York Hospital: Introduction to Statistics for Research
Correlation and regression
Martin Bland
Emeritus Professor of Health Statistics
University of York
http://martinbland.co.uk/

Correlation

Example: Muscle strength and height in 42 alcoholics
A scatter diagram:

How close is the relationship?
Correlation: measures closeness to a linear relationship.

Correlation coefficient

Subtract means from observations and multiply.

Sum of products about the means.
Like the sum of squares about the means used for measuring variability.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Correlation coefficient

Subtract means from observations and multiply

Products in top right and bottom left quadrants positive.

Correlation coefficient

Subtract means from observations and multiply.

\qquad
\qquad
\qquad
\qquad

Products in top right and bottom left quadrants positive. \qquad
Products in top left and bottom right quadrants negative.

Correlation coefficient

Subtract means from observations and multiply.

Sum of products positive.
Correlation positive.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Correlation coefficient

Example: Muscle strength and age in 42 alcoholics

Correlation coefficient

Example: Muscle strength and age in 42 alcoholics
\qquad
\qquad
\qquad
\qquad

Sum of products negative. \qquad
Correlation negative
\qquad

Correlation coefficient

Divide sum of products by square roots of sums of squares.
\qquad
Correlation coefficient, denoted by r.
Maximum value $=1.00$.
Minimum value $=-1.00$.
\qquad

Also known as:
> Pearson's correlation coefficient,
> product moment correlation coefficient.
\qquad
\qquad
\qquad
\qquad
\qquad

Correlation coefficient

Divide sum of products by square roots of sums of squares.
Correlation coefficient, denoted by r.
Maximum value $=1.00$.
Minimum value $=-1.00$.

Correlation coefficient

Divide sum of products by square roots of sums of squares.
\qquad
Correlation coefficient, denoted by r.
Maximum value $=1.00$.
Minimum value $=-1.00$
 $r=0.42$.

Positive correlation of fairly low strength
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Correlation coefficient

Divide sum of products by square roots of sums of squares.
\qquad
Correlation coefficient, denoted by r. \qquad
Maximum value $=1.00$.
Minimum value $=-1.00$. \qquad

$r=-0.42$.
Negative correlation of fairly low strength.
\qquad
\qquad
\qquad
\qquad

Correlation coefficient

Positive when large values of one variable are associated with large values of the other.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Correlation coefficient

Positive when large values of one variable are associated
\qquad with large values of the other.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Correlation coefficient

Negative when large values of one variable are associated with small values of the other.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Correlation coefficient

Negative when large values of one variable are associated with small values of the other.

Correlation coefficient

$r=+1.00$ when large values of one variable are associated with large values of the other and the points lie on a straight line.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Correlation coefficient

$r=-1.00$ when large values of one variable are associated with small values of the other and the points lie on a straight line.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Correlation coefficient

r will not equal -1.00 or +1.00 when there is a perfect relationship unless the points lie on a straight line.

Correlation coefficient

$r=0.00$ when there is no linear relationship.

Correlation coefficient

It is possible for r to be equal to 0.00 when there is a
\qquad relationship which is not linear.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Correlation coefficient

We can test the null hypothesis that the correlation
\qquad coefficient in the population is zero.
Simple t test, tabulated.
Assume: one of the variables is from a Normal distribution. Large deviations from assumption $\rightarrow P$ very unreliable.
\qquad
\qquad

$r=0.42, \mathrm{P}=0.006$.
Easy to do, simple tables.

Computer programs almost always print this.

Correlation coefficient

We can find a confidence interval for the correlation \qquad coefficient in the population.
Fisher's z transformation. \qquad
Assume: both of the variables are from a Normal distribution. Large deviations from assumption $\rightarrow \mathrm{Cl}$ very unreliable.

$r=0.42$, approximate 95\% confidence interval: 0.13 to 0.64

Tricky, approximate.
Computer programs rarely print this

Regression analyses

> Simple linear regression
> Multiple linear regression
> Curvilinear regression
> Dichotomous predictor variables
$>$ Regression in clinical trials \qquad
> Dichotomous outcome variables and logistic regression \qquad
$>$ Interactions
> Factors with more than two levels \qquad

- Sample size

Simple Linear Regression

Example: Body Mass Index (BMI) and abdominal circumference in 86 women

What is the relationship?
Regression: predict BMI from observed abdominal circumference.

Simple Linear Regression

Example: Body Mass Index (BMI) and abdominal circumference in 86 women.

What is the relationship?
Regression: predict BMI from observed abdominal circumference.
What is the mean BMI for women with any given observed abdominal circumference?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Simple Linear Regression

Example: Body Mass Index (BMI) and abdominal circumference in 86 women.
What is the relationship?
\qquad
Regression: predict BMI from observed abdominal circumference. \qquad
What is the mean BMI for women with any given observed abdominal circumference? \qquad
BMI is the outcome, dependent, y, or left hand side variable.

Abdominal circumference is the predictor, explanatory, independent, x, or right hand side variable.

Simple Linear Regression

Example: Body Mass Index (BMI) and abdominal circumference in 86 women.
What is the relationship?
Regression: predict BMI from observed abdominal circumference.

What is the mean BMI for women with any given observed abdominal circumference (AC)? \qquad
Linear relationship:
BMI $=$ intercept + slope $\times A C$
Equation of a straight line.

Simple Linear Regression

Which straight line should we choose?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Simple Linear Regression

Which straight line should we choose?

\qquad
\qquad
\qquad
\qquad
Choose the line which makes the distance from the points to the line in the y direction a minimum.
Differences between the observed strength and the predicted strength.

Simple Linear Regression

Which straight line should we choose?

\qquad
\qquad
\qquad
\qquad

Minimise the sum of the squares of these differences.
Principle of least squares, least squares line or equation.

Simple Linear Regression

$$
\mathrm{BMI}=-4.15+0.35 \times \mathrm{AC}
$$

\qquad

\qquad
\qquad
\qquad
\qquad

We can find confidence intervals and P values for the \qquad coefficients subject to assumptions.
\qquad

Simple Linear Regression

We can find confidence intervals and P values for the coefficients subject to assumptions.

\qquad
\qquad
\qquad
\qquad

Deviations from line should have a Normal distribution with uniform variance.
\qquad
\qquad

Simple Linear Regression

Can find confidence intervals and P values for the coefficients subject to assumptions.

Slope $=0.35 \mathrm{Kg} / \mathrm{m}^{2} / \mathrm{cm}, 95 \% \mathrm{Cl}=0.31$ to $0.40 \mathrm{Kg} / \mathrm{m}^{2} / \mathrm{cm}$, $\mathrm{P}<0.001$ against zero.

Intercept $=-4.15 \mathrm{Kg} / \mathrm{m}^{2}, 95 \% \mathrm{CI}=-7.11$ to $-1.18 \mathrm{Kg} / \mathrm{m}^{2}$.

Simple Linear Regression

Assumptions: deviations from line should have a Normal distribution with uniform variance.

Calculate the deviations or residuals, observed minus predicted.

Dichotomous predictor variable

24 hour energy expenditure (MJ) in two groups of women

	Lean		Obese	
6.13	7.53	8.09	8.79	9.69
7.05	7.58	8.11	9.19	9.97
7.48	7.90	8.40	9.21	11.51
7.48	8.08	10.15	9.68	11.85
		10.88		12.79

\qquad
\qquad
Can carry out linear regression.
Define variable: obese $=0$ if woman lean, \qquad obese $=1$ if woman obese.
Regression equation:
energy $=5.83+2.23 \times$ obese
slope: $95 \% \mathrm{Cl}=1.05$ to $3.42 \mathrm{MJ}, \mathrm{P}=0.0008$.

Regression and the two sample t method

Regression:

$$
\begin{aligned}
& \text { energy }=5.83+2.23 \times \text { obese } \\
& \text { slope: } 95 \% \mathrm{Cl}=1.05 \text { to } 3.42 \mathrm{MJ}, \mathrm{P}=0.0008 \text {. }
\end{aligned}
$$

The two methods are identical.

Two sample t test				Regression	Difference (obese - lean) $10.298-8.066=2.232$. Two sample t method: $\begin{aligned} & 95 \% \mathrm{Cl}=1.05 \text { to } 3.42 \mathrm{MJ}, \\ & \mathrm{P}=0.0008 \text {. } \end{aligned}$
	$\mathrm{t}=3.95{ }_{\circ}$	¢			
	8	㭏		-8	
	8	\%		:	
	\%	\%			
	Lean Obese			${ }^{0}{ }_{\text {Obesity }}{ }^{1}$	

Regression and the two sample t method
 Assumptions of two sample t method

1. Energy expenditure follows a Normal distribution in each population. \qquad
2. Variances are the same in each population.

Assumptions of regression

1. Differences between observed and predicted energy expenditure follow a Normal distribution.
\qquad
2. Variances of differences are the same in whatever the value of the predictor. \qquad

These are the same.

