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Testing within randomised groups 

When we randomise trial participants into two groups, we do this so that they comparable in 
every respect except the treatment which we then apply.  However, rather than comparing the 
randomised groups directly, researchers sometimes look at the difference between a baseline 
measurement and the outcome measurement and test the equality between them, separately in 
each randomised group.  They then report that in one group this difference is significant but 
not in the other and conclude that this is evidence that the groups, and hence the treatments, 
are different.   

An example: Boots “anti-aging” cream trial 

For example, a recent trial received wide media publicity as the first “anti-aging” cream 
“proven” to work in a randomised controlled clinical trial (Watson et al., 2009).  Participants 
were randomised into two groups, to receive the “anti-ageing” product or the vehicle as a 
placebo.   

The authors report four outcome measures: fine lines and wrinkles, dyspigmentation, overall 
clinical grade of photoageing, and tactile roughness, each measured on a scale of 0 to 8 at 
baseline, 1, 6, and 12 months.  The data recorded at one month are not mentioned in the 
paper. 

The authors report four outcome measures: fine lines and wrinkles, dyspigmentation, overall 
clinical grade of photoageing, and tactile roughness, each measured on a scale of 0 to 8 at 
baseline, 1, 6, and 12 months.  They report that “linear regression analysis was used to 
extrapolate the vehicle response to 12 months, thus allowing direct comparison with the test 
product”, but no details are given.  There is a reference (Chakrapani 1994), but this does not 
mention regression or extrapolation.  It would be prudent to concentrate on the six months 
results.   

There was no mention that any of the four measures was a prespecified primary outcome.  
We might surmise that a significant difference in any variable would be taken to indicate 
evidence of a treatment effect.  The trial was entirely analysed in terms of P values, so 
prudence should lead us to adjust for multiple testing.  We can apply a Bonferroni correction 
and multiply any P values by 4.  If we were to include the 6 and 12 months results in the 
same analysis, we would multiply by 8.   

The authors gave the results of significance tests comparing the score with baseline for each 
group separately, reporting the active treatment group to have a significant difference 
(P=0.013) and the vehicle group not (P=0.11).  This was interpreted as the cosmetic “anti-
ageing” product resulted in significant clinical improvement in facial wrinkles.  But we 
cannot draw this conclusion, because the lack of a significant difference in the vehicle group 
does not mean that subjects given this treatment do not improve, nor that they do not improve 
as well as those given the “anti-aging” product.  It is the sizes of the differences which is 
important, they should be compared directly in a two sample test.  
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The paper includes some data for the improvement in each group, 43% for the active group 
and 22% for controls.  This was what was picked up by the media.  No P value is given, but 
in the discussion the authors acknowledge that this difference was not significant.  No 
confidence interval is given, either.   

There is an immediate problem if we try to calculate either P value or confidence interval for 
ourselves.  We cannot reproduce 22%.  6/30 = 20%, 7/30 = 23%, not 22%.  So there must 
have been loss to follow-up.  How many people were there at six months?   

Watson et al. should have followed the CONSORT guidelines.  This would have enabled us 
to see how many participants were present at each stage and would also have required a 
confidence interval for the difference to be presented. 

The nearest I can get is 6 improvements out of 27, with three dropouts, which gives 22.2%.  
If we take 13/30 and compare this to any of 7/30, 6/30, or 6/27, we do not get a significant 
chi-squared test, the P values being 0.10, and 0.052, 0.09.  One of them almost makes <0.05.  
However, if we apply the Bonferroni correction, the P value for wrinkles becomes 0.208, 
clearly not significant.  

The authors state that the 12-month clinical assessment data, presumably after the 
extrapolation, were analysed using a combination of Wilcoxon’s matched pairs signed rank 
and rank sum tests, to give an overall P-value.  It is not clear what this means, but they state 
that for facial wrinkles there was a statistically significant difference between the groups (test 
product, 70% of subjects improving compared with vehicle, 33% improving; combined 
Wilcoxon rank tests, P = 0.026).  This P value would not stand up to the Bonferroni 
correction, 4×0.026 = 0.104.   

The British Journal of Dermatology published my letter (Bland 2009) and a reply by Watson 
and Griffiths (2009).  A different version subsequently appeared in Significance (Bland 
2009b).  This happened, of course, only because the publicity generated by Boots brought the 
paper to my attention.  

The “anti-aging” skin cream trial made me think about this method of analysis.  I have come 
across this several times before.  Could I present a clearer explanation for why it is wrong? 

An earlier example: information and anxiety 

I used this example in my textbook, An Introduction to Medical Statistics (Bland 2000).  
Kerrigan et al. (1993) assessed the effects of different levels of information on anxiety in 
patients due to undergo surgery.  They randomized patients to receive either simple or 
detailed information about the procedure and its risks.  Anxiety was again measured after 
patients had been given the information.   

Kerrigan et al. calculated significance tests for the mean change in anxiety score for each 
group separately.  In the group given detailed information the mean change in anxiety was 
not significant (P=0.2), interpreted incorrectly as “no change”.  In the group given simple 
information the reduction in anxiety was significant (P=0.01).  They concluded that there was 
a difference between the two groups because the change was significant in one group but not 
in the other.   

This is incorrect.  There may, for example, be a difference in one group which just fails to 
reach the (arbitrary) significance level and a difference in the other which just exceeds it, the 
differences in the two groups being similar.  We should compare the two groups directly.   
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An alternative analysis tested the null hypothesis that after adjustment for initial anxiety score 
the mean anxiety scores are the same in patients given simple and detailed information.  This 
showed a significantly higher mean score in the detailed information group (Bland and 
Altman 1993).  In this example, the conclusion from the incorrect and correct analysis would 
be the same. 

An earlier example: ultrasonography screening  

Calculating a confidence interval for each group separately is essentially the same error as 
testing within each group separately.  Bland (2000) gave this example.  Salvesen et al. (1992) 
reported follow-up of two randomized controlled trials of routine ultrasonography screening 
during pregnancy.  At ages 8 to 9 years, children of women who had taken part in these trials 
were followed up.  A subgroup of children underwent specific tests for dyslexia. 

The test results classified 21 of the 309 screened children (7%, 95% confidence interval 3% 
to 10%) and 26 of the 294 controls (9%, 95% confidence interval 4% to 12%) as dyslexic.   

Much more useful would be a confidence interval for the difference between prevalences  
(–6.3 to +2.2 percentage points) or their ratio (0.44 to 1.34), because we could then compare 
the groups directly. 

A simple simulation 

We shall illustrate the inappropriateness of testing within separate groups with a simulation.  
Table 1 shows simulated data from a randomised trial, two groups of 30 drawn from the same 
population, so that there is no systematic difference between the groups.  There is a baseline 
measurement, with standard deviation 2.0, and an outcome measurement, equal to the 
baseline plus an increase of 0.5 and a random element with standard deviation 1.0.   

The usual way to analyse such data is to compare the mean outcome between the groups 
using the two sample t method or, better, to adjust the difference for the baseline measure 
using analysis of covariance or multiple regression.  For this table, using the two sample t 
method, we get difference in mean differences = 0.20, P=0.27, adjusting the difference for the 
baseline measure using analysis of covariance we get difference = 0.20, P = 0.45).   

The difference is not statistically significant, which is not surprising because we know that 
the null hypothesis is true, there is no difference in the population.   

There are other analyses which we could carry out on the data.  For each group, we can 
compare baseline with outcome using a paired t test.  For group A, the difference is 
significant, P=0.03; for group B it is not significant, P = 0.2.  These results are quite similar 
to those of the “anti-ageing” cream trial.  We know that these data were simulated with an 
increase of 0.5 from baseline to outcome, so the significant difference is not surprising.  
There are only 30 in a group and the power to detect the difference is not great.  Only 75% of 
samples are expected to produce a significant difference, so the non-significant difference is 
not surprising either.   

A bigger simulation 

We would not wish to draw any conclusions from one simulation.  We repeated it 1000 times.  
In 1000 runs, the difference between groups had P<0.05 in the analysis of covariance 47 
times, or for 4.7% of samples, very close to the 5% we expect.  For the 2000 comparisons 
between baseline and outcome, 1500 had P<0.05, 75%, corresponding to the 75% power 
noted above.  Of the 1000 pairs of t tests for groups A and B, 62 pairs had neither test 
significant, 562 had both tests significant, and 376 had one test significant but not the other.  



��

�

So in this simulation, where is no difference whatsoever between the two “treatments”, 
37.6% of runs produced a significant difference in one group but not the other.   

Hence we cannot interpret a significant difference in one group but not the other as a 
significant difference between the groups. 

How many pairs of tests would be expected to have one significant and one not 
significant difference? 

How many pairs of tests will have one significant and one significant difference depends on 
the power of the paired tests.  If the population difference is very large, nearly all will be 
significant, and if the population difference is small, nearly all tests will be not significant, so 
there will be few samples with only one significant difference.   

Looking at the problem more mathematically, if there is no difference between groups and 
power of the paired t test to detect the difference between baseline and outcome is P, the 
probablility that the first group will have a significant paired test is P, the probability that the 
second will be not significant is 1 – P and the probablity that both will happen is thus P×(1 – 
P).  Similarly, the probability that the first will be not significant and second significant will 
be (1 – P)×P, i.e. the same, so the probablity that one difference will be significant and the 
other not will be twice this, 2P×(1 – P).  It will not be 0.05. 

When the difference in the population between baseline and outcome is zero, the probability 
that a group will have a significant difference is 0.05, because the null hypothesis is true.  The 
probability that one group will have a significant difference and the other will not is then 
2P×(1 – P) = 2×0.05×(1 – 0.05) = 0.095, not 0.05.  We would expect 9.5% of samples to 
have one and only one significant difference.  If the power is 50%, as it would be here if the 
underlying difference were 0.37 rather than 0.50, as in our simulation, then 2P×(1 – P) = 
2×0.50×(1 – 0.50) = 0.50.  We would expect 50% of samples to have one and only one 
significant difference.   

A few more from the vaults 

The next two examples are taken from Statistical Questions in Evidence-based Medicine 
(Bland and Peacock, 2000).   

In a randomized trial of morphine vs. placebo for the anaesthesia of mechanically ventilated 
pre-term babies, it was reported that morphine-treated babies showed a significant reduction 
in adrenaline concentrations during the first 24 hours (median change −0.4 nmol/L, P<0.001), 
which was not seen in the placebo group (median change 0.2 nmol/L, P<0.79) (Quinn et al. 
1993).   

In a study of treatments for menorrhagia during menstruation, 76 women were randomized to 
one of three drugs (Bonnar and Sheppard 1996). The effects of the drugs were measured 
within the subjects by comparing three control menstrual cycles and three treatment 
menstrual cycles in each woman. The women were given no treatment during the control 
cycles. In each subject the control cycles were the three cycles preceding the treatment 
cycles.  

The authors reported that patients treated with ethamsylate used the same number of sanitary 
towels as in the control cycles.  A significant reduction in the number of sanitary towels used 
was found in patients treated with mefenamic acid (P<0.05) and tranexamic acid (P<0.01) 
comparing the control periods with the treatment periods.  
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This made me wonder what happens when we do separate tests within three groups.  Suppose 
there are no treatment differences and the power of the within-group test between outcome 
and baseline is P.  The probability that all three tests will be significant = P3.  The probability 
that all three will be not significant = (1–P3).  Then the probability at least one test will be 
significant and one not significant = 1 – P3 – (1–P3).  If all the null hypotheses within the 
group are true, so that there are no changes from baseline, P = 0.05.  Then 1 – P3 – (1–P3) = 
0.14.  If the null hypotheses within the groups are not true and the power to detect the 
difference is P = 0.5, then 1 – P3 – (1–P3) = 0.75.  Alpha for this test can be 0.75 rather than 
0.05.  When the null hypothesis was true, three quarters of such trials would produce a 
significant difference.  

The next example comes from Practical Statistics for Medical Research (Altman, 1991).  

Patients with chronic renal failure undergoing dialysis were divided into two groups with low 
or with normal plasma heparin cofactor II (HCII) (Toulon et al. 1987).  Five months later, the 
acute effects of haemodialysis were examined by comparing the ratio of HCII to protein in 
plasma before and after dialysis.  The data were analysed by separate paired Wilcoxon tests 
in each group. 

Toulon et al. published the data, which appear in Table 2, taken from Altman (1991).  They 
analysed the data using two paired Wilcoxon tests.  For the Low HCII group the before to 
after change was significant, P<0.01.  For the normal HCII group the difference was not 
significant, P>0.05. 

What should they have done?  They could have done a two sample t test between groups on 
the ratio before dialysis minus ratio after.  This gives t = 0.16, 22 d.f., P=0.88.  The 
variability is not the same in the two groups, so they might have done a two sample rank-
based test, the Mann Whiney U test.  This gives z = 0.89, P = 0.37.  So either way, the 
difference is not statistically significant. 

Conclusions 

• Separate paired tests against baseline is a frequent practice. 

• It is highly misleading and invalid. 

• Randomised groups should be compared directly by two-sample methods. 

The core of this talk was published as number 57 in the Statistics Notes series in the British 
Medical Journal, Bland and Altman (2011). 

Recommendations 

Trialists should: 

• compare randomised groups directly, 

• produce estimates with confidence intervals rather than significance tests (Gardner 
and Altman, 1986), 

• follow the CONSORT guidelines (CONSORT). 
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Table 1.  Simulated data from a randomised trial comparing two groups of 30, with no 
real difference. 

Group A Group B 
Baseline Outcome Baseline Outcome Baseline Outcome Baseline Outcome 

11.2  10.8 10.6    12.0 12.3  13.7   8.3    9.0 
   8.0   8.5 13.1    15.0  7.5   8.3   9.6 10.6 
 7.3   8.3  6.6   5.6  7.2   7.5  10.4  9.9 
 9.8     9.0  9.7     9.0 10.3    110   7.5  9.4 
 7.7   9.1 10.3  11.5 10.8  10.7   8.4  8.8 

   8.0   8.5 10.9   9.7  7.4   6.9  11.1   10.0 
13.2  13.8 12.4  12.6 11.7  11.5   8.7    8.0 
11.8  11.9  7.7   9.5 13.9  13.7  10.2 10.4 
 9.8     8.0  7.9   9.6   12.0  12.7   6.8  7.9 
13.3  14.1  9.2   9.6    9.0   7.2   9.9   11.0 
10.6   9.1 13.7  14.2 10.8  11.8  10.1 11.5 
12.3  12.2 10.7  13.2 10.5  11.3  11.4 11.8 
10.2  11.1 11.1  12.2 13.7  12.6  11.1 13.2 
 6.4   7.1  9.6  10.7  9.2   7.1  10.7  9.9 
 9.3   8.7  8.1   9.1 11.6  12.1   7.2  6.9 

 

 
Table 2.  HCII/protein ratio in two groups of patients (Toulon et al. 1987, reported by 
Altman 1991)  
 

Group 1 (low HCII) Group 2 (normal HCII) 
Before After Before After 
1.41� 1.47� 2.11� 2.15�
1.37� 1.45� 1.85� 2.11�
1.33� 1.50� 1.82� 1.93�
1.13� 1.25� 1.75� 1.83�
1.09� 1.01� 1.54� 1.90�
1.03� 1.14� 1.52� 1.56�
0.89� 0.98� 1.49� 1.44�
0.86� 0.89� 1.44� 1.43�
0.75� 0.95� 1.38� 1.28�
0.75� 0.83� 1.30� 1.30�
0.70� 0.75� 1.20� 1.21�
0.69� 0.71� 1.19� 1.30�

 


