
Large class learning and
teaching of computing

skills

Hans Fangohr
School of Engineering Sciences

University of Southampton
16 March 2006

Overview of talk

1. Motivation (objectives & constraints)

2. Implementation (course structure & tools)

3. Content (choice of language & examples)

1. Language (Python)

2. Examples (Visual Python)

4.Summary

1. Motivation: method

Objectives:

learning of numerical methods, programming,
problem solving

make topic more “attractive”

Constraints

large student groups (100 and 200 students),
12 lectures

How do we learn to solve
a problem?

By trying to solve many problems:

succeed -> done

fail -> need to find better way, try again

... trial and error (gathering experience)

lectures not the best medium for problem
solving -> emphasis on practicals

Motivation: Content

Computer education:

exploit interactivity

emphasise creativity
(problem solving)

choose attractive
content (for example
using 3d graphics
where possible)

Observation: Computing at home is very
attractive - computing at uni is not.

Computer games:

are interactive

require creativity

provide realistic
graphics

12 lectures (one per week)

6 practical sessions for each student (”labs”)
each lasting 3 hours

5 assignments (associated with labs)

marking of assignments and feedback in labs

help session

2. Implementation:
Course structure

Lectures

Content chosen to provide relevant knowledge
and examples for assignments

Provide worked examples. Once understood, the
concepts provided can be transferred to
assignments

Use to resolve problems coming up in practicals

Practicals (Labs)
every student has 1 lab every 2 weeks

work throught self-paced assignment in
presence of demonstrators and lecturer
(approx. one demonstrator for 10 students)

self-paced work consists of sequence of
problem solving exercises

students can seek help
(from demonstrators and friends)

approximately 50% of class finish assignment in
lab session

Practicals (Labs)

students can carry on working on assignment
outside the lab hours

once the assignment is completed:

student submits work electronically

demonstrator conducts mini-viva with student

demonstrator determines mark

Help session

Once a week a help session is offered

Students can drop in to

catch up with assignments

clarify and improve knowledge and
understanding

get support if they like to take the course
material further

Learning process
use lectures to provide examples and highlight
relevant parts of the lecture notes

most of learning takes place in labs (problem
solving, hurdle, solution). Refer back to lecture
notes

regular one-to-one viva

ensures students’ understanding
allows to challenge more advanced students,
provides feedback (on progress) to lecturer

Group learning

We encourage discussions between students in
labs

the ‘teaching students’ gains deeper insight

the ‘learning student’ can catch up

Problem: need to mark understanding of each
individual

➡ one-to-one viva

Plagiarism

Mark electronic work (i.e. computer programs)

No printed proof of work -> possibility for
complaints

email-submission system

electronic copies allow plagiarism detection

3. Content & Examples

What programming language (-> Python)

Overview of content of module

Problem solving examples

Visualisation

Programming
= algorithmic problem solving & implementation

Problem Pseudo code

Fortran

Python

Pascal

C++

C

Algorithmic
Problem
Solving

What programming
language to use?

Points to consider:

trends in industry and academia

power and flexibility, global use

availability (free? different OS?)

ease of use

Problem solving process in language independent

-> choose language that is beginner friendly

What programming
language to use?

Comparison & Results
Have compared

C
Matlab
Python

in undergraduate and postgraduate learning.
Result*: Python preferred

*H. Fangohr. A Comparison of C, Matlab and Python as Teaching Languages in Engineering. Lecture Notes on Computational Science 3039, 1210-1217 (2004)

Modules taught with the
structure presented here

SESG1009 Modelling and Computing
approximately 200 students
 -> Matlab

SESA2006 Computing
approximately 100 students
 -> Python

Python - the language

(The author of Python is fan of Monte Python)

interpreted

platform independent

procedural, object oriented, functional

large libraries, good glueing language

clear syntax

large and increasing user community

Python for Scientific
Computation

Python is general purpose language

Need extensions (packages or modules) for
numeric work:

Numeric (fast matricies [LAPACK])
SciPy (Scientific Python)
pylab (plotting like matlab)
Visual Python (3d programming for ordinary
mortals)

Overview of material in
teaching module

introduction to programming

using Numeric

usinc scipy

using visual python

(LaTeX)

Lecture Lab. Content

1 & 2 Introduction & formalities, Using IDLE, basic data types: strings,
floats, ints, boolean, lists, type conversion, range, for-loop, if-then, im-
porting modules, the math module, the pylab module, plotting simple
functions y = f(x), defining python functions, basic printing, importing
python files as modules.

1 Programs to write:

1. computer chooses random integer, user has to guess
2. finding the plural of (regular) English nouns automatically
3. plotting mathematical functions y = f(x)
4. retrieve current weather conditions in Southampton from Internet

(i.e. processing of text file)
3 & 4 Ordinary Differential Equations (ODEs), Euler’s method in Python,

Use of Numeric and scipy, use of scipy.integrate.odeint to solve
ODEs

2 Programs to write:

1. proving that
∑

n

i=1
i = 1

2
n(n + 1) for n = 1000

2. currency conversion (exercise functions)
3. implement composite trapezoidal rule for integration of f(x) and

evaluate convergence properties empirically
4. use of scipy’s quad for integration
5. automatic integration of function and plotting of integrand

5 & 6 Introduction to Visual Python, finite differences for differentiation,
Newton method for root finding. Calling Python functions with key-
word arguments, name spaces, exceptions. Example code for dealing
with 3d vectors and scalars.

3 Programs to write:

1. implement a 2nd order Runge Kutta integrator for ODEs
2. solve given 1d ODE using scipy.integrate.odeint
3. visualise r(t) ∈ IR3 in real-time using Visual Python
4. compute and visualise solution to 2nd order ODE with two degrees

of freedom using Visual Python
7 & 8 Finding ODEs to describe a given system. Example code dealing with

time dependent 3d problems and visualisation.
4 Programs to write:

1. Use scipy’s root finding tools (bisect) to find root of f(x)
2. Use root finding and integration of ODE to solve boundary value

problem (“shooting method”) visualised with Visual Python
3. (Exercise on LATEX– therefore only 2 other tasks.)

9 & 10 Explanation of laboratory assignment 5
5 Larger assignment requiring written report. Tasks include implement-

ing root finding using Newton’s method, making Newton’s method safe,
integrating ODEs, visualising 3d time-dependent data. All examples
from space exploration (mainly trajectories).

11 & 12 Introduction to Object Orientation
6 Time available to complete assignment 5

Table 1. Overview of material taught in lectures and rehearsed in laboratory sessions.

Introduction to (scientific) Python

Temperature from the
internet

Southampton / Weather Centre, United Kingdom (EGHI) 50-54N 001-24W 0M
Mar 12, 2006 - 10:20 AM EST / 2006.03.12 1520 UTC
Wind: from the SSE (160 degrees) at 8 MPH (7 KT) gusting to 21 MPH (18 KT) (direction
variable):0
Visibility: greater than 7 mile(s):0
Sky conditions: partly cloudy
Temperature: 37 F (3 C)
Dew Point: 21 F (-6 C)
Relative Humidity: 51%
Pressure (altimeter): 30.42 in. Hg (1030 hPa)
ob: EGHI 121520Z 16007G18KT 120V200 9999 SCT034 03/M06 Q1030
cycle: 15

http://weather.noaa.gov/pub/data/observations/metar/decoded/EGHI.TXT

http://weather.noaa.gov/pub/data/observations/metar/decoded/EGHI.TXT
http://weather.noaa.gov/pub/data/observations/metar/decoded/EGHI.TXT

The current temperature

Program output: “The temperature in Southampton is 3.0 C.”

import urllib

#define URL location
datalocation = "http://weather.noaa.gov/pub/data/observations/
metar/decoded/EGHI.TXT"

#retrieve data
datalines = urllib.urlopen(datalocation).readlines()

#iterate over lines in weather data
for line in datalines:
 print line

import urllib

#define URL location
datalocation = "http://weather.noaa.gov/pub/data/observations/
metar/decoded/EGHI.TXT"

#retrieve data
datalines = urllib.urlopen(datalocation).readlines()

#iterate over lines in weather data
for line in datalines:
 #split lines into a list of strings
 bits = line.split()

 #if the first word is 'Temperature'
 if bits[0] == 'Temperature:':
 #extract degree in C ([3]),
 #ignoring the opening parenthesis ([1:])
 temperature = float(bits[3][1:])
 #note that the conversion to float is not
 #strictly neccessary here

print "The temperature in Southampton is",temperature,"C."

Lecture Lab. Content

1 & 2 Introduction & formalities, Using IDLE, basic data types: strings,
floats, ints, boolean, lists, type conversion, range, for-loop, if-then, im-
porting modules, the math module, the pylab module, plotting simple
functions y = f(x), defining python functions, basic printing, importing
python files as modules.

1 Programs to write:

1. computer chooses random integer, user has to guess
2. finding the plural of (regular) English nouns automatically
3. plotting mathematical functions y = f(x)
4. retrieve current weather conditions in Southampton from Internet

(i.e. processing of text file)
3 & 4 Ordinary Differential Equations (ODEs), Euler’s method in Python,

Use of Numeric and scipy, use of scipy.integrate.odeint to solve
ODEs

2 Programs to write:

1. proving that
∑

n

i=1
i = 1

2
n(n + 1) for n = 1000

2. currency conversion (exercise functions)
3. implement composite trapezoidal rule for integration of f(x) and

evaluate convergence properties empirically
4. use of scipy’s quad for integration
5. automatic integration of function and plotting of integrand

5 & 6 Introduction to Visual Python, finite differences for differentiation,
Newton method for root finding. Calling Python functions with key-
word arguments, name spaces, exceptions. Example code for dealing
with 3d vectors and scalars.

3 Programs to write:

1. implement a 2nd order Runge Kutta integrator for ODEs
2. solve given 1d ODE using scipy.integrate.odeint
3. visualise r(t) ∈ IR3 in real-time using Visual Python
4. compute and visualise solution to 2nd order ODE with two degrees

of freedom using Visual Python
7 & 8 Finding ODEs to describe a given system. Example code dealing with

time dependent 3d problems and visualisation.
4 Programs to write:

1. Use scipy’s root finding tools (bisect) to find root of f(x)
2. Use root finding and integration of ODE to solve boundary value

problem (“shooting method”) visualised with Visual Python
3. (Exercise on LATEX– therefore only 2 other tasks.)

9 & 10 Explanation of laboratory assignment 5
5 Larger assignment requiring written report. Tasks include implement-

ing root finding using Newton’s method, making Newton’s method safe,
integrating ODEs, visualising 3d time-dependent data. All examples
from space exploration (mainly trajectories).

11 & 12 Introduction to Object Orientation
6 Time available to complete assignment 5

Table 1. Overview of material taught in lectures and rehearsed in laboratory sessions.

Visual Python and
time dependent processess

Visual Python
set of 3d objects `(sphere, box,
cone, spring, ...) in 3d space

allows rotation and zoom of scene
(default)

can modify attributs of objects
such as position, colour, size

can force a certain ‘frame rate’

examples

 y

 z

x

import visual, math

sphere = visual.sphere()
box = visual.box(pos=[0,-1,0], width=4, length=4, height=0.5)

#tell visual not to automatically scale the image
visual.scene.autoscale = False

for i in range(1000):
 t = i*0.1
 y = math.sin(t)

 #update the sphere's position
 sphere.pos = [0, y, 0]

 #ensure we have only 24 frames per second
 visual.rate(24)

import visual, math

sphere= visual.sphere()
box = visual.box (pos=[0,-1,0], width=4, length=4, height=0.5)
trace = visual.curve(radius=0.2, color=visual.color.green)

for i in range(1000):
 t = i*0.1
 y = math.sin(t)

 #update the sphere's position
 sphere.pos = [t, y, 0]

 trace.append(sphere.pos)

 #ensure we have only 24 frames per second
 visual.rate(24)

Bouncing mass on spring

A sphere at position r = (rx, ry, rz) of mass m = 1kg is sub-

ject to a horizontal force Fspring = (−krx, 0, 0) and to a verti-
cal force due to gravity Fgrav = (0,−mg, 0). The initial posi-
tion is r(t0) = (3, 5, 0)m, initial velocity v(t0) = (0, 0, 0)m/s
and k = 5N/m. Compute the time development of the sys-
tem, assuming that the sphere will bounce elastically when it
touches the ground at ry = 0.

Fig. 1. (Left) An example problem and (right) a snapshot of an animation of the
solution. The faint line which starts filling a rectangular is the trajectory of the sphere
and updated as the sphere moves.

year. This included four computer based exercises introducing fundamental con-
cepts such as if-then statements, for-loops and functions on a very basic level.

The content of this module is given in table 1 and ordered by lectures
(numbered from 1 to 12) and laboratory sessions (numbered from 1 to 6).

As can be seen, we have combined a repetition of numerical methods with
the introduction of the Python programming language (laboratories 1 and 2)
and Visual Python (laboratories 3, 4 and 5).

Required Software: Apart from Python [3], we require Numeric [14], Scientific
Python [15], Pylab (formerly Matplotlib) [16] and Visual Python [8]. All of
these can be installed on the major three platforms MS Windows, Linux and
Mac OS X.

For MS Windows, we have found the ”Enthought Python” edition [17] of
great value which bundles Python with all the extra packages we need (apart
from Visual Python which can be installed afterwards) and simplifies the in-
stallation of the software both for IT personnel at the university as well as for
students at home.

3.3 Results and discussion

A visualisation example is shown in figure 1 and has been created by the
program shown in figure 2. It is outside the scope of this paper to explain the
workings of the program detail. However, hopefully this demonstrates that it
encourages experimentation to support understanding the system. (This problem
could be tackled by the students in laboratory session 4).

Feedback from students was obtained using an anonymous questionnaire to
evaluate the student experience at the end of this module. One of the questions
posed was “Did Visual Python improve the learning process?” and possible rat-
ings range from 1 (“Not at all”) to 5 (“Very much”). The average student rating
was 4.2 with a standard deviation of 0.68. This is clear evidence that the stu-
dents considered the use of Visual Python useful or very useful to improve the
learning process.

 y

 z

x

visualise kinetic energy

red:
kinetic
energy
high

blue:
kinetic
energy
low

Shooting method

Apollo 13 mission
“Parking orbit”

Apollo 13:
free

return
orbit

! "#$ %#$ &#$ '#$ $#$ (#$)#$

*+,#-./0

1&#"!

1%#"!

1"#"!

!

"#"!

%#"!

&#"!

#
2
#
34
5
-.
6
,
0

7+2#*+8-#2#345
9:*#2*+;<-#2#345-#;3*=
9:*#2*+;<-#2#345-,::2
:;<-#2#345

Apollo 13: Accident

Two connected masses

3d vision

Visual Python supports anaglyphic glasses (i.e.
red-blue, red-green or red-cyan)

just need to add
visual.scene.stereo=”redcyan”
in the beginning of the program

Summary

Demonstrated effective teaching of large classes (in
computing)
Structure (practical laboratories)

each student receives regular feedback, use of
demonstrators
problem solving exercises

Content
relevant to degree
fun (where possible)

Summary

Perception of computing has improved a lot (good
ratings, interest in further modules)

Did Visual Python improve the learning process: 4.2
(plus minus 0.68) (1-not at all, 5-Very much)

Students like to have software at home (and in
future)

From student feedback questionnaires:
“This module assesses what you can do rather than
what you can remember.”

*H. Fangohr. “Exploiting real-time 3d visualisation to enthuse students: a case study of using Visual Python in Engineering” (in print) (2006)
*H. Fangohr. “A Comparison of C, Matlab and Python as Teaching Languages in Engineering”. Lecture Notes on Computational Science 3039, 1210-1217 (2004)

Thank you

