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Biostatistics in Research Practice 

Time to event data 
Summary 
In this lecture we will look at data which are the time to an event, such as death or 
healing.  The main problem with such data is that subjects are usually observed for 
differing lengths of time.  We can estimate the proportion who are still free of the 
event at any time, using the Kaplan Meier survival curve method.  We can do a test of 
significance between different groups using the logrank test and get an estimate of the 
difference in survival between two groups using the hazard ratio.  We can estimate the 
effects of quantitative variables and of several different variables on survival using a 
regression method called Cox regression or proportional hazards regression.  

Time to event data 
In health care research we often measure the time which elapses until some event 
occurs.  This might be the time from diagnosis or start of treatment to death of cancer 
patients, the time to metastasis or to local recurrence of a tumour, the time to 
readmission to hospital after discharge of an asthma patient (Mitchell et al., 1994), the 
age at which breast-feeding ceased (Clements et al., 1997), the time from infertility 
treatment to conception (Luthra et al., 1982), the time to healing of a wound (Nelson 
et al., 2004), time to recurrence of a gallstone (Petroni et al., 2000), etc.  We call such 
data time to event data.  Sometimes the event is adverse, such as death, sometimes it 
is beneficial, such as healing.  Because of the examples of time to event data which 
were first studied, such data are often know as survival or failure time data.  The 
terminal event, death, healing, etc., is called the endpoint.  The statistical techniques 
developed to deal with them are known collectively as survival analysis. 

The analysis of time to event data would not require any special methods if we knew 
the time to event of every subject.  What makes time to event data difficult to analyse 
is that often we do not know the exact survival times of all cases.  Some subjects will 
still be surviving when we want to analyse the data.  For some events, such as 
conception or readmission to hospital, the event may never happen for some subjects.  
Furthermore, when cases have entered the study at different times, some of the recent 
entrants may be surviving, but have been observed for a short time only.  Their 
observed survival time may be less than those subjects admitted early in the study and 
who have since experienced the event.  When we know for some subjects only that 
the time to the event is greater than some value, we say that the data are censored.  
This also known as being withdrawn from follow-up.   

Figure 1 shows the recruitment, time to event, and time to censoring of 10 subjects 
recruited into a hypothetical study.  Subjects 1, 2, and 3 are recruited at the beginning 
of the study.  Subject 1 experiences the event, but subjects 2 and 3 do not.  When we 
want to analyse the data, they have yet to experience the event.  Subjects 4 and 6 are 
recruited after the start of the study and do not experience the event before the 
analysis point.  Subject 5 is recruited after the start and does experience the event.  
Subject 7 is recruited after the start of the study and is censored before the analysis 
point.  There are many reasons why this might be.  In a wound healing trial, the 
subject many be transferred to another treatment for clinical reasons.  In a conception 
study, the subject might decide not to make any further attempt to conceive.  In the 
study of Luthra et al. (1982), who compared the incidence of pregnancy in attenders 
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at a sub-fertility clinic before and after laparoscopy and hydrotubation, one of the 
couples in the sample decided to divorce and cease trying for a family, another 
decided to adopt.  Subject 7 is observed for a shorter time than subjects 1 and 5 take 
to experience the event.  We cannot therefore simply say that we will look at whether 
subjects have experienced the event within the shortest observation time for a subject 
who has not experienced it, because we will lose most of our data. 

Kaplan Meier survival estimates 
Some censored times may be shorter than some times to events.  We overcome this 
difficulty by the construction of what we call a life table.  A life table was originally a 
table showing what would happen to a cohort of hypothetical individuals from birth to 
death if the current death rates operated throughout their lives.  It showed how many 
would still be alive at each age.  Now we use the term to describe following a 
hypothetical cohort from any time point onwards.  I shall show how this works 
through an example. 

I shall use the time to healing of venous ulcers for patients recruited to the VenUS I 
trial (Nelson et al., 2004).  VenUS I was a randomised trial of two types of bandage 
for treating venous leg ulcers: the test treatment, a four layer bandage (4LB), which 
gave elastic compression, and the control treatment, a short-stretch bandage (SSB), 
which gave inelastic compression.  The endpoint is complete healing of the index 
ulcer and we observe the time to healing in days.  Table 1 shows the times for the 
SSB group.  Each time is marked ‘H’ if the ulcer healed at that time and ‘C’ if the 
data were censored.  Thus, in the first column, the first time was 7 days and the 
patient healed.  The second was 8 days and the patient was censored.  This might be 
because the patient refused to contribute any more data to the trial, or perhaps died.  
All the other patients in the first column were healed.  In Table 1 there are not very 
many censorings, as most patients healed, but it is noticeable that the final column are 
nearly all censorings, a group of patients who were observed for a very long time 
without healing. 
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Figure 1  Recruitment, time to event, and time to censoring of 10 subjects recruited 
into a study 

 

Table 1.  VenUS I trial: SSB group, time to healing (days) 
 
 7 H   28 H   45 H   59 H   86 H  119 H  189 H  244 H  413 H  671 H 
 8 C   28 H   45 H   60 H   90 C  124 H  189 H  273 C  417 C  672 C 
10 H   28 H   47 H   62 H   90 C  125 H  191 H  284 H  428 C  691 C 
12 H   28 H   48 C   63 H   90 H  126 H  195 H  286 H  461 H  742 C 
13 H   30 C   48 H   63 H   91 H  127 H  195 H  309 C  465 H  746 C 
14 H   30 H   49 H   63 H   92 H  134 H  199 H  322 H  483 H  790 C 
15 H   31 C   49 H   63 H   94 H  135 H  201 H  332 H  493 C  791 C 
20 H   34 H   50 H   63 H   97 H  142 C  202 C  334 C  504 C  858 C 
20 H   35 H   50 H   63 H   99 H  146 H  210 H  336 H  517 H  869 C 
21 H   35 H   50 H   68 C  101 H  147 H  212 H  343 H  525 H  886 C 
21 H   36 H   50 H   68 H  104 H  148 H  212 H  364 H  549 H  924 C 
21 H   36 H   53 C   70 H  106 H  151 H  214 H  369 C  579 H  955 C 
21 H   41 H   53 H   70 H  112 H  154 C  216 H  369 C  585 C 
22 H   41 H   56 H   73 C  112 H  154 H  218 H  370 C  602 H 
24 H   41 H   56 H   73 H  113 H  158 H  224 H  377 C  612 C 
24 H   42 H   56 H   73 H  114 H  174 H  232 H  378 C  648 H 
25 H   42 H   57 C   77 H  115 H  179 H  235 H  391 C  651 C 
25 H   42 H   58 H   81 C  117 H  182 H  241 H  392 H  654 C 
26 H   42 H   58 H   85 H  117 H  183 H  242 C  398 H  658 C 
28 H   43 H   59 H   86 H  118 H  189 H  242 H  399 H  667 C 
 
H = healed, C = censored. 
The table shows time to either healing or censoring. 
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Table 2 shows the data of Table 1 summarised, showing the number of events or 
censorings for each time at which one or other takes place.  We use this table to 
calculate the life table, which we usually present graphically as the Kaplan Meier 
survival curve.  The start of the calculation is set out in Table 3.  For each time when 
an event of censoring occurs, we find the number of people who were present at that 
time, called the number at risk.  There were 192 at the start.  We find the number 
who were healed.  For the first time when an event took place, 7 days, this was one, 
192–1 = 191 were unhealed, the number surviving.  We then calculate the proportion 
who were unhealed, i.e. survived unhealed to the next time.  At 7 days, this is 191/192 
= 0.9947644.  Don’t worry about all these decimal places, they are merely a means to 
an end.  The proportion who survive to day 8 is found by multiplying the proportion 
who survive up to day 7, which is 1.0, by the proportion who survive from day 7 to 
day 8, 191/192.  At day 8, there was no healing, but there was a censoring.  The 
proportion who survive unhealed from day 8 to day 9 is therefore 191/191 = 1.0, but 
the number who will be risk on day 9 is one fewer, 191–1 = 190.  The proportion who 
would survive from the beginning to day 8 is found by multiplying 0.9947644 by 1.0, 
leaving it unchanged.  This is what should happen, because there was no event.  On 
day 10 there was an event, and so the proportion surviving to day 11 was 189/190 = 
0.9947368.  We find the proportion who would survive unhealed from the beginning 
to day 11, if nobody was censored, by 0.9947368 × 0.9947644 = 0.9895288.  And so 
we continue on down the table until all the days have been used up.  We omit days 
when there are events and no censorings, because they alter neither the proportion 
surviving nor the number at risk.  The proportions estimated to survive from the start 
to each time are the Kaplan Meier survival estimates.   

We can estimate the proportion who would be expected to survive to any given time.  
For example, in the SSB group we estimate that the proportion unhealed after one 
year is 0.26, or 26%.  We can find a confidence interval for this estimate, called the 
Greenwood interval, in this case 0.20 to 0.33, or 20% to 33%.   

The Kaplan Meier survival curve 
A table with tens or even hundreds of survival estimates is pretty cumbersome and we 
usually present the Kaplan Meier survival analysis graphically.  Figure 2 shows the 
Kaplan Meier survival curve for the SSB data.  Although it is called a curve, it is 
usually shown as a series of abrupt steps, changing sharply at each time when an 
event takes place.  The steps get bigger as we move from left to right, because as we 
get to longer survival times more observations have been censored and there are fewer 
at risk.  This makes the proportions surviving when there is an event smaller and the 
steps bigger.   

Other than the size of the steps, the curve in Figure 2 does not include any 
information about the size of the sample used and where people were censored.  We 
often add ticks to indicate the times where there were censored observations, as in 
Figure 3.  We can also add the number remaining at risk along the bottom of the 
graph.  In Figure 3, this has been done at 100 day intervals.  This goes down not only 
because of censoring, of course, but because people have healed. 
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Table 2.  The data of Table 1 summarised, showing the number of events or 
censorings for each time at which one or other takes place. 
T  C H   T  C H   T  C H   T  C H   T  C H   T  C H   T  C H   T  C H 

 7 0 1   42 0 4   85 0 1  126 0 1  202 1 0  343 0 1  549 0 1  924 1 0 
 8 1 0   43 0 1   86 0 2  127 0 1  210 0 1  364 0 1  579 0 1  955 1 0 
10 0 1   45 0 2   90 2 1  134 0 1  212 0 2  369 2 0  585 1 0 
12 0 1   47 0 1   91 0 1  135 0 1  214 0 1  370 1 0  602 0 1 
13 0 1   48 1 1   92 0 1  142 1 0  216 0 1  377 1 0  612 1 0 
14 0 1   49 0 2   94 0 1  146 0 1  218 0 1  378 1 0  648 0 1 
15 0 1   50 0 4   97 0 1  147 0 1  224 0 1  391 1 0  651 1 0 
20 0 2   53 1 1   99 0 1  148 0 1  232 0 1  392 0 1  654 1 0 
21 0 4   56 0 3  101 0 1  151 0 1  235 0 1  398 0 1  658 1 0 
22 0 1   57 1 0  104 0 1  154 1 1  241 0 1  399 0 1  667 1 0 
24 0 2   58 0 2  106 0 1  158 0 1  242 1 1  413 0 1  671 0 1 
25 0 2   59 0 2  112 0 2  174 0 1  244 0 1  417 1 0  672 1 0 
26 0 1   60 0 1  113 0 1  179 0 1  273 1 0  428 1 0  691 1 0 
28 0 5   62 0 1  114 0 1  182 0 1  284 0 1  461 0 1  742 1 0 
30 1 1   63 0 6  115 0 1  183 0 1  286 0 1  465 0 1  746 1 0 
31 1 0   68 1 1  117 0 2  189 0 3  309 1 0  483 0 1  790 1 0 
34 0 1   70 0 2  118 0 1  191 0 1  322 0 1  493 1 0  791 1 0 
35 0 2   73 1 2  119 0 1  195 0 2  332 0 1  504 1 0  858 1 0 
36 0 2   77 0 1  124 0 1  199 0 1  334 1 0  517 0 1  869 1 0 
41 0 3   81 1 0  125 0 1  201 0 1  336 0 1  525 0 1  886 1 0 

T =  time (days), C =  number censored, H = number healed 
 

Table 3.  Calculation of the Kaplan Meier survival estimates for the SSB group 
(beginning only) 
 t  c h   n    s      p                     P 

  0 0 0  192  192  192/192 = 1.0000000  1.0000000 
  7 0 1  192  191  191/192 = 0.9947644  0.9947644 
  8 1 0  191  191  191/191 = 1.0000000  0.9947644 
 10 0 1  190  189  189/190 = 0.9947368  0.9895288 
 12 0 1  189  188  188/189 = 0.9947090  0.9842932 
 13 0 1  188  187  187/188 = 0.9946809  0.9790577 
 14 0 1  187  186  186/187 = 0.9946524  0.9738221 
 15 0 1  186  185  185/186 = 0.9946237  0.9685865 
 20 0 2  185  183  183/185 = 0.9891892  0.9581153 
 21 0 4  183  179  179/183 = 0.9781421  0.9371729 
 22 0 1  179  178  178/179 = 0.9944134  0.9319373 
 24 0 2  178  176  176/178 = 0.9887640  0.9214661 
 25 0 2  176  174  174/176 = 0.9886364  0.9109949 
 26 0 1  174  173  173/174 = 0.9942529  0.9057593 
 28 0 5  173  168  168/173 = 0.9710983  0.8795813 
 .   .    .    .      .                     . 

t =  time (days), c =  number censored, h = number healed 
n = number at risk, s = number surviving to next time = n–h 
p = proportion surviving this time = s/n 
P = cumulative proportion surviving = p × previous P 
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We can add a 95% confidence interval for the survival estimate.  This gives what are 
called Greenwood bounds around the survival curve.  Figure 4 shows these for the 
SSB group.  In Figure 4, the bounds get further apart as we move from left to right.  
This is because as subjects have been censored, there is less and less information on 
which to base the estimate.  If there is no censoring, they are widest at 50% survival 
and then get narrower again. 

We usually draw these survival curves so that we can compare them and Figure 5 
shows the survival curves for the two arms of the VenUS I trial.  This shows that the 
4LB group appeared to have a lower survival unhealed, i.e. better healing, than did the 
SSB group.  We can also look at the effect of a possible prognostic variable.  In 
VenUS I the area of ulcer at recruitment was expected to be an important predictor of 
healing.  This is a continuous variable, but by grouping the subjects into categories 
with small, medium, and large ulcers we can see that this is indeed a powerful 
predictor of healing.  As Figure 6 shows, small ulcers healed much more quickly than 
large ones.  

A graph showing the proportion unhealed may not be what we really want.  We can 
turn the graph upside down and plot the estimated proportion healed instead.  This is 
what was used in the publication of the VenUS I results (REF CHECK).  Figure 7 
shows the plot of the proportion healed against time, by area of ulcer.  The proportion 
healed is, of course, the proportion who do not survive and goes by the 
unprepossessing name of the failure function, the opposite of the survival function.   

Assumptions of the Kaplan Meier method 
The key assumption of the Kaplan Meier method is that the risk of an event is the 
same for censored subjects as for non-censored subjects.  This means: 

1. those lost to follow-up during the period of the study are not different from 
those followed-up to the analysis date, 

2. there is no change in risk from start of recruitment to end. 

As usual, we also assume that the observations are independent of one another.  We 
can check that risk remains the same by comparing the survival curves for subjects 
recruited early in the study with those recruited later.  Figure 8 shows survival curves 
obtained by splitting the sample into two parts at the median recruitment number.  
The curves look almost identical, so there is nothing to suggest that there is a change 
in risk from start to end of recruitment.  It is much more difficult to check those lost to 
follow-up before the analysis date are not different to those followed to the end.  We 
hope that there are few of these.   

The Kaplan Meier survival curve has proved so valuable that Kaplan and Meier 
(1958) is the mostly highly cited statistical paper to date (Ryan and Woodall, 2005). 

The logrank test 
Greenwood standard errors and confidence intervals for the survival probabilities, as 
shown in Figure 4, are  useful for estimates such as five year survival rate.  They are 
not a good method for comparing survival curves.  They do not include all the data 
and the comparison would depend on the time chosen.  Eventually, the curves will 
meet if we follow everyone to the event (Figure 9) and at this point the proportions 
surviving will be identical.   
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Figure 2.  Kaplan Meier survival curve for the SSB group in the VenUS I trial 
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Figure 3.  Kaplan Meier survival curve for the SSB group in the VenUS I trial with 
ticks added to show where censoring took place and the number at risk shown at 100 
day intervals 
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Figure 4.  Kaplan Meier survival curve for the SSB group in the VenUS I trial with 
Greenwood confidence limits added 



8 

0.00

0.20

0.40

0.60

0.80

1.00

P
ro

po
rti

on
 u

nh
ea

le
d

0 200 400 600 800 1000
Time since recruitment (days)

4LB SSB

 
Figure 5.  Kaplan Meier survival curves for the treatment arms in the VenUS I trial 
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Figure 6.  Kaplan Meier survival curves by area of ulcer at baseline in the VenUS I 
trial 
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Figure 7.  Estimated proportion healed (failure function) by area of ulcer in the 
VenUS I trial 
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Instead of the Greenwood method, to compare survival curves we need a method 
which makes use of the full survival data.  There are several significance tests which 
we can use for this, of which the best known is the logrank test.  This is a non-
parametric test which makes use of the full survival data without making any 
assumption about the shape of the survival curve.  

The logrank test works like this.  The null hypothesis is that at every time the chance 
of a member of a group experiencing an event is the same for all groups, though the 
chance of an event may change over time in any way.  The alternative hypothesis is 
that at some time the chance of an event is different in different groups. 

We consider only times at which there is an event or a censoring.  We put these in 
ascending order of time of follow-up, as shown in Table 4.  For each time we record 
for each group the number still at risk, denoted by n1 and n2 in Table 4, the number of 
events, denoted by d1 and d2, and the number of censorings, denoted by c1 and c2.  At 
each time there is an event or censoring, we find the overall proportion who have an 
event, which is the total number of events, d1 + d2, divided by the total number at risk, 
n1 + n2.  We use this to calculate how many events would be expected to happen at 
that time if there were no difference between the groups in the chance of an event.  
We multiply the number at risk in the group by the proportion of all subjects at risk 
who experience the event.  For each group, we then subtract the number of events and 
the number of censored observations at that time, to get the number at risk for the next 
event.  We proceed like this down the table until all the subjects have had an event or 
been censored.  Table 4 shows the start of this calculation only, and shows the 
calculation of the expected number of events (healings) for the first group, short 
stretch bandages.  We add all these expected numbers of events to give the total 
number of events expected in the group.  For the SSB group the total number of 
expected events is 160.57.  We do the same thing for each group; for the 4LB group 
the expected total number of events is 143.43.  We actually observed 147 events in 
the SSB group and 157 events in the 4LB group.  The expected numbers of events and 
the observed numbers have the same sum: 160.57 + 143.43 = 304 = 147 + 157.  If the 
null hypothesis were true, we should expect the observed frequencies to be close to 
the expected frequencies, just as we would in the chi-squared test for a contingency 
table (Week 6).  We apply the same observed minus expected squared over expected 
formula for frequencies that we used in the analysis of contingency tables to give a 
test statistic: 

 

If the null hypothesis were true, this would be an observation from a Chi-squared 
distribution.  The degrees of freedom is given by number of groups minus 1 = 2 – 1 = 
1.  The probability of getting so high a value of chi-squared with 1 degree of freedom 
is 0.1, so P = 0.1.  The difference in not significant and we do not have evidence that 
there is any difference in healing between short stretch and four layer bandaging.  
(This is not the end of the story, however, see below.) 

As usual, in practice we do these calculations using a computer program rather than 
set it all out by hand.  There are improvements to the chi-squared formula which may 
be built in to these programs. 
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Figure 8.  Survival curves for the first half and the second half of patient recruitment 
in the VenUS I trial 
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Figure 9.  Two hypothetical survival curves followed until there are no further 
survivals 
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Table 4.  Calculation of the logrank test comparing treatment arms in the VenUS I 
trial 
         SSB        4LD       proportion with   expected events  
                                  events          in group 1 

Time  n1  c1  d1  n2  c2  d2   q = (d1+d2)/(n1+n2)   e1 = n1×q 

  0  192  0  0  195  1  0      0/(192+195)     192 × 0/(192+195) 
  7  192  0  1  194  0  3      4/(192+194)     192 × 4/(192+194) 
  8  191  1  0  191  0  0      0/(191+191)     191 × 0/(191+191) 
 10  190  0  1  191  0  0      1/(190+191)     190 × 1/(190+191) 
 11  189  0  0  191  1  0      0/(189+191)     189 × 0/(189+191) 
 12  189  0  1  190  0  0      1/(189+190)     189 × 1/(189+190) 
 13  188  0  1  190  0  1      2/(188+190)     188 × 2/(188+190) 
 14  187  0  1  189  0  3      4/(187+189)     187 × 4/(187+189) 
 15  186  0  1  186  0  1      2/(186+186)     186 × 2/(186+186) 
 17  185  0  0  185  0  1      1/(185+185)     185 × 1/(185+185) 
 20  185  0  2  184  0  2      4/(187+184)     185 × 4/(187+184) 
 21  183  0  4  182  1  4      8/(183+182)     183 × 8/(183+182) 
 .    .   .  .   .   .  .           .                 . 
 .    .   .  .   .   .  .           .                 . 
 
n1 and n2 = numbers at risk, c1 and c2 = numbers of censored 
observations, i.e. not followed any longer, d1 and d2 = numbers of 
events in the two groups  
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We can have more than two groups in a logrank test.  For example, if we group area 
of ulcer into three categories, <4 sq cm, 4–8 sq cm, 8 sq cm or more, we get three 
observed and three expected numbers of healing events: 

           |   Events         Events 
Area       |  observed       expected 
-----------+------------------------- 
<4 sq cm   |       176         122.24 
4–8 sq cm  |        65          70.45 
8+ sq cm   |        63         111.32 
-----------+------------------------- 
Total      |       304         304.00 

 

Here there are much larger differences between the observed and expected numbers 
than for treatment arm.  If we apply the observed minus expected squared over 
expected formula to these three pairs, we get chi-squared = 46.84.  We have three 
groups, so the degrees of freedom are 3 – 1 = 2.  The probability of such a large chi-
squared value is very small, P < 0.0001, so we have very strong evidence that the area 
of the ulcer at baseline is a predictor of time to healing. 

Like all significance tests, the logrank test requires some assumptions about the data.  
Like the Kaplan-Meier survival curve, to which it is closely related, we require that 
observations be independent, that the risk of an event is the same for censored 
subjects as for non-censored subjects, and that survival is the same for early and late 
recruitment.  You will also often see it said that the survival curves should not cross.  
You will find it hard to see why from my description of how the test works.  I think 
that the origin of this idea is that the test is not good at detecting complex differences 
where risk of an event is higher in one group at beginning and higher in the other 
group at the end.  It is much better at detecting differences where the risk is higher in 
one group than the other throughout.  This assumption is really only relevant to the 
hazard ratio, described in the next section. 

You may be wondering where the logrank test got its name.  There are no obvious 
ranks involved, nor any logs.  I confess that I don’t understand it either and think of it 
as just a name. 

The logrank test is a nonparametric test and makes no assumptions about the shapes 
of the underlying survival curves.  It is a test of significance only and does not 
provide any estimate of the size of the difference in survival. 

The hazard ratio 
To produce an estimate of the size of the difference in survival, we have to make 
some assumptions about the shape of the curve.  We have to assume that they are 
similar in some way, so that we can find some numerical value to compare between 
them.  We can use the Greenwood standard errors to find a confidence interval for the 
difference between the survival probabilities at a given time, but this does not use all 
the data, events after the chosen time being ignored. 

One way to estimate the difference between the survival curves uses the hazard, 
which is a measure of the chance that a member of the population will have an event 
at any given time.  To be more precise, we find the probability of an event in any 
small time interval by multiplying the width of the time interval by the hazard at that 
time.  Hazard depends on the survival time, so that it might increase or decrease as 
follow-up goes on.  If we can assume that the survival curves follow the same pattern, 
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then we can assume that if hazard is greater in one group than another at one time, it 
will also be greater at another.  If this is the case, we assume that the hazard in one 
group is equal to the hazard in the other group multiplied by a constant number, which 
we will estimate.  Thus, if members of one group have twice the risk of an event for 
members of the other group on the first day, they will also have twice the risk of the 
event on the second day, twice the risk on the third day, and so on.   

The number is called the hazard ratio.  It is easy to estimate from the logrank 
calculations, just using the observed and expected numbers of events.  For the 4LB 
treatment arm compared to the SSB treatment arm, the hazard ratio is 
(157/143.43)/(147/160.57) = 1.20.  If the risk of an event is the same in the two 
groups, the hazard ratio is equal to one, if the risk is lower in the first group the hazard 
ratio is less than one, if the risk is greater in the first group the hazard ratio is greater 
than one.  Hence we have a small increase in the risk of an event in the 4LB group 
compared to the SSB group.  In this example the event is healing, a good thing, so this 
shows an advantage to the 4LB group.  Of course, this is only an estimate and is 
subject to error in the estimation, so we need a confidence interval. 

Like most ratios, the hazard ratio is much easier to analyse on the logarithmic scale.  
The approximate standard error for the log hazard ratio is also easy to estimate and for 
the log 4LB/SSB hazard ratio it is 0.115.  The log hazard ratio is 0.177, and the 95% 
confidence interval is 0.177 – 1.96×0.115 to 0.177 + 1.96×0.115 = –0.048 to 0.402.  If 
we antilog this we get the 95% confidence interval for the hazard ratio, 0.95 to 1.49.  
This includes 1.00, the null hypothesis value, so it is consistent with the logrank test 
above. 

For the ulcer area, we would need to estimate two hazard ratios, because there are 
three groups.  We choose one of them to be the reference category, as we did in 
multiple regression equations, with which we compare the other two.  Here the 
obvious choice of reference category is <4 square cm, the group with the smallest 
ulcers.  The hazard ratio for 4-8 sq cm compared to <4 sq cm is 0.64, 95% CI = 0.48 
to 0.86 and the hazard ratio for 8+ sq cm compared to <4 sq cm is 0.39, 95% CI = 
0.30 to 0.51.  Neither of these contain one, reflecting the highly significant 
relationship shown by the logrank test. 

There is more than one way to estimate the hazard ratio, its standard error, and its 
confidence interval.  Different programs may use different approximations and so 
may not produce exactly the same estimates.  Fortunately, the estimates are best for 
hazard ratios close to one and get less good for very large and very small ratios, but 
these are going to be so far from one that the inaccuracy is unlikely to affect our 
interpretation of the data.  They are large sample methods and doing this sort of thing 
for small samples is usually a waste of time as we would not be able to get useful 
estimates. 

Cox regression 
Cox regression is a regression method for survival data, very similar to multiple 
regression by least squares and logistic regression.  As usual, we have an outcome 
variable, the censored survival times, and some predictor variables with which we 
hope to predict the survival.  Cox regression predicts the hazard ratio for subjects 
with any given values of the predictor variables compared to subjects for whom the 
predictor variables are all equal to zero: 

log hazard ratio = slope1 × predictor1 + slope2 × predictor2 + ... 
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There is no intercept in the Cox method, because when all the predictor variables are 
equal to zero the hazard ratio must be one, and so the log hazard ratio must be zero.  
We have to assume that the hazard ratio does not depend on the time of follow-up, 
just as for the simple hazard ratio described above.  Cox regression is also known as 
proportional hazards regression.  

For our first example, we shall use area of the ulcer to predict healing in the VenUS I 
trial.  Area of ulcer is a continuous measurement and to estimate a hazard ratio 
directly we grouped it, throwing away information.  If we use Cox regression, we get: 

log hazard ratio = –0.0276 × area 

The actual calculation of Cox regression equations is quite complicated and is always 
done using a computer program.  As usual in regression, we get a standard error for 
the coefficient, here = 0.0064, a significance test of the null hypothesis that the slope 
or coefficient is equal to zero, z = –0.0276/0.0064 = –4.31, P < 0.001, and a 95% 
confidence interval for the slope, 95% CI = –0.0402 to –0.0151.  To interpret this 
more easily, we need to antilog the estimate and its confidence interval.  This gives us 
the hazard ratio = 0.973 per sq cm increase in baseline ulcer area, 95% confidence 
interval = 0.961 to 0.985 per sq cm increase in baseline ulcer area.  It is less than one, 
so bigger ulcers have lower risk, i.e. less chance of healing.  Every increase in area of 
one cm multiplies the hazard ratio by 0.973.   

For another example, we can put treatment arm into our Cox regression, using a 
variable equal to 1 for 4LB group and 0 for the SSB group.  We get hazard ratio = 
1.196, z = –1.56, P = 0.119, and the 95% confidence interval = 0.955 to 1.498.  We 
can round this up to 1.120, P = 0.1, 95% CI = 0.96 to 1.50.  In this analysis SSB is the 
reference treatment, so the risk of healing in the 4LB arm is estimated to be between 
0.96 and 1.50 times that in the SSB arm.   

If we compare the results of the Cox regression for treatment to the hazard ratio found 
in the previous section, apart from a few rounding errors in the calculation, we get the 
same answer.  The test of significance is also very similar to the logrank test, which 
gave us chi-squared = 2.46 with one degree of freedom.  This has P = 0.117, 
compared to P = 0.119 for the Cox regression.  This is not due to rounding errors, as 
the logrank test does not give quite the same P value as Cox regression.  The 
difference is tiny and of no practical importance.  As always, when there is more than 
one way to do something we should choose one and stick to it, not try them all to see 
which result we like best. 

The great strength of Cox regression compared to log rank tests and simple hazard 
ratios is that we can have more than one predictor variable.  For the VenUS I trial, we 
can improve the estimate of the treatment effect by including prognostic variables in 
the regression, just as we did for the asthma nurse trial in Week 7.  Area of the ulcer is 
an obvious variable to use, as it is such a good predictor of the outcome.  The Cox 
regression gives: 

log hazard ratio = –0.286 × area + 0.238 × group 
                                              P < 0.001          P=0.038 
            95% CI                 –0.041 to –0.015   0.013 to 0.464 

If we antilog these, the hazard ratio for an increase in ulcer area of one square cm = 
0.972 (95% CI 0.960 to 0.985) and for treatment group is 1.27 (95% CI 1.01 to 1.59, 
P=0.04).  Compare this to the estimated hazard ratio when we ignored the area, 1.20, 
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(95% CI = 0.96 to 1.50, P = 0.1).  Using the area produces a much better estimate of 
the treatment effect, because it explains a lot of the variation in survival.  In the paper 
reporting the results of the VenUS I trial the treatment difference was adjusted for 
ulcer area, duration of the ulcer, previous episodes of venous ulcers, weight, ankle 
mobility, and trial centre (Nelson et al., 2004).  The authors reported that: 

‘... when prognostic factors were included in a Cox proportional 
hazards regression model, ulcers treated with the short-stretch bandage 
had a lower probability of healing than those treated with the four-
layer bandage: hazard ratio 0·72 (95 per cent confidence interval 0·57 
to 0·91).’ (Nelson et al., 2004). 

This uses the four-layer bandage as the reference group, and the hazard ratio is the 
reciprocal of ours.  To make ours comparable, we take reciprocals: 1/1.27 = 0.79, 
95% CI 1/1.59 = 0.63 to 0.99).  Including more variables made the treatment effect 
estimate a little bigger. 

You may notice that the estimate of the hazard ratio is increased by the adjustment, 
from 1.20 to 1.27 after adjusting for baseline area and to 1/0.72 = 1.39 after adjusting 
for the other prognostic variables also.  The width of the confidence intervals changes 
very little, the ratios of upper limit to lower limit being 1.57 unadjusted, 1.57 after 
adjusting for area, and 1.60 after adjusting for all prognostic variables.  This is typical 
of Cox models.  Logistic regression behaves in the same way.  The reasons for this are 
described by Ford and Norrie (2002). 

There are several different regression methods for survival data.  Most of them require 
us to assume that the survival curve has a particular shape.  This is not going to be a 
particularly severe problem when we are dealing with nice, simple, uniform objects 
like light bulbs (we can use survival analysis to decide when to replace them) but does 
not work well with complicated things like sick people.  The great breakthrough of 
Cox regression was that we do not need to assume any particular shape for the 
survival curve.  This is why it is the one almost always used in health research.  Cox 
regression is described as semi-parametric: it is non-parametric for the shape of the 
survival curve, which requires no model, and parametric for the predicting variables, 
fitting an ordinary linear model.  According to Ryan and Woodall (2005), Cox (1972) 
is the second mostly highly cited statistical paper to date. 

There are several assumptions we must make about the data for Cox regression: 

1. observations are independent,  

2. as for Kaplan Meier, the risk of an event is the same for censored subjects as 
for non-censored subjects,  

3. the proportional hazards model applies, 

4. there are sufficient data for the maximum likelihood fitting and large sample z 
tests and confidence intervals.  

For the last assumption, a rule of thumb is that there should be at least 10 events per 
variable in the model, preferably 20.  Things might get very unreliable if we tried to 
fit Cox regression models with smaller samples.  For the VenUS I data, there were 
304 events, and we fitted two variables, giving 152 events per variable, which is 
ample.  Nelson et al. (2004) used treatment, ulcer area, duration of the ulcer, previous 
episodes of venous ulcers, weight, ankle mobility, and trial centre.  There were nine 
centres, which would require eight dummy or indicator variables to represent them.   
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There were 14 variables altogether, 304/14 = 21.7 events per variable, so this analysis 
did indeed satisfy the more stringent rule of thumb. 

There are several ways to check the proportional hazards assumption.  We can look at 
the Kaplan Meier plots to see whether they look OK, e.g. that they do not cross.  It is 
not very easy to see other than gross departures.  If we look at the survival curves for 
treatment (Figure 5) they appear to be almost identical for the first 50 days of follow-
up, then to diverge, and to come together against about 650 days.  Whether this means 
anything is difficult to say, but the hazard ratio may not be uniform.  For the three 
area groups (Figure 6), the curves for <4 and 4-8 sq cm appear identical for the first 
50 days then diverge, otherwise things look OK.   

(Things will now get a bit mathematical, but don’t worry about it, just look at the 
pictures if you start to feel a bit queasy.) 

A better way is the log minus log survival plot.  This uses the cumulated hazard, the 
risk of an event at any time from zero up to the chosen time.  If the hazard in 
proportional, the cumulated hazard must be, too.  We can show that the cumulated 
hazard at time t, H(t), and the proportion surviving at time t, S(t), are related by 

 H(t) = –log(S(t))  

H(t) is the risk of an event up to time t and, mathematically, it is the area under the 
curve of the hazard, h(t).  It is the integral of h(t).  In other words, the risk of an event 
from the beginning to a given time is minus the logarithm of the proportion surviving 
at that time. 

If the hazard in one group is proportional to the hazard in another group, the logs of 
the hazards should be a constant difference apart.  This is because the log of a ratio is 
the difference between the logs.  If the ratio is constant, the log ratio, which is the 
difference on the log scale, will be too. 

We plot the log of minus log survival against time.  Log time is better, as is should 
give a straight line with a common survival time distribution, called the Weibull.  In 
some programs, this plot is a built-in option.  Figure 10 shows the plot from Stata 
version 8.  Stata actually plots –log(–log(survival)), so that as survival decreases the –
log(–log(survival)) does too.  The curves are a similar distance apart all the way 
along, so the proportional hazards assumption looks acceptable. 

Figure 11 shows the –log(–log(survival)) plot for area of ulcer, grouped as in Figure 
6.  The curves for <4 sq cm and 4-8 sq cm clearly are not a similar distance apart all 
the way along.  They cross.  The proportional hazards assumption does not fit very 
well for area of ulcer.  In Figures 10 and 11, we plotted –log(–log(survival)) against 
log time.  What would they look like if we used time on the natural scale for time?  
This is shown in Figure 12.  It is much more difficult to see what is going on at the 
early times.  Unfortunately SPSS will not do log time automatically. 
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Figure 10.  Minus log minus log survival plot for treatment arm (Stata 8.0) 
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Figure 11.  –log(–log(survival)) plot for area of ulcer, grouped as in Figure 6.  
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Figure 12.  Minus log minus log survival plot against natural scale time for treatment 
arm (Stata 8.0) 
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