
Chapter 2Sattering2.1 Solving the Shrödinger equation for unboundstatesWe saw in the previous leture how to solve the Shrödinger equation forbound states, using either the Runge-Kutta or Numerov method. The boundstates were haraterised by having quantised energies and wavefuntionsthat went to zero as r → ∞. What then, of unbound states? Here we typi-ally have a ontinuum of available energy levels, and a �nite wavefuntionas r → ∞. Obviously, suh states do not orrespond to eletrons in an atom,but are still nevertheless very important. One very important role of suhunbound quantum partiles is in sattering experiments, where a high energypartile is sattered o� some potential barrier, and the measurement of thesattering is used to yield important information about both the sattererand the sattering entre.The solution tehniques are the same as for bound states, but the analysisof the sattered wavefuntion is di�erent. In general, sattering may be eitherelasti (energy onserving) or inelasti (energy transferred from satteringpartile to sattering entre). In this leture, we shall only onsider elastisattering, and ontinuing in the same vein as the last leture, we shallonly onsider spherially symmetri sattering potentials, whereupon theShrödinger equation beomes a simple ordinary di�erential equation for theradial part.We shall assume the sattering geometry as in �gure 2.1. An inom-ing beam of sattering partiles (usually a mono-energeti ollimated beamknown as a plane-wave) is inident upon a sattering entre, resulting in anoutgoing beam that has di�erent intensities in di�erent diretions dependingon the spatial angle Ω = (θ, φ) as shown in the �gure. The two key exper-imental quantities that we want to alulate are the di�erential satteringross setion dσ

dΩ
and the total sattering ross setion σ. The di�erentialross setion desribes how the �ux of sattered partiles (intensity) varies19
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Figure 2.1: Geometry of a sattering proess.with outgoing spatial angle Ω, whereas the total ross setion is the inte-grated �ux over all angles. That is,
dσ

dΩ
=
scattered flux into dΩ

total incident f lux
(2.1)It an be proved that, for a spherially symmetri potential, the solutionof the Shrödinger equation an always be written as

ψ (r) = ψ (r, θ, φ) =

∞
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χl (r)

r
Ylm (θ, φ) (2.2)where Alm is some normalisation onstant, χ (r) is the solution to the radialequation that we met last leture, and Ylm is a spherial harmoni funtionwhih determines the angular variation of the solution (whih we ignored inthe last leture) and will obviously be important for alulating dσ

dΩ
.If we assume that the sattering entre has a �nite range, i.e.

V (r) = 0 r > rmax (2.3)then we have two regions of solution. Inside the well there will be a om-pliated spatial and angular variation, involving the sum of various kindsof spherial Bessel funtions. Outside the well, we do not need to worryabout the exat funtional form of the well, and an also work with theasymptoti expansion of these same spherial Bessel funtions, whih thensimpli�es things onsiderably. This is also the experimentally relevant regime- if we onsider sattering of α-partiles o� Au nulei, then the experimentalapparatus will be at a distane of at least 1013 times the Au nuleus size(entimetres vs femtometres). In whih ase, the radial solution to equation2.2 an be written as
χl (r) ∝ sin
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π
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)

r ≫ rmax (2.4)



2.2. THE PHASE SHIFT 21where k is known as the wavenumber whih haraterises the momentum ofthe outgoing wave (and the inoming wave as this is elasti sattering) andis given as
k =

√
2E (2.5)and δl is known as the phase shift.Note that as in the ase of the hydrogen atom onsidered in the lastleture, for l 6= 0 there will be an additional ontribution to the e�etivepotential aused by the entrifugal barrier. Hene the phase shift dependson the angular momentum quantum number l.2.2 The phase shiftIt is the phase shift whih is the key quantity in sattering. It arises from theneed to math the solutions to the Shrödinger equation at the satteringpotential boundary edge. It is alled the phase shift, beause as we see fromequation 2.4, the outgoing wave beomes a pure sine-wave at large distaneswith a phase dependent on δl. Indeed, for l = 0, it an be shown that χ0 (r)is a sine-wave for all r > rmax. The phase shift depends on the inomingenergy E and also the angular momentum l of the inoming partiles relativeto the sattering entre and as suh is a key theoretial quantity whih anbe used to derive the experimentally observed quantites (ross-setions, et).It an be shown, for an inoming plane-wave, that the di�erential sat-tering ross-setion is related to the phase shift by
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2 (2.6)and to the total ross-setion by
σ = 2π

∫
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dΩ
sin (θ) dθ
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2 (2.7)where Pl (cos (θ)) is a Legendre polynomial.These expressions, whilst theoretially preise, are not partiularly usefulin a numerial alulation due to the in�nite sums. However, we an usesome physial insight to onvert this expression into a more useful form.Classially, a partile with angular momentum l and linear momentum kmust pass the origin at a distane x suh that kx = l. In quantum mehanis,we replae l with √

l (l + 1) and so we see that only partiles with angularmomentum l < lmax where
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√

lmax (lmax + 1) ≃ krmax (2.8)will �feel� the potential. Any partiles with higher angular momentum willpass through una�eted. Therefore we may use this to trunate the in�nitesum at a reasonable value to alulate the ross-setions. As a hek on theauray of the alulation, we should then repeat the alulation using ahigher value of lmax and ensure that nothing has signi�antly hanged. Thisuse of a numerial ut-o� to in�nite sums is a ommon tehnique in manynumerial methods. Note that equation 2.8 implies that it is possible to tunethe inoming beam for a given potential suh that only l = 0 ontributes tothe sattering, whih is then known as s-wave sattering.We an also learn some interesting things diretly from δl - for example,equation 2.7 shows that if δl = 0 then the total sattering ross-setionis zero, whih implies that there an be no sattering! This is seen, forexample in the sattering of eletrons by rare-gas atoms - eletrons with E ∼
0.7 eV pass through helium without being sattered - whih is known as theRamsauer-Townsend e�et. A seond interesting phenomena happens when
δl = π

2
whih then gives maximum sattering. This orresponds to tuning theinoming beam energy E to ause resonant sattering whereupon the totalross-setion σ is muh greater than the geometrial ross setion πr2max.For example, when sattering neutrons o� hydrogen there is a harateristineutron-proton interation range r ∼ 2 × 10−15m and yet low-energy l = 0neutrons have an experimental total sattering ross setion σ ≃ 20.4 ×

10−28m2 ∼ 162 × πr2. For l 6= 0 the e�etive potential may ontain anadditional barrier whih an trap inoming partiles for a short time in avirtual energy level and enhane the amplitude of the wavefuntion insidethe sattering region.2.3 Final ommentsA few �nal points to highlight:
• We an use the same tehniques to solve the Shrödinger equation forontinuum states as for bound states.
• Any potential will ause sattering of an inoming beam of partiles� the sattering depends on both the inoming energy and angularmomentum� in priniple the outgoing beam ontains an in�nite spread of an-gular momenta� in pratie only a small number of angular momenta ontribute ifthe potential is short ranged.
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• Analysis of the phase shift over a range of energies yields a lot ofinformation about the nature of the sattering potential.2.4 Further reading
• �Computational Physis� by J.M. Thijssen, Chapter 2
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