
Chapter 4The Variational Method4.1 IntrodutionIn previous letures, we have disussed methods of solving the Shrödingerequation based upon integrating a (partial) di�erential equation. However, itis well known that the Shrödinger equation is an example of an eigenvalueproblem, and so in this leture we will explore an alternative method ofsolution, based upon a variational inequality that an be derived from theeigenvalue problem.This new method, known as the variational method, will allow us to�nd an approximate value for the ground state energy without knowing theexat ground state wavefuntion! It an also, in ertain ases, be extendedto �nding the energy of exited states. We will also show how the estimateof the energy an be systematially improved.4.2 The eigenvalue problemWe start by expressing the time-independent one-dimensional Shrödingerequation in terms of the Hamiltonian operator Ĥ :
Ĥφi (x) = Eiφi (x) (4.1)where Ei is the energy eigenvalue assoiated with the eigenfuntion φi (x) ofthe Hamiltonian Ĥ. Typially, we know Ĥ and want to solve this equationto �nd the assoiated eigenvalues and eigenfuntions. In priniple, we analways solve this equation by diagonalizing Ĥ whih therefore gives all theeigenvalues and eigenfuntions. However, this is often omputationally veryexpensive, and we are often only interested in �nding the ground state so-lution, i.e. the lowest energy state orresponding to the smallest eigenvalue.We therefore seek a method for �nding just the lowest eigenvalue, or at least,a reasonable approximation. 35



36 CHAPTER 4. THE VARIATIONAL METHODLet us onsider an arbitrary wavefuntion ψ (x). Using the omplete setof eigenfuntions {φi (x)} as a basis, we may expand the arbitrary funtionas follows:
ψ (x) =

∑
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ciφi (x) (4.2)where the {ci} are the omplex expansion oe�ients. Note that ψ (x) maynot be properly normalized.We an now alulate the expetation value of the energy for this state:
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(4.6)as the basis funtions {φi (x)} form an ortho-normal set.Finally, we are now ready to turn to the problem of estimating the groundstate energy, E0 (lowest eigenvalue) without solving the full eigenvalue prob-lem. By de�nition, all exited states have Ei ≥ E0 and therefore we have
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2 (4.7)and so we have the following variational inequality :

〈E〉 =

∑
i |ci|

2
Ei∑

i |ci|
2

≥ E0 (4.8)whih shows that any trial wavefuntion an be used to give an upper boundon the ground state energy. Obviously, the loser the trial wavefuntion isto the true ground state wavefuntion, the lower this upper bound beomes.So given a trial wavefuntion we an �nd an approximate value for theenergy, and if we an then vary this trial wavefuntion in some manner, wean generate a better estimate by seeking to minimize this energy.4.2.1 Aside - a di�erent view of the Shrödinger equationIn fat, equation 4.3 an atually be reast as a funtional :



4.2. THE EIGENVALUE PROBLEM 37
E [ψ] =

∫
ψ⋆ (x) Ĥψ (x) dx∫
ψ⋆ (x)ψ (x) dx

(4.9)that is, as a �funtion of a funtion�. We may then ask what funtion ψ (x)minimizes this integral? If this sounds a bit unusual, onsider asking thequestion: what funtion minimizes the distane between two points on aplane? We an express the distane between two points as an integral whihgives the length of a urve that passes through both points, and what wewant to �nd is the funtional form of the urve whih has the shortest length.Another example, is that starting from the priniple of least ation in me-hanis, we an derive the Euler-Lagrange equations whih an be redued toNewton's Seond Law. These are all examples of the alulus of variations.If we now de�ne
P =
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Q =

∫
ψ⋆ (x)ψ (x) dx (4.11)we an write the hange in energy δE due to a �rst-order hange in the trialwavefuntion δψ as:
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(4.13)If we now onsider the stationary states of this energy funtional, werequire δE = 0 whih, when substituted into equation 4.13, leads to:

Ĥψ =
P

Q
ψ

= Eψ (4.14)i.e. the Shrödinger equation!So, this is saying that we an derive the Shrödinger equation as beingthe neessary ondition on a funtion for it to minimize the expetation valueof the energy. That is, the variational priniple is just as good a startingplae for QM as the Shrödinger equation!



38 CHAPTER 4. THE VARIATIONAL METHOD4.3 Rayleigh-Ritz methodHow then do we use this variational inequality? One way is to guess afuntion ψα (x) whih ontains some free parameter α and whih satis�esthe appropriate boundary onditions. We then substitute this funtion intoequation 4.3 whih then gives the energy as a funtion of α for all values of
α . We want the value of α whih minimizes the energy, and so an use thisto solve for α. We an then improve the funtional form of the trial guess,inorporating more free parameters, and so suessively redue the upperbound on the ground state energy.4.3.1 Simple Harmoni Osillator exampleHere we write the Hamiltonian as:

Ĥ = −
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mω2x2 (4.15)As a simple trial wavefuntion that satis�es the appropriate boundaryonditions (φ (x) → 0 as x→ ±∞) we hoose:
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)
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(4.16)With this trial form the integrals in equation 4.3 an now be done simply,resulting in:
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) (4.17)whih when minimized w.r.t. α gives:
E0 ≤ 0.598~ω (4.18)whih is quite remarkable given that this problem an, of ourse, be solvedanalytially to give an exat ground state energy of
Eexact

0
= 0.5~ω (4.19)If desired, our estimate of the ground state ould be further improved byhanging the trial wavefuntion, e.g.

ψα,β (x) =

{ (
α2 − x2

)β
if |x| < α

0 otherwise
(4.20)However, given the simpliity of the initial trial wavefuntion, the estimatewe have obtained is already remarkably good. Why is this method so au-rate? The answer is that as we are looking for an energy whih minimizes



4.4. LINEAR (MATRIX) METHOD 39equation 4.3, we have a stationary state w.r.t. �rst-order variations in ψ (x)and so the answer is aurate to seond-order!Note that this method only �nds an upper bound on the lowest state.It may also in ertain irumstanes be extended to exited states, e.g. ifthere is a symmetry that an be exploited. For example, with the simpleharmoni osillator, we know that the potential V (x) has a de�nite parity,and so therefore the solutions have a de�nite symmetry. The ground statesolution has even symmetry (as does our suessful trial wavefuntion), the�rst exited state has odd symmetry, et. So if we hoose an odd funtionas our trial wavefuntion it annot onverge to the ground state, and so willinstead onverge to the �rst exited state. In general, this method will workfor an exited state as long as our trial funtion is orthogonal to all lowerstates. Be aware, however, that exited states an have stationary pointsthat are not minima!4.4 Linear (Matrix) methodWhilst the Rayleigh-Ritz method is very useful for deriving an analyti ap-proximation to the exat ground state wavefuntion, its auray is depen-dent upon making a good guess for the funtional form, whih an be verydi�ult for more omplex problems. Therefore, we now onsider a morepowerful method, whih exploits tehniques from matrix algebra, and whihan be used suessfully in general-purpose omputer odes.We again expand our unknown wavefuntion ψ (x) in terms of some basisset, but unlike equation 4.2 where we used the set of eigenfuntions as ourbasis, this time we use a general set of known funtions {χi (x)} as a basis:
ψ (x) =

N∑
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ciχi (x) (4.21)where the {ci} are the new omplex expansion oe�ients. Note that ingeneral the set {χi (x)} must be linearly independent in order to form a basisset, but they do not need to be omplete, nor orthogonal, nor normalized!We now proeed in a similar manner to equation 4.3 but this time:
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40 CHAPTER 4. THE VARIATIONAL METHODwhere Hi,j are the matrix elements of the Hamiltonian, and Si,j are thematrix elements of the overlap matrix. Note that if the χi basis funtions areorthogonal, then the overlap matrix redues to (a salar times) the identitymatrix and life is a bit simpler.Minimizing equation 4.24 w.r.t. any partiular expansion oe�ient ckgives:
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= 0(4.25)whih an then be re-arranged and substituted into equation 4.24 to give allthe eigenenergies {E} of the Hamiltonian:

N∑

i=1

c⋆i (Hi,k − ESi,k) = 0 (4.26)This is just a set of N simultaneous linear equations for the {c⋆i } values,whih an be written in matrix form as:
HC = ESC (4.27)where C is the vetor of expansion oe�ients. Non-trivial solutions tothis matrix equation are only possible if the equation is singular, i.e. thedeterminant:
|H −ES| = 0 (4.28)whih an then be solved for the eigenenergies {E} in the usual way.4.4.1 Inomplete basis setsFor many pratial appliations of equation 4.27 we shall not be using aomplete basis set - this may be in�nitely large! For example, ommon basissets that are used in alulations of atoms in moleules and solids inludeplane-waves, Gaussians and atomi orbitals - these will be disussed in moredetail in a later leture. Obviously, we annot ope with an in�nite basisset in any �nite omputer, and so we must trunate the basis in some way,resulting in an inomplete basis set.What is the e�et of using an inomplete basis set? We will be restritingour searh for the lowest eigenvalue to a subspae of the full spae we shouldbe using. Therefore, the minimum value we �nd must always be equal to,or greater than, the �true� value. This is the same as in the Rayleigh-Ritzmethod, where we tried to minimize the upper bound on the target expeta-tion value. If we inrease the size of the basis set we use, then the subspae
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Eigenvalue

Basis
Set
SizeSmall Large ExactFigure 4.1: Shemati showing the onvergene of the eigenvalue spetrumwith basis set size. It an be seen that the lower eigenvalues onverge morerapidly towards the exat limit as the basis set size is inreased than thehigher eigenvalues.beomes larger, and the minimum value we �nd will derease until we reahonvergene. At onvergene, we have a su�iently large basis set suh thatadding any more basis states will not hange the answer. Obviously, wemust use larger basis sets to alulate exited states. In general, we will geta spetrum of eigenvalues as the solutions to equation 4.28, with the highereigenvalues onverging more slowly than the lower ones with basis set size.This is shown shematially in �gure 4.1 and illustrated quantitatively in thefollowing example.Example - in�nitely deep potential wellThis has a potential given by (in 1D):

V (x) =

{
∞ for |x| > |a|
0 for |x| < |a|

(4.29)whih fores the wavefuntion to vanish on the boundaries, i.e. ψ (x) → 0 at
x = ±a . Of ourse, this is a problem that an be solved analytially. Here,we demonstrate how to solve this problem using the variational method. Wehoose units suh that a = ~

2

2m
= 1 and for basis funtions we hoose simplepolynomials that vanish at the well boundary:

χn (x) = xn (x− a) (x+ a) , n = 1, 2, . . . (4.30)



42 CHAPTER 4. THE VARIATIONAL METHODEigenvalue N=5 N=8 N=12 N=16 Exat1 2.4674 2.4674 2.4674 2.4674 2.46742 9.8754 9.8696 9.8696 9.8696 9.86963 22.2934 22.2074 22.2066 22.2066 22.20664 50.1246 39.4892 39.4784 39.4784 39.47845 87.7392 63.6045 61.6862 61.6850 61.6850Table 4.1: Lowest part of the eigenvalue spetrum of the in�nite squarewell. The e�et of inreasing the basis set size N an be learly seen, in theonvergene (from left to right) of the eigenvalue towards the exat value.where this simple form is hosen so that the matrix elements of the overlapmatrix (also known as the overlap integrals) an be alulated simply andanalytially. The matrix elements of the Hamiltonian an also be foundanalytially, and so all the elements in equation 4.28 are known and theeigenvalue spetrum an be simply alulated. The results are given in table4.1 and the resulting spetrum is similar to that shown in �gure 4.1 asa funtion of basis set size. We see that the lowest eigenvalue onvergesmost rapidly with basis set size, whilst onsiderably more basis funtions arerequired to onverge the exited states.4.4.2 E�ienyWith an orthonormal basis the overlap matrix beomes the identity matrix,and equation 4.27 beomes the standard eigenvalue problem, and may besimply solved using standard linear algebra tehniques. This is ommonlyreferred to as diagonalizing the Hamiltonian: we seek to �nd the set ofeigenvalues and eigenvetors of the Hamiltonian matrix. To do this, weexploit the Hermitian properties of H. If we write the eigenvetors of Has the olumns of a new matrix U, then this forms a unitary matrix, i.e.
U

†
U = I. The diagonal form of H then follows:

Hdiag = U
†
HU (4.31)There exist many high quality library pakages (suh as BLAS or LAPACK)to perform this task, often with variants to exploit partiular propertiesof the problem where these exist (suh as sparseness of the matrix to bediagonalized).In the general ase, we have to deal with a non-orthogonal basis, withnon-trivial overlap integrals, and the more ompliated generalized eigen-value problem must be solved. This requires some sophistiated matrix ma-nipulations and will be overed in a later leture.The pratial omputational limitations on the e�etiveness of this method,are the storage requirements of these matries whih is O (N2

) and the om-



4.5. FINAL COMMENTS 43puter time required to diagonalize eah matrix, whih is O (N3
) (where N isthe size of the basis set). For this reason, the basis set should be kept as smallas possible, whilst giving onverged results for the quantities of interest. Notethat diagonalizing the Hamiltonian will give all the eigenvalues, whereas it isoften only a small number of the lowest eigenvalues, orresponding to ou-pied states, that are of interest. For this reason, various tehniques suh asthe Lanzos algorithm have been developed to only return a limited numberof eigenvalues, with orresponding inreases in e�ieny.For most problems, the linear variational method is more e�ient thanthe diret-solution methods disussed in earlier letures. In general, the basisset sizes an be hosen to be far smaller than the number of integration pointsrequired to ahieve omparable auray. For an integration grid ontaining

M points however, the �nite di�erene equations an often be formulated assparse matries whih an then be solved using speialised O (M) methods.As the problem size inreases therefore, grid based methods beome moree�ient and so are starting to beome more widely used in researh.4.5 Final ommentsA few �nal points to highlight:
• We an express a wavefuntion in terms of basis funtions, whih thenturns the Shrödinger equation into an eigenvalue equation.
• An approximate analyti form for the ground state solution an befound from the Rayleigh-Ritz variational method.
• A numerial solution an be found using the linear variational method.
• If the basis set is inomplete, then the eigenvalues obtained will beupper bounds on the true eigenvalues.
• If the basis set is non-orthogonal, then the generalized eigenvalue prob-lem has to be solved.4.6 Further Reading
• �Computational Physis� by J.M. Thijssen, Chapter 3
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