
Chapter 3Time Dependent ShrödingerEquation3.1 Revision of solution of partial di�erential equa-tionsOur basi approah depends on whether we are solving an boundary value orinitial value problem. As an example of a boundary value problem, onsidersolving Poisson's equation with a �xed array of harges, or for a potentialspei�ed on the bounding surfae. Suh problems are usually solved usingvarious iterative grid-based methods, and are not relevant here. The timedependent Shrödinger equation is most usually ast into an initial valueform, and so we shall �rst revise the basi approah to solving suh problems.As lassi examples of initial value problems, we shall onsider both thedi�usion equation with onstant di�usivity D :
∇2u (x, t) =

1

D

∂u (x, t)

∂t
(3.1)and the wave equation with onstant veloity v :

∇2u (x, t) =
1

v2

∂2u (x, t)

∂t2
(3.2)Both an in general be written as one or more oupled �rst-order equa-tions in terms of some onserved �ux F (u):

∂F (u)

∂x
= −
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∂t
(3.3)so for the wave equation we have

F (u) =
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0 −v
−v 0

)
.u (3.4)25



26 CHAPTER 3. TIME DEPENDENT SCHRÖDINGER EQUATION3.1.1 Forward-Time Centred-Spae algorithmWe start by onstruting a �nite di�erene approximation to equation 3.3by hoosing equally spaed points in t- and x- axes:
xj = x0 + j△x, j = 0, 1, . . . J (3.5)
tn = t0 + n△t, n = 0, 1, . . . Nand we introdue the following ompat notation whih will be used fromhereon:

u (xj, tn) → un
j (3.6)We know how to solve the spatial part of the di�erential equation bydisretizing the derivatives, as seen in the earlier part of this ourse. Wetherefore hoose a seond-order �entred-spae� representation for the �rst-order spatial derivative, using only quantities known at the urrent time-stepn:

∂u

∂x

∣∣∣∣
j,n

=
un

j+1 − un
j−1

2△x
+O

(
△x2

) (3.7)whih is appropriate given the boundary onditions on the spatial part ofthe solution.However, with the time part of the solution, we often have the boundaryonditions expressed as initial value onditions. We annot therefore usea entred-spae algorithm in a straightforwards manner. The obvious wayto propagate forwards in time then is to use the expliit �rst-order forwardEuler di�erening sheme:
∂u

∂t

∣∣∣∣
j,n

=
un+1

j − un
j

△t
+O (△t) (3.8)These two derivatives an then be ombined to yield the Forwards-TimeCentred-Spae (FTCS) �nite di�erene approximation to equation 3.3:

un+1
j ≈ un

j −
△t

△x
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j+1 − un

j−1

2

∂F

∂u
(3.9)We represent this shematially in �gure 3.9. Does this sheme work?As always, we need to do both a stability analysis and an error analysis . . .
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Figure 3.1: Shemati representation of the Forward-Time Centred-Spae(FTCS) di�erening method. The �lled irles represent known points at theurrent time-step, and open irles represent new points at the next time-step. Solid lines are used to onnet points used in the spatial derivatives,and dashed lines onnet points used in time derivatives.3.1.2 von Neumann stability analysisThe von Neumann stability analysis examines the behaviour of the eigen-mode solutions in the �nite di�erene equation. We assume all oe�ientsto be slowly varying in time and loally onstant in spae. So for the dis-retized wave equation we have the following general form for an eigenmode:
un

j (k) = ξ (k)n eikj△x (3.10)at some partiular wavenumber k, at time n△t and spatial grid point j△x.In general, if |ξ (k)| > 1 then at that wavenumber k we have ampli�ationof the orresponding eigenmode at suessive times n△t and the solution willbe unstable. This will then give an amplitude error. For stability thereforewe must have:
|ξ (k)| ≤ 1 (3.11)and for auray in the solution at wavenumber k we desire |ξ (k)| = 1.What then is the e�et of |ξ (k)| < 1 ? This orresponds to damping ofpart of the solution, whih will lead to a loss of auray. However, we areonly interested in solutions that over many gridpoints (otherwise the gridis too oarse) i.e. in wavenumbers k s.t. k△x≪ 1 , and so damping of othermodes will not (in general) be a problem.



28 CHAPTER 3. TIME DEPENDENT SCHRÖDINGER EQUATIONExampleLet us perform the von Neumann stability analysis for the FTCS disretiza-tion of the wave equation. Equation 3.9 now beomes:
un+1

j ≈ un
j −

v△t

△x

un
j+1 − un

j−1

2
(3.12)We therefore substitute the general form of an eigenmode (equation 3.10)into this equation and divide by ξn to get:

ξ (k) ≈ 1 − i
v△t

△x
sin (k△x) (3.13)and so we see that |ξ (k)| > 1∀k . Therefore we have shown that the FTCSsheme is unonditionally unstable when applied to the wave equation.This instability an be ured by modifying equation 3.9 using :

un
j →

1

2

(
un

j+1 + un
j−1

) (3.14)and the resulting sheme is known as the Lax method.3.1.3 Courant onditionWhy does the Lax modi�ation make the FTCS sheme stable? The answeris that the original equation required information from un
j−1 to propagate to

un+1
j in every time time-step △t, regardless of the veloity v of the wave inthe medium! The Lax sheme however now satis�es the Courant ondition:

|v|△t

△x
≤ 1 (3.15)whih ensures ausality, and is therefore another requirement for stability.The Lax modi�ation is numerially equivalent to adding dissipation intothe ontinuum equation 3.3 unless |v|△t

△x
= 1.3.1.4 Other errorsNote that there are other soures of error as well as the amplitude errorshighlighted by the von Neumann analysis. One example is that of phaseerrors. For example, even if we set |v|△t

△x
= 1 in the equation 3.1 we get

ξ = e−ik△x (3.16)and so at eah time-step, the eigenmode solution is multiplied by an arbitraryphase fator. Therefore, an initial wave paket whih was a superposition ofmodes with di�erent k will rapidly disperse and loose its oherene.There are other possible soures of error in general, e.g. due to non-linearfeatures, shok formation et. but we shall not onsider these here as ourprimary goal is the study of the (linear) Shrödinger equation!
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t or n

x or jFigure 3.2: Shemati representation of the staggered-leapfrog method. Thehekerboard pattern shows that there are two unoupled meshes in thissheme, whih might therefore result in a mesh-drift instability.3.1.5 Higher order methodsThe FTCS method is seond-order in spae but only �rst-order in time. Itis possible to improve upon this, by going to a method suh as staggered-leapfrog, whih is seond-order in time:
un+1

j = un−1
j −

v△t

△x

(
un

j+1 − un
j−1

) (3.17)as illustrated in �gure 3.2.In this ase, repeating the von Neumann analysis shows that this methodhas no amplitude dissipation (|ξ (k)| = 1) as long as the Courant onditionis satis�ed, and so is to be preferred. However, we an see from the heker-board pattern in �gure 3.2 that only alternate points are oupled in thissheme, resulting in two distint meshes. This method may then result inmesh-drifting, whih an be ured in a similar manner to the Lax method.The result is the Two-Step Lax-Wendro� sheme.3.1.6 Impliit shemesAll the shemes disussed so far are expliit shemes, where all the infor-mation required to derive the next point is known at the beginning of thenext time-step. This is not the only possibility! There also exist impliit(also known as bakward time) shemes whih are sometimes useful. Forexample, in solving the di�usion equation 3.1 we often have a ompetition
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time

spaceFigure 3.3: Shemati representation of the Bakward-Time Centred-Spae(BTCS) di�erening method.between behaviour on small and large sales. Using an expliit sheme, thetime-step would be dominated by the need to ensure stability of the solutionfor these small sale features, whih are often of seondary importane w.r.t.the large sale features. Therefore, we want a sheme that orretly evolvesthe large-sale features of interest using as large a time-step as possible, andleaves the small sale features �frozen in�. Then at the end of the alulationwe an swith to another sheme to �nish o� the small sale features.An example of a fully impliit sheme (applied to equation 3.1) is theBakward-Time Centred-Spae (BTCS) sheme :
un+1

j − un
j

△t
= D

un+1
j+1 − 2un+1

j + un+1
j−1

(△x)2
(3.18)Note that with equation 3.1 we have the seond-order spatial derivative,whih results in the entred term appearing in the spatial derivative. Thisterm is absent in equation 3.7 as we were only onsidering an e�etive �rst-order equation at that time. Both shemes are seond-order in spae and�rst-order in time. The BTCS sheme is illustrated in �gure 3.3.Applying the von Neumann stability analysis to the BTCS sheme showsthat this is now unonditionally stable for any size time-step. This stabil-ity is a harateristi of impliit methods. To solve equation 3.18 requiressolving a set of linear simultaneous equations at eah time-step for the un+1

jwhih therefore inreases the omputational workload. However, this is a



3.2. APPLICATION TO THE SCHRÖDINGER EQUATION 31tridiagonal set of equations,
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(3.19)where α = D△t

(△x)2
and BC0 and BCJ refer to appropriate boundary ondi-tions. This is a sparse matrix equation whih an be solved very e�ientlyusing speial methods.Finally, to ombine the auray of a fully seond-order sheme with thestability of an impliit method, we average the FTCS and BTCS shemes,resulting in the Crank-Niholson sheme.3.2 Appliation to the Shrödinger equationWe start by writing the time dependent Shrödinger equation, in one dimen-sion with atomi units:

−
1

2

∂2ψ

∂x2
+ V (x)ψ = i

∂ψ

∂t
(3.20)or in terms of the Hamiltonian operator Ĥ,

Ĥψ = i
∂ψ

∂t
(3.21)and the formal solution to equation 3.21 is:

ψ (x, t) = e−i bHtψ (x, 0) (3.22)where e−i bHt is known as the time evolution operator. We may understandsuh an operator in terms of its power-series expansion:
e−i bH△t = 1 − iĤ△t+O

(
△t2

)The FTCS algorithm results in
ψn+1

j =
(
1 − iĤ△t

)
ψn

j (3.23)and as expeted, the von Neumann analysis with eigenmode solutions as inequation 3.10 shows this to be always unstable for all k at all time-steps.We therefore onsider the impliit BTCS algorithm:
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ψn+1

j =
(
1 + iĤ△t

)−1
ψn

j (3.24)whih as expeted is unonditionally stable. We an then extend this tohigher order shemes as before.So is that it? Do we now have everything we need to solve the timedependent Shrödinger equation? NO!3.2.1 ConstraintsThere is an fundamental additional onstraint upon solutions to the Shrödingerequation, whih is that the solutions must stay normalised at all times, i.e.
∫ ∞

−∞
|ψ|2 dx = 1 (3.25)whih none of the methods disussed satisfy. The reason for the failure isthat the approximation we have made to the time evolution operator e−i bHtis not unitary, although the operator is unitary.Remember that in matries, a unitary matrix U is one that satis�es

U †U = 1, i.e.. the omplex generalization of an orthogonal matrix. As suh,it an be used as a rotation matrix as it does not hange the norm of thematrix it is applied to. Similarly, in quantum mehanis, a unitary operatordoes not hange the normalisation of the wavefuntion. The problem isthat the time evolution operator is unitary, but our simple �rst-order Taylorexpansion of the operator is not.The solution is to use Cayley's form for the �nite-di�erene representa-tion of the time evolution operator:
e−i bH△t =

1 − 1
2 iĤ△t

1 + 1
2 iĤ△t

+O
(
△t3

) (3.26)whih is both unitary and also has the additional advantage of being exatto seond-order in time.We an now use this approximation for the time evolution operator inequation 3.24 whih results in an unonditionally stable, seond-order, uni-tary algorithm. This is the preferred �nite di�erene method for solvingthe time dependent Shrödinger equation, and is atually equivalent to theCrank-Niholson method! Note that the presene of the denominator inequation 3.26 means that a matrix inversion is required at every time step,whih therefore dominates the overall omputational time saling of this al-gorithm. We disretize Ĥ using standard spatial derivatives, whih resultsin a tridiagonal matrix for Ĥ whih is similar to equation 3.19. Again, usingspeial sparse matrix methods, we an e�iently invert this matrix in O (J)operations and hene solve the time dependent Shrödinger equation.



3.3. FINAL COMMENTS 333.3 Final ommentsA few �nal points to highlight:Remember that a higher-order algorithm is not neessarily better.Remember the di�erene between stability and auray, and the di�er-ent sorts of errors that an be introdued by your hoie of algorithm (aswell as round-o� and trunation errors in the omputer implementation).Remember that you may have additional onstraints (suh as normalisa-tion) whih a �standard� algorithm may not handle.3.4 Further reading
• �Computational Physis� by J.M. Thijssen, Chapter 3
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