Introduction to Statistics for Research

Proportions, chi-squared tests and odds ratios

Martin Bland Emeritus Professor of Health Statistics University of York http://martinbland.co.uk/

Analyses for qualitative data

Also called nominal, categorical.

Only two categories: dichotomous, attribute, quantal, binary.

Methods:

- > Chi-squared test for association
- Fisher's exact test
- Chi-squared test for trend
- > Risk ratio, relative risk, rate ratio
- ➢ Odds ratio

Contingency tables

Cross tabulation of two categorical variables:

Time of delivery by housing tenure			
Housing tenure	Premature	Term	Total
Owner-occupier	50	849	899
Council tenant	29	229	258
Private tenant	11	164	175
Lives with parents	6	66	72
Other	3	36	39
Total	99	1344	1443

This kind of crosstabulation of frequencies is also called a **contingency table** or **cross classification**.

Want to test the null hypothesis that there is no relationship or association between the two variables.

Contingency tables

Cross tabulation of two categorical variables:

Acceptance of HIV to	est groupe	d by marit	al status
A	cceptance	of HIV tes	t
Marital status	Accepted	Rejected	Total
Married	71	415	486
Living w. partner	41	181	222
Single	15	35	50
Div./wid./sep.	7	23	30
Total	134	654	788

Meadows J, Jenkinson S, Catalan J. (1994) Who chooses to have the HIV antibody test in the antenatal clinic? Midwifery $\,10,\,44\text{-}48.$

Contingency tables

Cross tabulation of two categorical variables:

Acceptance of HIV to	HIV test grouped by marital status Acceptance of HIV test tus Accepted Rejected Total 71 415 486 artner 41 181 222 15 35 50			
A	cceptance	of HIV tes	t	
Marital status	Accepted	Rejected	Total	
Married	71	415	486	
Living w. partner	41	181	222	
Single	15	35	50	
Div./wid./sep.	7	23	30	
Total	134	654	788	

This kind of cross-tabulation of frequencies is also called a contingency table or cross classification.

Called 4 by 2 table or 4×2 table.

In general, $r \times c$ table.

Contingency tables

Cross tabulation of two categorical variables:

Acceptance of HIV tes	st groupe	d by marita	al status
Acc	ceptance	of HIV test	5
Marital status A	Accepted	Rejected	Total
Married	71	415	486
Living w. partner	41	181	222
Single	15	35	50
Div./wid./sep.	7	23	30
Total	134	654	788

Want to test the null hypothesis that there is no relationship or association between the two variables.

If the sample is large, we can do this by a chi-squared test.

If the sample is small, we must use Fisher's exact test.

The chi-squared test for association

Acceptance of HIV test grouped by marital status

- A	cceptance	of HIV test	t
Marital status	Accepted	Rejected	Total
Married	71	415	486
Living w. partner	41	181	222
Single	15	35	50
Div./wid./sep.	7	23	30
Total	134	654	788

Null hypothesis: no association between the two variables.

Alternative hypothesis: an association of some type.

Acceptance of HIV	test grouped	by marita	al statu
	Acceptance o	of HIV test	
Marital status	Accepted	Rejected	Total
Married	82.6		486
Living w. partne	r		222
Single			50
Div./wid./sep.			30
 Total	134	654	788

Proportion who accepted = 134/788

Out of 486 married, expect 486 × 134/788 = 82.6 to accept if the null hypothesis were true.

Note that 82.6 + 403.4 = 486.

The	chi-so	uared	test for	association
	0			400001411011

Acceptance of HIV test grouped by marital status

A Marital status	cceptance Accepted	of HIV test Rejected	t Total
Married	82.6	403.4	486
Living w. partner	37.8	184.2	222
Single			50
Div./wid./sep.			30

Out of 222 living with partner, expect $222 \times 134/788 = 37.8$ to accept if the null hypothesis were true.

Out of 222 living with partner, expect $222 \times 654/788 = 184.2$ to refuse if the null hypothesis were true.

Note that 37.8 + 184.2 = 222.

The chi-squared	test for	association
-----------------	----------	-------------

Acceptance of HIV t	est groupe	d by marita	al status	;
A	cceptance	of HIV test	5	
Marital status	Accepted	Rejected	Total	
Married	82.6	403.4	486	
Living w. partner	37.8	184.2	222	
Single	8.5	41.5	50	
Div./wid./sep.	5.1	24.9	30	
Total	134	654	788	

Note that 82.6 + 37.8 + 8.5 + 5.1 = 134,

403.4 + 184.2 + 41.5 + 24.9 = 654.

Observed and expected frequencies have the same row and column totals.

The chi-squared te	st for ass	ociation	
Acceptance of HIV t	est groupe	d by marita	al status
А	cceptance	of HIV tes	t
Marital status	Accepted	Rejected	Total
	 82 6	403 4	186
Living w partner	37.8	184.2	222
Single	8.5	41.5	50
Div./wid./sep.	5.1	24.9	30
 Total	134	654	788
Expected frequency if n	ull hypothe	sis true =	
row	<u>total × colu</u> grand tot	<u>mn total</u> al	
	5		

Acceptance of HIV test grouped by marital status

Ad Marital status	cceptance Accepted	of HIV test Rejected	Total
Married	71 82.6	415 403.4	486
Living w. partner	41 37.8	181 184.2	222
Single	15 8.5	35 41.5	50
Div./wid./sep.	7 5.1	23 24.9	30
Total	134	654	788

Compare the observed and expected frequencies.

Add (observed – expected)²/expected for all cells = 9.15.

If null hypothesis true and samples are large enough, this is an observation from a chi squared distribution, often written $\,\chi^2.\,$

Degrees	Probabi	lity that	the tabul	ated value
of		is exce	eded	
freedom	10% 0.10	5% 0.05	1% 0.01	0.1% 0.001
1	2.71	3.84	6.63	10.83
2	4.61	5.99	9.21	13.82
3	6.25	7.81	11.34	16.27
4	7.78	9.49	13.28	18.47
5	9.24	11.07	15.09	20.52
6	10.64	12.59	16.81	22.46
7	12.02	14.07	18.48	24.32
8	13.36	15.51	20.09	26.13
9	14.68	16.92	21.67	27.88
10	15.99	18.31	23.21	29.59

Г

The chi-squared test for association

Time of delive	ry by housi	ng tenu	re
Housing tenure	Premature	Term	Total
Owner-occupier	50	849	899
Council tenant	29	229	258
Private tenant	11	164	175
Lives with parents	6	66	72
Other	3	36	39
Total	99	1344	1443
For a contingency table, th	ne degrees o	of freedo	m are give
(number of rows – 1)	× (number o	of colum	ns – 1).

We have $(5-1) \times (2-1) = 4$ degrees of freedom.

 χ^2 = 10.5, 4 d.f., P < 0.05. Using a computer, P = 0.03.

The chi-squared test for association

The chi-squared statistic is not an index of the strength of the association.

If we double the frequencies, this will double chi-squared, but the strength of the association is unchanged.

The chi-squared test for association

The test statistic follows the Chi-squared Distribution provided the expected values are large enough.

This is a large sample test.

The smaller the expected values become, the more dubious will be the test.

The conventional criterion for the test to be valid is this: the chi-squared test is valid if at least 80% of the expected frequencies exceed 5 and all the expected frequencies exceed 1.

Also known as the Pearson chi-squared test.

Fisher's exact test

Also called the Fisher-Irwin exact test.

Works for any sample size.

Used to be used only for small samples in 2 by 2 tables, because of computing problems.

Calculate the probability of every possible table with the given row and column totals.

Sum the probabilities for all the tables as or less probable than the observed.

Fisher's exact test

Acceptance of HIV test grouped by marital status Acceptance of HIV test

Marital status	Accepted	Rejected	Total
Married	71	415	486
Living w. partner	41	181	222
Single	15	35	50
Div./wid./sep.	7	23	30
Total	134	654	788
$\chi^2 = 9.15, 3 \text{ d.f.}, P = 0.02$ Fishers' exact test: P = 0	27. 0.029.		

Yates' correc	tion				
Wound	healing	by type of ban	dage		
Bandage	Healed	Did not heal	Total		
Elastic Inelastic	35 19	30 48	65 67		
Total	54	78 (Callam	132 n et al., 1992)		
Fisher's exact te	Fisher's exact test: P = 0.0049.				
Chi-squared tes	t: chi-squa	ared = 8.87, P =	0.0029.		
As expected frequencies get smaller, chi-squared and Fisher's exact disagree.					
Fisher's produces the 'correct' P value.					
Chi-squared produces a P value which is too small.					

The chi-squared test for tre	nd	
Assessment of radiological app compared with appearance on adm	earance at six mission (MRC 19	months as 948)
Radiological assessment	Streptomycin	Control
Considerable improvement	28	4
Moderate or slight improvement	10	13
No material change	2	3
Moderate or slight deterioration	on 5	12
Considerable deterioration	6	6
Deaths	4	14
Total	55	52
Association: chi-squared = 26.97,	5 d.f., P = 0.000	1.
Does not take the ordering of the o	categories into a	ccount.
Trend: chi-squared = 17.93, 1 d.f.,	P < 0.0001.	
About trend: chi-squared = 9.04, 4	d.f., P = 0.06.	

Risk ratio			
Wound	healing by	y type of ba	ndage
Bandage	Healed I	id not heal	Total
Elastic Inelastic	35 53.8% 19 28.4%	30 46.2% 48 71.6%	65 100% 67 100%
Total	54	78	132
Want an estimat	e of the size	e of the treatm	nent effect.
Difference betwe or 53.8%	en proporti – 28.4% = 2	ons: 0.538 – 25.4 percenta	0.284 = 0.254 age points.
Proportion who h population.	neal is calle	d the risk of l	healing for that
Risk ratio = 53.8	3/28.4 = 1.8	9.	

Also called **relative risk**, **rate ratio**, **RR**.

Wound healing by type of bandage

Bandage	Healed 1	Did not heal	Total
Elastic	35 53.8%	30 46.2%	65 100%
Inelastic	19 28.4%	48 71.6%	67 100%
Total	54	78	132

Risk ratio = 53.8/28.4 = 1.89.

Because risk ratio is a ratio, it has a very awkward distribution.

If we take the log of the risk ratio, we have something which is found by adding and subtracting log frequencies.

The distribution becomes approximately Normal.

Provided frequencies are not small, simple standard error.

Risk ratio

 Wound healing by type of bandage

 Bandage
 Healed
 Did not heal
 Total

 Elastic
 35 53.8%
 30 46.2%
 65 100%

 Inelastic
 19 28.4%
 48 71.6%
 67 100%

 Total
 54
 78
 132

 Risk ratio, RR = 53.8/28.4 = 1.89.
 log_e(RR) = 0.6412.
 SE for log_e(RR) = 0.2256.

 95% Cl for log_e(RR)
 = 0.6412 - 1.96 × 0.2256 to 0.6412 + 1.96 × 0.2256 = 0.1990 to 1.0834.

 95% Cl for RR = exp(0.1990) to exp(1.0834) = 1.22 to 2.95.

Risk ratio	Risk ratio				
Wound	healing by	type of bar	ndage		
Bandage	Healed D	id not heal	Total		
Elastic Inelastic	35 53.8% 19 28.4%	30 46.2% 48 71.6%	65 100% 67 100%		
Total	54	78	132		
$\log_{e}(RR) = 0.641$	2, 95% CI =	= 0.1990 to 1.	0834.		
Risk ratio, RR =	53.8/28.4 =	1.89, 95% C	l = 1.22 to 2.95.		
RR is not in the r	niddle of its	confidence i	nterval.		
The interval is sy scale.	mmetrical o	on the log sca	le, not the natural		

Odds

Healed Did not heal Total Elastic 35 53.8% 30 46.2% 65 100%

Risk of healing = 35/65 = 0.538

Odds of healing = 35/30 = 1.17

Risk = number experiencing event divided by number who could.

Odds = number experiencing event divided by number who did not experience event.

Risk: for every person treated, 0.538 people heal, for every 100 people treated, 53.8 people heal.

Odds: for every person who do not heal, 1.17 people heal, for every 100 people who do not heal, 117 people heal.

Odds ratio

Wound	healing	by type of ban	dage
Bandage	Healed	Did not heal	Total
Elastic Inelastic	35 19	30 48	65 67
Total	54	78	132

Odds of healing given elastic bandages: 35/30 = 1.17.

Odds of healing given inelastic bandages: 19/48 = 0.40.

Odds ratio = (35/30)/(19/48) = 1.17/0.40 = 2.95.

For every person who does not heal, 2.95 times as many will heal with elastic bandages as will heal with inelastic bandages.

Odds ratio			
Wound	healing h	by type of ba	andage
Bandage	Healed	Did not heal	Total
Elastic Inelastic	35 19	30 48	65 67
Total	54	78	132
Odds ratio, OR =	= (35/30)/(*	19/48) = 2.95.	
Like RR, OR has odds ratio.	s an awkw	ard distributio	n. We use the lo
The distribution l	becomes a	approximately	Normal.
Provided freque	ncies are n	ot small, simp	ole standard erroi

Odds ratio				
Wound healing by type of bandage				
Bandage	Healed	Did not heal	Total	
Elastic Inelastic	35 19	30 48	65 67	
Total	54	78	132	
Odds ratio, OR = (35/30)/(19/48) = 2.95.				
log _e (OR) = 1.0809.				
$SE \log_{e}(OR) = 0.3679$				
95% Cl for log _e (OR) = 1.0809 – 1.96 × 0.3679 to 1.0809 + 1.96 × 0.3679 = 0.3598 to 1.8020.				
95% CI for OR = exp(0.3598) to exp(1.8020) = 1.43 to 6.06.				-

Odds ratio

Wound healing by type of bandage				
Bandage	Healed	Did not heal	Total	
Elastic	35	30	65	
Inelastic	19	48	67	
Total	54	78	132	
log _e (OR) = 1.0809, 95% CI = 0.3598 to 1.8020.				
$O_{\rm relation} = 0.00 = 0.00 = 0.00 = 0.00 = 0.000$				

Odds ratio, OR = 2.95, 95% CI = 1.43 to 6.06.

OR is not in the middle of its confidence interval.

The interval is symmetrical on the log scale, not the natural scale.

Odds ratio			
Wound	healing b	by type of b	andage
Bandage	Healed	Did not hea	l Total
Elastic	35	30	65
Inelastic	19	48	67
Total	54	78	132
Odds ratio for he	aling: OR	= (35/30)/(19	9/48) = 2.95.
Doesn't matter w	hich way r	ound we do	it.
Odds ratio for treatment: OR = (35/19)/(30/48) = 2.95.			
Both OR = (35×48)/(30 ×19).			
Ratio of cross products.			

Odds ratio

Wound healing by type of bandage			
Bandage	Did not heal	Healed	Total
Elastic Inelastic	30 48	35 19	65 67
Total	78	54	132
ritching the rows or columns inverts the odds ratio			

Sw tio.

Odds ratio for not healing given elastic bandage: OR = (30/35)/(48/19) = 0.339 = 1/2.95.

There are only two possible odds ratios.

On the log scale, equal and opposite.

 $\log_{e}(2.95) = 1.082, \log_{e}(0.339) = -1.082.$

