
Chapter 1Time Independent ShrödingerEquation1.1 Revision of the Shrödinger equationThe Shrödinger equation is a time-dependent partial di�erential equation.In this introdutory leture, we will not onsider the time dependene (thatwill ome in leture 3), and so we will instead onsider the simpler ase ofthe time independent version. We an sometimes restrit things even moreby onsidering just one spatial dimension, in whih ase, we only have areasonably straightforwards ordinary di�erential equation to solve, subjetto some set of boundary onditions. This is exatly the type of problem thatyou have solved analytially in the past.We start by rewriting the time independent Shrödinger equation
− ~

2

2me

∇2ψ (r) + V (r)ψ (r) = Eψ (r) (1.1)in atomi units, that is ~ = me = e = 4πε0 = 1 [so from now on we shallalways work in energy units of Hartrees (27.2eV ) and in length units of Bohrradii (a0 = 0.529 Å)℄ and so :
−1

2
∇2ψ + V ψ = Eψ (1.2)or in terms of the Hamiltonian operator Ĥ,
Ĥψ = Eψ (1.3)We know that this is an example of an eigenvalue equation, and that fora given potential V (r) and boundary onditions, there will in general be anumber of di�erent possible solutions, orresponding to di�erent eigenener-gies Ei with orresponding eigenfuntions ψi .7



8 CHAPTER 1. TIME INDEPENDENT SCHRÖDINGER EQUATIONThe �rst term in equation 1.1 orresponds to the kineti energy of thestate, and so we see that a smoothly varying wavefuntion (small ∇2ψ) willgenerally be a lower energy state than a rapidly varying one. This an alsobe related to the number of nodes (zero rossings) in the wavefuntion - asmooth wavefuntion will have less nodes than a rapidly varying one.Example 1 - partile in in�nite square wellAs an example, we an onsider the simple ase of a quantum partile movingin one dimension in an in�nitely deep square well:
V (x) = 0 −a ≤ x ≤ a

→ ∞ otherwise
(1.4)whih then gives the general solution of equation 4.1 as

ψ (x) = A cos (kx) +B sin (kx) (1.5)with A and B being onstants given by the boundary onditions and
k =

√
2E (1.6)If we now apply the boundary onditions that ψ (−a) = ψ (a) = 0 then

k = nπ/2a (1.7)where n is an integer. For odd n we get cos (ka) = 0 and hene A = 0 whilstfor even n we get sin (ka) = 0 and hene B = 0. As the well is in�nitely deep,then all solutions are bound states. As usual, bound states have quantizedenergies, given in this ase by
En =

π2n2

8a2
(1.8)Note that as the potential has a de�nite parity then so do the eigenfuntions.Note also that the ground state wavefuntion has no nodes, whilst the �rstexited state has one node, and suessive exited states have more nodes.See �gure 1.1 for a simple sketh of the three lowest energy solutions.We an also solve analytially problems suh as the �nite square well, orthe harmoni osillator, or the spherial well, et. Remember that these anbe used to demonstrate the existene of zero-point motion, tunnelling intolassially forbidden regions and the Heisenberg Unertainty Priniple.Example 2 - the hydrogen atomIn order to solve the Shrödinger equation for the hydrogen atom, we needto deal with a 3D equation in spherial polar oordinates. However, beause
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1Figure 1.1: Sketh of in�nite square well, showing lowest three eigenvaluesand orresponding eigenfuntions.



10 CHAPTER 1. TIME INDEPENDENT SCHRÖDINGER EQUATIONof the spherial symmetry of the Coulomb potential, we an separate thesolution into a radial and an angular part:
ψ (r) = ψ (r, θ, φ) = Rnl (r)Ylm (θ, φ) (1.9)where {n, l,m} are quantum numbers (integers) whih haraterise the solu-tion. If we substitute equation 1.9 into equation 4.1 and apply the method ofseparation of variables, we get two equations - a 2D angular equation, whosesolution is given in terms of spherial harmonis and a 1D radial equation:

−1

2

d2χnl (r)

dr2
+

[
V (r) +

l (l + 1)

2r2

]
χnl (r) = Eχnl (r) (1.10)where the substitution

χnl (r) = rRnl (r) (1.11)is used both to simplify the equation and ease its interpretation. Rememberthat the probability of �nding the partile in a small volume d3r is
P

(
r → r + d3r

)
= |ψ (r)|2 d3r

= |ψ (r)|2 r2dr · sin (θ) dθdφ

= |χ (r)|2 dr · Y 2
lm (θ, φ) sin (θ)dθdφ

(1.12)and so we see that the normalisation of χnl and Ylm an be hosen suh that
∫ ∞

0
|χ (r)|2 dr = 1 (1.13)i.e. |χ (r)|2 is the radial probability density.Note that the seond term in equation 1.10 looks very like a potentialenergy term in the standard time independent Shrödinger equation, and sois known as the e�etive potential:

Veff (r) = V (r) +
l (l + 1)

2r2
(1.14)and the l(l+1)

2r2 term is known as the entrifugal barrier.What an we dedue about the general form of χ (r)? Well, we know theform of the Coulomb potential and so as long as V (r) → −∞ as r → 0 nomore quikly than r−1 we get
d2χ

dr2
=
l (l + 1)

r2
χ (1.15)whih gives a non-divergent solution as

χ (r → 0) ∼ rl+1 (1.16)
⇒ Rl (r → 0) ∼ rl
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Figure 1.2: Sketh of �rst three radial eigenfuntions for the hydrogen atom.Similarly, as r → ∞ we get
d2χ

dr2
= −2Eχ (r) (1.17)whih gives two lasses of solution:

χ (r) ∼ e−
√

2|E|r E < 0 (bound states)

χ (r) ∼ e±i
√

2Er E > 0 (continuum)
(1.18)For intermediate values of r we an either use more elaborate mathe-matis (whih is possible for hydrogen but not for more omplex atoms) orturn to numerial solutions. We an therefore use this known asymptotibehaviour to test our numerial solutions - every bound state solution, or-responding to an eigenenergy En, should tend to zero as r → ∞, and for

r → 0 should either tend to zero (for non-zero l) or tend to a usp (for l = 0).See �gure 1.2 for a sketh of the three lowest eigenenergy solutions whihdemonstrates this behaviour. We now turn to the problem of how to solvedi�erential equations numerially.



12 CHAPTER 1. TIME INDEPENDENT SCHRÖDINGER EQUATION1.2 Revision of solving ordinary di�erential equa-tions numeriallyUnfortunately, the number of ases where we an solve the Shrödinger equa-tion exatly are rather small. More usually, we are faed with the problemof trying to �nd numerial solutions. As the Shrödinger equation is a linearseond-order di�erential equation, this should not pose too muh di�ulty.We therefore begin by revising what we already know about solving ordinarydi�erential equations, before going on to explore partiular tehniques thatare suitable for the Shrödinger equation.Most methods are designed for �rst-order di�erential equations of thegeneral form
dy

dx
= f (y (x) , x) (1.19)Seond-order equations of the general form

d2y

dx2
= f (y (x) , x) (1.20)an be transformed into a pair of oupled �rst-order equations using

dy

dx
= z (x)

dz

dx
= f (y (x) , x) (1.21)and then solved using the same tehniques.Most methods then proeed to use an approximation to the derivative,suh as the forward di�erene:

dy

dx
≈ y (x+ δx) − y (x)

δx
(1.22)the bakwards di�erene:

dy

dx
≈ y (x) − y (x− δx)

δx
(1.23)or the entred di�erene:

dy

dx
≈ y (x+ δx) − y (x− δx)

2δx
(1.24)A straightforwards implementation of this approah results in the Eulermethod :

yn+1 ≈ yn + f (yn, xn)h (1.25)
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xx x xx1 2 3Figure 1.3: Illustration of Euler's method - the derivative at eah point xnis extrapolated over the whole step length h to form the next point.where the solution advanes from xn to xn+1 = xn +h = xn +δx and h is thestep size. See �gure 1.3 for an illustration of the method. Comparison to theTaylor series shows that this method has an error O (
h2

) and hene is alleda �rst-order method (an nth-order method has an error term O
(
hn+1

)).Whilst the Euler method is the theoretial basis of most shemes, and assuh is important, it should not be used as it stands as it su�ers from largeerrors and is unstable. However, it an be improved upon to form the shemeswe shall disuss below.1.2.1 The Runge-Kutta methodThe Runge-Kutta method is a ommon lass of methods used for solvingmany di�erential equations. The simplest version improves upon the Eulermethod by doing it twie: we evaluate yn using a single Euler step of length
h and also using a midpoint step as follows:

k1 = f (xn, yn)h

k2 = f

(
xn +

h

2
, yn +

k1

2

)
h (1.26)

yn+1 = yn + k2 +O
(
h3

)whih is known as the seond-order Runge-Kutta or midpoint method. It hasthe advantage of being more stable than the Euler method, and so an beused with a larger step size, and so requires less steps to span a given interval.Unfortunately, the ost for this higher order method is that it requires twofuntion evaluations of f (x) per step. Often, this is the most time onsumingpart of the alulation. See �gure 1.4 for an illustration of this method.
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4
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xx x xx1 2 3Figure 1.4: Seond-order Runga-Kutta method - the derivative at the startof the step is used to �nd a point half-way aross the interval h and thismidpoint value is then used to improve the alulation of the �nal point atthe end of the step. The �lled irles represent �nal values whih are ofinterest, whilst open irles are intermediate values ki whih are disardedat the end of eah step.This method an be extended to arbitrarily high orders. In pratie, it isoften found that the fourth-order method is the most e�ient, in that higherorder methods require many more funtion evaluations without bringing sig-ni�ant improvements in stability or step size. Note that a higher-ordermethod does not always have higher auray! The fourth-order Runge-Kutta method is:
k1 = f (xn, yn)h

k2 = f

(
xn +

h

2
, yn +

k1

2

)
h

k3 = f

(
xn +

h

2
, yn +

k2

2

)
h (1.27)

k4 = f (xn + h, yn + k3)h

yn+1 = yn +
k1

6
+
k2

3
+
k3

3
+
k4

6
+O

(
h5

)A signi�ant advantage of the Runge-Kutta method is that it an beused with a variable step size: at eah step, an estimate of the error inthe solution an be made, and the step size redued if the error is largerthan some presribed tolerane, or the step size may be inreased if a largererror an be aepted. In this way, more attention is paid to those regionswhere the solution is rapidly varying, whilst not paying an unneessarily highprie of using an unneessarily small step size where the funtion is slowlyhanging. This variable step size is ahieved by evaluating yn+1 twie, one



1.2. REVISION OF SOLVINGORDINARYDIFFERENTIAL EQUATIONS NUMERICALLY15using a step size of h and then again using a step size of h
2 . If the di�erenein yn+1 for the two di�erent step sizes is ∆, then it an be shown that for thefourth order method, the required step size h′ to keep the presribed errorto within δ is given by

h
′

=
15

16
h

∣∣∣∣
δ

∆

∣∣∣∣

1

5 (1.28)as the error term is O (
h5

). That is, if h′

< h we must repeat the urrentstep with the smaller step size, whilst if h′ ≥ h we may use h′ as the newstep size for the next step. There is, of ourse, some freedom in how tohoose δ depending on the type of problem being solved - this may either bean absolute error, a frational error, or an aumulated frational error sinethe start of the alulation.The fourth-order Runge-Kutta method, with variable step size, is perhapsthe most widely used and trusted general purpose method for integratingordinary di�erential equations. It has the advantage of being a self-startingmethod, that is, does not require knowledge of previous values to ompleteeah step. However, it does not exploit any partiular properties of theShrödinger equation, and so in this instane there may be more speialisedintegration methods that an outperform it. We shall now onsider one suhmethod.1.2.2 The Numerov methodThe Numerov method is a speialised method for solving a restrited set ofdi�erential equations - those that an be written in the form:
d2y

dx2
= f (x) y (x) (1.29)whih inludes the time independent Shrödinger equation. The methodexploits the speial struture of this equation to produe a method that has�fth-order auray but only requires two funtion evaluations per step!We an derive the method by expanding both y (x± h) and d2y

dx2

∣∣∣
x±h

inTaylor series up to powers of h4 and ombining terms. There is a perfetanellation of all odd-powers of h due to the symmetry of equation 1.29 andso the resulting method is aurate to order h6. The result is
z (x+ h) = 2z (x) − z (x− h) + h2f (x) y (x) +O

(
h6

) (1.30)where
z (x) =

[
1 − h2

12
f (x)

]
y (x) (1.31)



16 CHAPTER 1. TIME INDEPENDENT SCHRÖDINGER EQUATIONThe advantage of this method is that it has an error O (
h6

) whih isan order of magnitude better than 4th-order Runge-Kutta and only requirestwo (rather than four) funtion evaluations per step. Hene it is the pre-ferred method for solving the Shrödinger equation. However, it does have adrawbak in that it is not self-starting due to the z (x− h) term - that is, itrequires another method to generate the �rst step, whereupon the Numerovmethod an be used. This feature of the method will also give problems ifthere are any disontinuities in the potential whereas the single-step Runga-Kutta method will be OK.1.2.3 SingularitiesThere is a problem as to what to do at singularities. For example, in the hy-drogen atom both the Coulomb potential and the entrifugal barrier divergeat the origin. However, for the hydrogen atom we have a known analytiresult for χ (r = 0) and so this an be substituted instead. But what aboutthe general ase of a singularity with non-zero l? Well, as long as the di-vergene is not too fast, then χ will still be well behaved, and we an do aTaylor series expansion for χ (r) around the singularity:
χ (r) =

∞∑

s=0

asr
s+l+1 (1.32)from whih it an be shown that

as =
2

s (s+ 2l + 1)

(
rVeffas−1 +

(
d (rVeff )

dr
− E

)
as−2

) (1.33)with a0 = 1 (unless l = 0) and a−1 = 0 . Therefore we an generate all theterms for χ, with an arbitrary normalisation that an be �xed later.1.2.4 Other methods of solutionThere are other methods that an be used to solve di�erential equations.For example, we might hoose to disretize spae and solve the equation ona grid, replaing di�erentials by appropriate sums over neighbouring gridpoints, and suessively iterating to self-onsisteny. This is known as the�nite-di�erene approah. It an be inorporated in various ways, suh aswith a single �xed grid, or with a hierarhy of grid sizes, or with a grid thatadapts to the solution (e.g. putting more points in the regions where thefuntion is rapidly hanging). Suh methods an be very suessful and anexample will be onsidered in a later leture.There are also indiret methods that an be used to produe informationabout the solution without diretly solving the equation. Suh methodsexploit speial properties of the equation, for example, that it has partiular



1.3. APPLICATION TO THE SCHRÖDINGER EQUATION 17symmetries, or is an eigenvalue equation, or an be expressed in terms ofa variational priniple, et. This will form a very important theme to laterletures in this ourse.1.2.5 ErrorsIn general, when solving any di�erential equation numerially, there will betwo dominant soures of error:
• trunation error� this is aused by the trunation of the Taylor series and representsthe fundamental limit to the auray of a given algorithm. Ingeneral the error in a solution aused by trunation error an beredued by using a smaller step size h.
• rounding error� this is aused by the �nite representation of numbers within a digi-tal omputer. For example, when using single preision arithmetiin a typial modern omputer, all �oating point numbers will beaurate to about 8 signi�ant �gures, and when using doublepreision arithmeti they will be aurate to around 16 signi�-ant �gures. In general, the error in the �nal solution aused byrounding error an be redued by using fewer integration steps sothat there is less aumulation of error, orresponding to a largerstep size h.It an be seen then that there is a ompetition between these two souresof error. Usually trunation error dominates, espeially when using doublepreision arithmeti (whih is essential for any kind of sienti� omputing).So when omputing any solution, it is always a good idea to repeat thealulation with a smaller step size and see if there is any signi�ant hangein the solution. If there is, then the alulation must be repeated again withan even smaller step size, et. until there is no signi�ant hange. However,if the step size is redued too muh, then rounding error will start to beomesignifant and auray will be lost again.1.3 Appliation to the Shrödinger equationHow then shall we use either the Runge-Kutta or Numerov method to solvethe Shrödinger equation for any partiular problem? If we are interested in�nding the bound states, i.e. the eigenenergies and eigenfuntions, then wemust:
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• hoose a partiular angular momentum (value of l)
• hoose a trial energy (value of Etrial)
• starting from r = 0 integrate the radial equation up to some appropri-ate large value of r = rmax

• examine the behaviour of the solution - in partiular χ (r → ∞)

• if χ (r) → ±∞ then Etrial does not orrespond to a bound state soadjust Etrial and repeatThis proess of tuning Etrial an of ourse be automated, resulting in avariant of the �shooting method�.Note that the ground state solution will have no nodes. A general solutionwill have integer values for {n, l,m} - but we will get no information on mfrom the radial equation and we have hosen l at the outset - so by ountingthe number of nodes we an dedue the value of n:
n = (number of nodes) + l + 11.4 Final ommentsA few �nal points to highlight:

• The Shrödinger equation an often be written as an ordinary di�er-ential equation and solved using standard numerial tehniques.
• Bound states should have a vanishing wavefuntion in the long-rangelimit.
• The Numerov method is muh more e�ient than fourth-order Runga-Kutta for solving the Shrödinger equation.
• Di�erent algorithms have di�erent harateristi features, suh as theability to handle disontinuities or variable step sizes.
• A higher-order algorithm in general has a smaller trunation error thana lower-order one (but it depends on the unknown prefator!)
• Rounding error will dominate if the step size is made too small.1.5 Further reading
• TISE in any undergraduate Quantum Mehanis textbook
• Numerov method disussed in �Computational Physis� by J.M. Thi-jssen, appendix A7


