
Fortran 2003:
the latest Fortran Standard

John Reid
JKR Associates

Convener, ISO Fortran Committee WG5
jkr@rl.ac.uk

Computer Languages for Scientific Computing
Institute of Physics, London

22 April 2005

ftp://ftp.numerical.rl.ac.uk/pub/jkr/f2003.pdf



2

The new Standard

The new Standard was published in November
2004.

Content was decided by WG5 (ISO) in 1997;
considered all the requirements of users,
expressed via national bodies.

Draft is available via the web as N1601 in

ftp://ftp.nag.co.uk/sc22wg5/

and I have written a summary as N1579.

Also, see:

Fortran 95/2003 explained,
Metcalf, Reid and Cohen, OUP, 2004.



3

Summary of Fortran 2003

Fortran 2003 is an upward-compatible extension
of Fortran 95 with these new features:

Exception handling (TR)

Allocatable components and dummy
arguments (TR)

Interoperability with C

Object-orientation: procedure pointers and
structure components, structure finalization,
type extension and inheritance,
polymorphism

Many minor enhancements

Important extension

Enhanced module facilities (TR)



4

1 Exceptions (TR)

1.1 Requirements for handling exceptions

Access IEEE conditions on IEEE hardware

Support other aspects of IEEE

Recognize partial support and provide
enquiries

Provide control on the degree of support

Allow partial support on non-IEEE
hardware

We found that it was impossible to do all this
with a procedure library or a non-intrinsic
module.

With an intrinsic module, we can make the USE
statement control the compiler’s action.



5

1.2 Intrinsic modules

IEEE_EXCEPTIONS supports exceptions – at least
overflow and divide-by-zero.

IEEE_ARITHMETIC supports other IEEE features.
It behaves as if it has a USE statement for
IEEE_EXCEPTIONS.

IEEE_FEATURES provides control over the
features needed.

Example:

USE, INTRINSIC :: IEEE_EXCEPTIONS
USE, INTRINSIC :: IEEE_FEATURES, &

ONLY:IEEE_INVALID_FLAG



6

1.3 A few of the procedures

Inquiry:
• IEEE_SUPPORT_INF([X])
• IEEE_SUPPORT_NAN([X])

Elemental functions:
• IEEE_IS_NAN(X)

Elemental subroutines:
• IEEE_GET_FLAG(FLAG,FLAG_VALUE)
• IEEE_SET_FLAG(FLAG,FLAG_VALUE)

Non-elemental subroutines:
• IEEE_GET_ROUNDING_MODE

(ROUND_VALUE)
• IEEE_SET_ROUNDING_MODE

(ROUND_VALUE)



7

2. Allocatable array extensions (TR)

Just too late for inclusion in Fortran 95, we
realized that allocatable arrays have significant
advantages over pointer arrays:

• Efficiency: always contiguous in memory
• No memory leaks

Fortran 2003 allows
• Allocatable dummy arguments
• Allocatable function results
• Allocatable components of structures

Functionality provided in Fortran 90 by pointers.



8

3. Interoperating with C

Any entity involved in interoperating with C must
be such that equivalent declarations of it may be
made in the two languages.

Enforced within the Fortran program by requiring
all such entities to be interoperable.

We will explain in turn what this requires for
types, variables, and procedures.

They are all requirements on the syntax so that
the compiler knows at compile time whether an
entity is interoperable.



9

3.1 Interoperability of intrinsic types

Intrinsic module ISO_C_BINDING contains named
constants holding kind type parameter values.

For example:
C_INT int
C_SHORT short int
C_LONG long int
C_FLOAT float
C_DOUBLE double
C_LONG_DOUBLE long double
C_FLOAT_COMPLEX float _Complex
C_BOOL _Bool
C_CHAR char

Lack of support is indicated with a negative
value.



10

3.2 Interoperability of derived types

For a derived type to be interoperable, it must be
given the BIND attribute explicitly:

TYPE, BIND(C) :: MYTYPE
:

END TYPE MYTYPE

Each component must have interoperable type
and type parameters, must not be a pointer, and
must not be allocatable. This allows Fortran and
C types to correspond.



11

3.3 Interoperability of variables

A scalar Fortran variable is interoperable if it is
of interoperable type and type parameters, and is
neither a pointer nor allocatable.

An array Fortran variable is interoperable if it is
of interoperable type and type parameters, and is
of explicit shape or assumed size. It interoperates
with a C array of the same type, type parameters
and shape, but with reversal of subscripts.

For example, a Fortran array declared as

INTEGER :: A(18, 3:7, *)

is interoperable with a C array declared as

int b[][5][18]



12

3.4 Interoperability with C pointers

For interoperating with C pointers (addresses),
the module contains a derived type C_PTR that is
interoperable with any C pointer type and a
named constant C_NULL_PTR.

The module also contains the procedures:

C_LOC(X) returns the C address of X.

C_ASSOCIATED (C_PTR1[, C_PTR2]) is an
inquiry function that is like ASSOCIATED.

C_F_POINTER (CPTR, FPTR [, SHAPE])) is a
subroutine that constructs a Fortran pointer
from a scalar of type C_PTR.



13

3.5 Interoperability of procedures

A new attribute, VALUE, has been introduced for
scalar dummy arguments. Does copy-in without
copy-out.

A Fortran procedure is interoperable if it has an
explicit interface and is declared with the BIND
attribute:

FUNCTION FUNC(I, J, K, L, M), BIND(C)

All the dummy arguments must be interoperable.

For a function, the result must be scalar and
interoperable.



14

3.6 Binding labels

The Fortran procedure has a ‘binding label’,
which has global scope and is the name by which
it is known to the C processor.

By default, it is the lower-case version of the
Fortran name.

An alternative binding label may be specified:

FUNCTION FUNC(I, J, K, L, M), &
BIND(C, NAME='C_Func')



15

4 Object orientation

4.1 Procedure pointers

A pointer or pointer component may be a
procedure:

PROCEDURE(proc),POINTER :: p => NULL()
! Has the interface of proc

PROCEDURE(),POINTER :: q
! Implicit interface

:
p => fun

Association with target is as for a dummy
procedure.



16

4.2 Procedures bound by name to a type

Like a procedure component with a fixed target:

TYPE T
: ! Component declarations

CONTAINS
PROCEDURE :: proc => my_proc
PROCEDURE :: proc2

END TYPE T
TYPE(T) :: A

:
CALL a%proc(x,y)



17

4.3 Procedures bound to a type as operators

A procedure may be bound to a type as an
operator or a defined assignment.

Accessible wherever an object of the type is
accessible.



18

4.4 Type extension

A derived type may be extended:

TYPE :: matrix(kind,n)
INTEGER, KIND :: kind
INTEGER, NONKIND :: n
REAL(kind) :: element(n,n)

END TYPE

TYPE,EXTENDS(matrix)::factored_matrix
LOGICAL :: factored=.FALSE.
REAL(matrix%kind) :: &

factors(matrix%n,matrix%n)
END TYPE

All the type parameters, components, and bound
procedures of the parent type are inherited by the
extended type and they are known by the same
names.



19

4.5 Polymorphic entities

A polymorphic entity

CLASS (matrix(kind(0.0),10)) :: f

has a varying dynamic type that is the declared
type or an extension of it.

Allows code to be written for objects of a given
type and used later for objects of any extension.



20

4.6 SELECT TYPE construct

Access to the extended parts is available thus:

SELECT TYPE (f)
TYPE IS (matrix)

: ! Block of statements
CLASS IS (factored_matrix)

: ! Block of statements
CLASS DEFAULT

END SELECT



21

4.7 Unlimited polymorphic

An object may be declared as unlimited
polymorphic

CLASS (*) :: upoly

so that any extensible type extends it.

Its declared type is regarded as different from that
of any other entity.



22

5 Some minor enhancements

5.1 Parameterized derived types

Allowed any number of ‘kind’ and ‘length’
parameters. E. g.

TYPE matrix(kind,m,n)
INTEGER, KIND :: kind
INTEGER, LEN :: m,n
REAL(kind) :: element(m,n)

END TYPE
:

TYPE(matrix(KIND(0.0D0),10,20)) :: a
WRITE(*,*) a%kind, a%m, a%n



23

5.2 Access to the computing environment

New intrinsic procedures:

COMMAND_ARGUMENT_COUNT () is a function that
returns the number of command arguments.

GET_COMMAND is a subroutine that returns the
entire command.

GET_COMMAND_ARGUMENT is a subroutine that
returns a command argument.

GET_ENVIRONMENT_VARIABLE is a subroutine
that returns an environment variable.



24

5.3 Support for international character sets

Fortran 90/95 allows multi-byte character sets. A
new intrinsic function has been introduced:

SELECTED_CHAR_KIND(NAME) returns a kind
value when NAME has one of the values
DEFAULT, ASCII, and ISO_10646.

Default or ASCII character data may be assigned
to ISO 10646 character variables.

There is a standardized method (UTF-8) of
representing 4-byte characters as strings of 1-byte
characters in a file. Supported by
ENCODING=’UTF-8’ on the OPEN statement.



25

Lengths of names and statements

Names of length up to 63 characters and
statements of up to 256 lines are allowed.



26

Binary, octal and hex constants

Permitted as a principal argument in a call of the
intrinsic function INT, REAL, CMPLX, or DBLE:

INT(O’345’), REAL(Z’1234ABCD’)

For INT, the ‘boz’ constant is treated as if it were
an integer constant.

For the others, treated as having the value that a
variable of the type and kind would have if its
value was the bit pattern specified.



27

5.4 Derived type input/output

It may be arranged that when a derived-type
object is encountered in an input/output list, a
Fortran subroutine of the form

SUBROUTINE formatted_io (dtv,unit,&
iotype,v_list,iostat,iomsg)

SUBROUTINE unformatted_io(dtv,unit,&
iostat,iomsg)

is called.

For formatted input/output, the DT edit descriptor
passes a character string and an integer array to
control the action. An example is

DT 'linked-list' (10, -4, 2)



28

5.5 Asynchronous input/output

Input/output may be asynchronous. Requires
ASYNCHRONOUS=’YES’ in the OPEN statement for
the file and in the READ or WRITE statement.

Initiates a ‘pending’ input/output operation,
terminated by a wait operation for the file:

WAIT(10)

or implicitly by an INQUIRE, a CLOSE, or a file
positioning statement for the file.



29

5.6 Stream access input/output

ACCESS=’STREAM’ on the OPEN statement.

May be formatted or unformatted.

The file is positioned by ‘file storage units’,
normally bytes.

The current position may be determined from a
POS= specifier of an INQUIRE statement for the
unit.

A required position may be indicated in a READ or
WRITE statement by a POS= specifier.



30

6 Enhanced module facilities (TR)

If a huge module is split into several modules:

Internal parts exposed

Any change leads to compilation cascade

Solution:

Submodules containing definitions of
procedures whose interfaces are in the
module itself

Users continue to access the public parts of
the module

Submodules have full access by host
association



31

7 Conclusions

Have attempted to give you a overview of a
major revision.

Designed to preserve

huge investment in existing codes

relative ease for writing codes that run fast

strength for processing of arrays.

Therefore conservative approach for object
orientation and interfacing with C.

Which of the new features excites you most is a
personal matter. Certainly, there is something for
you – Fortran will be a more powerful language.


