



Example: Muscle strength and height in 42 alcoholics

A scatter diagram:



How close is the relationship?

Correlation: measures closeness to a linear relationship.





















### **Correlation coefficient**

Divide sum of products by square roots of sums of squares.

Correlation coefficient, denoted by r.

Maximum value = 1.00.

Minimum value = -1.00.

Also known as:

> Pearson's correlation coefficient,

> product moment correlation coefficient.



Divide sum of products by square roots of sums of squares.

Correlation coefficient, denoted by r.

Maximum value = 1.00.

Minimum value = -1.00.





# Correlation coefficient

Divide sum of products by square roots of sums of squares.

Correlation coefficient, denoted by r.

Maximum value = 1.00.





*r* = 0.42.

Positive correlation of fairly low strength

## **Correlation coefficient**

Divide sum of products by square roots of sums of squares.

Correlation coefficient, denoted by *r*.

Maximum value = 1.00.

Minimum value = -1.00.



*r* = –0.42.

Negative correlation of fairly low strength.







Positive when large values of one variable are associated with large values of the other.











## Correlation coefficient

r = +1.00 when large values of one variable are associated with large values of the other and the points lie on a straight line.





### **Correlation coefficient**

r = -1.00 when large values of one variable are associated with small values of the other and the points lie on a straight line.

















## **Correlation coefficient**

We can test the null hypothesis that the correlation coefficient in the population is zero.

Simple t test, tabulated.

Assume: one of the variables is from a Normal distribution. Large deviations from assumption  $\rightarrow$  P very unreliable.



r = 0.42, P = 0.006.

Easy to do, simple tables.

Computer programs almost always print this.

#### **Correlation coefficient**

We can find a confidence interval for the correlation coefficient in the population.

Fisher's z transformation.

Assume: both of the variables are from a Normal distribution. Large deviations from assumption  $\rightarrow$  CI very unreliable.



r = 0.42, approximate 95% confidence interval: 0.13 to 0.64

Tricky, approximate.

Computer programs rarely print this.

### **Regression analyses**

- Simple linear regression
- > Multiple linear regression
- > Curvilinear regression
- > Dichotomous predictor variables
- Regression in clinical trials
- Dichotomous outcome variables and logistic regression
- Interactions
- > Factors with more than two levels
- Sample size





#### Simple Linear Regression

Example: Body Mass Index (BMI) and abdominal circumference in 86 women.

What is the relationship?

Regression: predict BMI from observed abdominal circumference.

What is the mean BMI for women with any given observed abdominal circumference?

#### Simple Linear Regression

Example: Body Mass Index (BMI) and abdominal circumference in 86 women.

What is the relationship?

Regression: predict BMI from observed abdominal circumference.

What is the mean BMI for women with any given observed abdominal circumference?

 $\mathsf{BMI}$  is the outcome, dependent,  $\mathbf{y},$  or left hand side variable.

Abdominal circumference is the **predictor**, **explanatory**, **independent**, **x**, or **right hand side** variable.

## Simple Linear Regression

Example: Body Mass Index (BMI) and abdominal circumference in 86 women.

What is the relationship?

Regression: predict BMI from observed abdominal circumference.

What is the mean BMI for women with any given observed abdominal circumference (AC)?

Linear relationship:

BMI = intercept + slope × AC

Equation of a straight line.





















#### Simple Linear Regression Assumptions: deviations from line should have a Normal distribution with uniform variance. Calculate the deviations or residuals, observed minus predicted. Check Normal distribution: Check uniform variance: Residual BMI (Kg/m2) sidual BMI (Kg/m2) 2 20 0 -2 -4 40 60 80 100 120 Abdominal circumference (cm) -8 -4 0 4 8 Residual BMI (Kg/m2) -8 -4 0 4 8 Inverse Normal

| <br> |
|------|
| <br> |
|      |
|      |
|      |
| <br> |
|      |

| Dichotomous predictor variable             |        |           |           |            |            |  |  |
|--------------------------------------------|--------|-----------|-----------|------------|------------|--|--|
| 24 hour ene                                | rgy ex | penditure | (MJ) in   | two groups | s of women |  |  |
| Lean                                       |        |           | Ob        | ese        |            |  |  |
| 6.13                                       | 7.53   | 8.09      | 8.79      | 9.69       |            |  |  |
|                                            |        | 8.11      |           |            |            |  |  |
|                                            |        | 8.40      |           |            |            |  |  |
| 7.48                                       | 8.08   | 10.15     | 9.68      |            |            |  |  |
|                                            |        | 10.88     |           | 12.79      |            |  |  |
| Can carry out linear regression.           |        |           |           |            |            |  |  |
| Define variable: obese = 0                 |        |           | ) if woma | an lean,   |            |  |  |
| obese = 1 if woman obese.                  |        |           |           |            |            |  |  |
| Regression equation:                       |        |           |           |            |            |  |  |
| energy = 5.83 + 2.23 × obese               |        |           |           |            |            |  |  |
| slope: 95% CI = 1.05 to 3.42 MJ, P=0.0008. |        |           |           |            |            |  |  |
|                                            |        |           |           |            |            |  |  |





energy = 5.83 + 2.23 × obese

slope: 95% CI = 1.05 to 3.42 MJ, P=0.0008.





Difference (obese - lean) = 10.298 - 8.066 = 2.232. **Two sample t method:** 

95% CI = 1.05 to 3.42 MJ, P=0.0008.

## Regression and the two sample t method

#### Assumptions of two sample t method

- 1. Energy expenditure follows a Normal distribution in each population.
- 2. Variances are the same in each population.

### Assumptions of regression

- 1. Differences between observed and predicted energy expenditure follow a Normal distribution.
- 2. Variances of differences are the same in whatever the value of the predictor.
- These are the same.