Introduction to Statistics for Clinical Trials

Proportions, chi-squared tests and odds ratios

Martin Bland

Professor of Health Statistics
University of York
http://www-users.york.ac.uk/~mb55/

Analyses for qualitative data

Also called nominal, categorical.
Only two categories: dichotomous, attribute, quantal, binary.

Methods:

> Chi-squared test for association
> Fisher's exact test
$>$ Chi-squared test for trend
$>$ Risk ratio, relative risk, rate ratio
> Odds ratio

Contingency tables

Cross tabulation of two categorical variables:

Housing tenure	Premature	Term	Total
Owner-occupier	50	849	899
Council tenant	29	229	258
Private tenant	11	164	175
Lives with parents	6	66	72
Other	3	36	39
Total	99	1344	1443

This kind of crosstabulation of frequencies is also called a contingency table or cross classification.
Want to test the null hypothesis that there is no relationship or association between the two variables. Whand
\qquad

Contingency tables

Cross tabulation of two categorical variables:

Meadows J, Jenkinson S, Catalan J. (1994) Who chooses to have the HIV antibody test in the antenatal clinic? Midwifery 10, 44-48.

Contingency tables

Cross tabulation of two categorical variables:
Acceptance of HIV test grouped by marital status \qquad

Marital status	Accepted	Rejected	Total
Married	71	415	486
Living w. partner	41	181	222
Single	15	35	50
Div./wid./sep.	7	23	30
Total	134	654	788

This kind of cross-tabulation of frequencies is also called a contingency table or cross classification.
Called 4 by 2 table or 4×2 table.
\qquad
In general, $r \times c$ table .

Contingency tables

Cross tabulation of two categorical variables:

Want to test the null hypothesis that there is no relationship or association between the two variables.

If the sample is large, we can do this by a chi-squared test.
\qquad If the sample is small, we must use Fisher's exact test.

The chi-squared test for association

| Acceptance of HIV test grouped by marital status | | |
| :--- | :---: | :---: | :---: |
| | Acceptance of HIV test
 Accepted | |
| Marital status | Rected | | Total

Null hypothesis: no association between the two variables.
Alternative hypothesis: an association of some type.

The chi-squared test for association

Acceptance of HIV test grouped by marital status
Acceptance of HIV test

Marital status Accepted Rejected Total
---1
Married 82.6486
Living w. partner
222
Single 30
Div./wid./sep. 30
$\begin{array}{llll}\text { Total } & 134 & 654 & 788\end{array}$
Proportion who accepted $=134 / 788$
Out of 486 married, expect $486 \times 134 / 788=82.6$
to accept if the null hypothesis were true.

The chi-squared test for association

$\left.\begin{array}{lccc}\text { Acceptance of HIV test grouped by marital status } \\ \text { Acceptance of HIV test }\end{array}\right)$

Proportion who refused $=654 / 788$
Out of 486 married, expect $486 \times 654 / 788=403.4$
to refuse if the null hypothesis were true.
Note that $82.6+403.4=486$.
\qquad

The chi-squared test for association

Acceptance of HIV test			
Married	82.6	403.4	486
Living w. partner	37.8	184.2	222
Single			50
Div./wid./sep.			30
Total	134	654	788

Out of 222 living with partner, expect $222 \times 134 / 788=37.8$ to accept if the null hypothesis were true.

Out of 222 living with partner, expect $222 \times 654 / 788=184.2$ to refuse if the null hypothesis were true.

Note that $37.8+184.2=222$.

The chi-squared test for association

Acceptance of HIV test			
Married	82.6	403.4	486
Living w. partner	37.8	184.2	222
Single	8.5	41.5	50
Div./wid./sep.	5.1	24.9	30
Total	134	654	788

Note that $82.6+37.8+8.5+5.1=134$

$$
403.4+184.2+41.5+24.9=654 .
$$

Observed and expected frequencies have the same row and column totals.

The chi-squared test for association

| Acceptance of HIV test grouped by marital status | | |
| :--- | :---: | :---: | :---: |
| | Acceptance of HIV test
 Accepted | Rejected | Total

Expected frequency if null hypothesis true $=$
row total \times column total grand total
\qquad

The chi-squared test for association

Compare the observed and expected frequencies.
Add (observed - expected) ${ }^{2} /$ expected for all cells $=9.15$.
If null hypothesis true and samples are large enough, this is an observation from a chi squared distribution, often written χ^{2}.

The Chi-squared distribution

Family of distributions, one parameter, called the degrees of freedom.

The Chi-squared distribution

Family of distributions, one parameter, called the degrees of freedom.

\qquad

Percentage points of the Chi-squared Distribution

$\begin{gathered} \text { Degrees } \\ \text { of } \end{gathered}$	is exceeded			
freedom	10\% 0.10	5\% 0.05	1\% 0.01	$0.1 \% 0.001$
1	2.71	3.84	6.63	10.83
2	4.61	5.99	9.21	13.82
3	6.25	7.81	11.34	16.27
4	7.78	9.49	13.28	18.47
5	9.24	11.07	15.09	20.52
6	10.64	12.59	16.81	22.46
7	12.02	14.07	18.48	24.32
8	13.36	15.51	20.09	26.13
9	14.68	16.92	21.67	27.88
10	15.99	18.31	23.21	29.59

The chi-squared test for association

Housing tenure	Premature	Term	Total
Owner-occupier	50	849	899
Council tenant	29	229	258
Private tenant	11	164	175
Lives with parents	6	66	72
Other	3	36	39
Total	99	1344	1443

For a contingency table, the degrees of freedom are given by:
(number of rows -1$) \times($ number of columns -1$)$.
We have $(5-1) \times(2-1)=4$ degrees of freedom.
$\chi^{2}=10.5,4$ d.f., $P<0.05$. Using a computer, $\mathrm{P}=0.03$.

The chi-squared test for association

The chi-squared statistic is not an index of the strength of the association.

If we double the frequencies, this will double chi-squared, but the strength of the association is unchanged. \qquad
\qquad
\qquad
\qquad
\qquad

The chi-squared test for association

The test statistic follows the Chi-squared Distribution provided the expected values are large enough.

This is a large sample test.
The smaller the expected values become, the more dubious will be the test.

The conventional criterion for the test to be valid is this: the chi-squared test is valid if at least 80% of the expected frequencies exceed 5 and all the expected frequencies exceed 1.

Also known as the Pearson chi-squared test.

Fisher's exact test

Also called the Fisher-Irwin exact test.
Works for any sample size.
Used to be used only for small samples in 2 by 2 tables, because of computing problems.
Calculate the probability of every possible table with the given row and column totals.

Sum the probabilities for all the tables as or less probable than the observed.

Fisher's exact test

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Yates' correction

Fisher's exact test: $\mathrm{P}=0.0049$.
Chi-squared test: chi-squared $=8.87, \mathrm{P}=0.0029$.

Callam MJ, Harper DR, Dale JJ, Brown D, Gibson B, Prescott RJ, Ruckley CV. (1992) Lothian Forth Valley leg ulcer healing tria-part 1: elastic versus nonelastic bandaging in the treatment of chronic leg ulceration. Phlebology 7: 136-41.

Yates' correction

Fisher's exact test: $\mathrm{P}=0.0049$.
Chi-squared test: chi-squared $=8.87, P=0.0029$.
As expected frequencies get smaller, chi-squared and Fisher's exact disagree.
Fisher's produces the 'correct' P value.
Chi-squared produces a P value which is too small

Yates' correction

Wound healing by type of bandage			
Bandage	Healed	Did not heal	Total
Elastic	35	30	65
Inelastic	19	48	67
Total	54	78	132
		(Callam et al., 1992)	

Fisher's exact test: $\mathrm{P}=0.0049$.
Chi-squared test: chi-squared $=8.87, P=0.0029$
Yates introduced a modified chi-squared test for a 2 by 2 table which adjusts for this.
Also called the continuity correction
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Yates' correction

Bandage	Healed	Did not heal Total
Elastic	35	$30 \quad 65$
Inelastic	19	48 67
Total	54	78132

Fisher's exact test: $\mathrm{P}=0.0049$.
Chi-squared test: chi-squared $=8.87, \mathrm{P}=0.0029$.
Chi-squared with Yates' correction:

$$
\text { chi-squared }=7.84, \mathrm{P}=0.0051 .
$$

Yates' correction now obsolete as we can always do the exact test.

The chi-squared test for trend

Assessment of radiological appearance at six months as compared with appearance on admission (MRC 1948)
Radiological assessment Streptomycin Control
Considerable improvement $28 \quad 4$

Moderate or slight improvement
No material change
Moderate or slight deterioration
Considerable deterioration
Deaths
28 - 4

Total
$6 \quad 6$

Association: chi-squared $=26.97,5$ d.f., $P=0.0001$.
Does not take the ordering of the categories into account.
Trend: chi-squared $=17.93,1$ d.f., $\mathrm{P}<0.0001$.
About trend: chi-squared $=9.04,4$ d.f., $P=0.06$.

Risk ratio

Wound healing by type of bandage
Bandage

- Healed
Elastic
Elat not heal Total

Want an estimate of the size of the treatment effect.
Difference between proportions: $0.538-0.284=0.254$ or $53.8 \%-28.4 \%=25.4$ percentage points.

Proportion who heal is called the risk of healing for that population.

Risk ratio = 53.8/28.4 = 1.89.
Also called relative risk, rate ratio, RR

Risk ratio

Wound healing by type of bandage

Risk ratio $=53.8 / 28.4=1.89$.
Because risk ratio is a ratio, it has a very awkward distribution.

If we take the log of the risk ratio, we have something which is found by adding and subtracting log frequencies.
The distribution becomes approximately Normal.
Provided frequencies are not small, simple standard error.

Risk ratio

Wound healing by type of bandage

Risk ratio, $R R=53.8 / 28.4=1.89$.
$\log _{\mathrm{e}}(\mathrm{RR})=0.6412$.
SE for $\log _{e}(R R)=0.2256$
$95 \% \mathrm{Cl}$ for $\log _{e}(\mathrm{RR})$

$$
\begin{aligned}
& =0.6412-1.96 \times 0.2256 \text { to } 0.6412+1.96 \times 0.2256 \\
& =0.1990 \text { to } 1.0834 \text {. } \\
95 \% & \text { CI for } \mathrm{RR}=\exp (0.1990) \text { to } \exp (1.0834)=1.22 \text { to } 2.95 .
\end{aligned}
$$

Risk ratio

Wound healing by type of bandage

Bandage	Healed	Did not heal	Total		
--	35	53.8%	30	46.2%	65
Elastic	100%				
Inelastic	19	28.4%	48	71.6%	67
In	100%				
Total	54	78	132		

$\log _{\mathrm{e}}(\mathrm{RR})=0.6412,95 \% \mathrm{Cl}=0.1990$ to 1.0834 .
Risk ratio, $\mathrm{RR}=53.8 / 28.4=1.89,95 \% \mathrm{CI}=1.22$ to 2.95 .
$R R$ is not in the middle of its confidence interval.
The interval is symmetrical on the log scale, not the natural scale.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Odds

Healed Did not heal Total

Elastic 35 53.8\% $3046.2 \% \quad 65$ 100\%
Risk of healing $=35 / 65=0.538$
Odds of healing $=35 / 30=1.17$
Risk = number experiencing event divided by number who could.

Odds = number experiencing event divided by number who did not experience event.

Risk: for every person treated, 0.538 people heal, for every 100 people treated, 53.8 people heal.
Odds: for every person who do not heal, 1.17 people heal, for every 100 people who do not heal, 117 people heal.

Odds ratio

Odds of healing given elastic bandages: $35 / 30=1.17$.
Odds of healing given inelastic bandages: 19/48 $=0.40$.
Odds ratio $=(35 / 30) /(19 / 48)=1.17 / 0.40=2.95$.
For every person who does not heal, 2.95 times as many will heal with elastic bandages as will heal with inelastic bandages.
\qquad
\qquad

Odds ratio

Odds ratio, $\mathrm{OR}=(35 / 30) /(19 / 48)=2.95$.
Like RR, OR has an awkward distribution. We use the log odds ratio.

The distribution becomes approximately Normal.
Provided frequencies are not small, simple standard error.
\qquad

Odds ratio

Wound healing by type of bandage
Bandage Healed Did not heal Total

Elastic	35	30	65
Inelastic	19	48	67
--132			
Total	54	78	132

\qquad
\qquad
\qquad
$\log _{e}(O R)=1.0809$.
SE $\log _{e}(\mathrm{OR})=0.3679$
$95 \% \mathrm{Cl}$ for $\log _{e}(\mathrm{OR})$
$=1.0809-1.96 \times 0.3679$ to $1.0809+1.96 \times 0.3679$ $=0.3598$ to 1.8020 .
$95 \% \mathrm{Cl}$ for $\mathrm{OR}=\exp (0.3598)$ to $\exp (1.8020)=1.43$ to 6.06 .

Odds ratio

Wound healing by type of bandage
Bandage Healed Did not heal Total

Elastic	35	30	65
Inelastic	19	48	67

$\log _{e}(\mathrm{OR})=1.0809,95 \% \mathrm{Cl}=0.3598$ to 1.8020 .
Odds ratio, $\mathrm{OR}=2.95,95 \% \mathrm{Cl}=1.43$ to 6.06 .
OR is not in the middle of its confidence interval.
The interval is symmetrical on the log scale, not the natural scale. \qquad
\qquad

Odds ratio

Odds ratio for healing: $\mathrm{OR}=(35 / 30) /(19 / 48)=2.95$.
Doesn't matter which way round we do it.
Odds ratio for treatment: $\mathrm{OR}=(35 / 19) /(30 / 48)=2.95$.
Both OR = $(35 \times 48) /(30 \times 19)$.
Ratio of cross products.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Odds ratio

Wound healing by type of bandage

Bandage	Did not heal	Healed	Total
-----	30	35	65
Elastic	38	19	67
Inelastic	48	54	132

Switching the rows or columns inverts the odds ratio.
Odds ratio for not healing given elastic bandage:

$$
\mathrm{OR}=(30 / 35) /(48 / 19)=0.339=1 / 2.95 \text {. }
$$

There are only two possible odds ratios.
On the log scale, equal and opposite.
$\log _{\mathrm{e}}(2.95)=1.082, \log _{\mathrm{e}}(0.339)=-1.082$.

