 
values, for abdomen and arm are hardly changed.  This is because neither is closely 
related to sex, the new variable in the regression.  Male has become significant.  This 
is because including abdominal and arm circumference as predictors removes so 
much of the variation in BMI that the relationship with sex becomes significant.  
Mean BMI is lower for men than women of the same abdominal and arm 
circumference by 1.39 units.  When we have continuous and categorical predictor 
variables together, regression is also called analysis of covariance or ancova, for 
historical reasons.  

Using multiple regression for adjustment 
You will often see the words ‘adjusted for’ in reports of studies.  This almost always 
means that some sort of regression analysis has been done, and if we are talking about 
the difference between two means this will be multiple linear regression.   

In clinical trials, regression is often used to adjust for prognostic variables and 
baseline measurements.  For example, Levy et al. (2000) carried out a trial of 
education by a specialist asthma nurse for patients who had been taken to an accident 
and emergency department due to acute asthma.  Patients were randomised to have 
two one-hour training sessions with the nurse or to usual care.  The measurements 
were one week peak expiratory flow and symptom diaries made before treatment and 
after three and six months.  We summarised the 21 PEF measurement (three daily) to 
give the outcome variables mean and standard deviation of PEF over the week.  We 
also analysed mean symptom score.  The primary outcome variable was mean PEF, 
shown in Figure 10.  There is no obvious difference between the two groups and the 
mean PEF was 342 litre/min in the nurse intervention group and 338 litre/min in the 
control group.  The 95% CI for the difference, intervention – control, was –48 to 63 
litre/min, P=0.8, by the two-sample t method.   

However, although this was the primary outcome variable, it was not the primary 
analysis.  We have the mean diary PEF measured at baseline, before the intervention, 
and the two mean PEFS are strongly related.  We can use this to reduce the variability 
by carrying out multiple regression with PEF at six months as the outcome variable 
and treatment group and baseline PEF as predictors.  If we control for the baseline 



9 

0

200

400

600

800

M
ea

n 
P

E
F 

af
te

r 6
 m

on
th

s

Control Intervention
Group

 
Figure 10.  Mean of one-week diary peak expiratory flow six months after training by 
an asthma specialist nurse or usual care (data of Levy et al., 2000) 
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Figure 11.  Mean PEF after 6 months against baseline PEF for intervention and 
control asthmatic patients, with fitted analysis of covariance lines (data of Levy et al., 
2000) 

 

PEF in this way, we might get a better estimate of the treatment effect because we 
will remove a lot of variation between people.   

We get: 

PEF@6m =      18.3    +    0.99 × PEF@base    +     20.1 × intervention 
95% CI    –10.5 to 47.2   0.91 to 1.06                  0.4 to 39.7 
                                           P<0.001                       P=0.046 

Figure 11 shows the regression equation (or analysis of covariance, as the term is 
often used in this context) as two parallel lines, one for each treatment group.  The 
vertical distance between the lines is the coefficient for the intervention, 20.1 
litre/min.  By including the baseline PEF we have reduced the variability and enabled 
the treatment difference to become apparent. 

There are clear advantages to using adjustment.  In clinical trials, multiple regression 
including baseline measurements reduces the variability between subjects and so 
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increase the power of the study.  It makes it much easier to detect real effects and 
produces narrower confidence intervals.  It also removes any effects of chance 
imbalances in the predicting variables. 

Is adjustment cheating?  If we cannot demonstrate an effect without adjustment (as in 
the asthma nurse trial) is it valid to show one after adjustment?  Adjustment can be 
cheating if we keep adjusting by more and more variables until we have a significant 
difference.  This is not the right way to proceed.  We should be able to say in advance 
which variables we might want to adjust for because they are strong predictors of our 
outcome variable.  Baseline measurements almost always come into this category, as 
should any stratification or minimisation variables used in the design.  If they were 
not related to the outcome variable, there would be no need to stratify for them.  
Another variable which we might expect to adjust for is centre in multi-centre trials, 
because there may be quite a lot of variation between centres in their patient 
populations and in their clinical practices.  We might also want to adjust for known 
important predictors.  If we had no baseline measurements of PEF, we would want to 
adjust for height and age, two known good predictors of PEF.  We should state before 
we collect the data what we wish to adjust for and stick to it. 

In the PEF analysis, we could have used the differences between the baseline and six 
month measurements rather than analysis of covariance.  This is not as good because 
there is often measurement error in both our baseline and our outcome measurements.  
When we calculate the difference between them, we get two lots of error.  If we do 
regression, we only have the error in the outcome variable.  If the baseline variable 
has a lot of measurement error or there is only a small correlation between the 
baseline and outcome variables, using the difference can actually make things worse 
than just using the outcome variable.  Using analysis of covariance, if the correlation 
is small the baseline variable has little effect rather than being detrimental. 

Types of regression 
Multiple regression and logistic regression are the types of regression most often seen 
in the medical literature.  There are many other types for different kinds of outcome 
variable.  Those which you may come across include: 

• logistic regression for dichotomous outcome variables, 

• Cox regression for survival analysis,  

• ordered logistic regression for outcome variables which are qualitative 
with ordered categories, 

• multinomial regression for outcome variables which are qualitative with 
unordered categories, 

• Poisson regression for outcome variables which are counts, 

• negative binomial regression for outcome variables which are counts with 
extra sources of variability, 
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