
Chapter 5Total Energies5.1 Why study total energies?For the remainder of this leture ourse, we will be onsidering various teh-niques for alulating the total energy of a system of interating quantumpartiles. Why is this of interest? The simple answer is that many quantitiesof interest an be derived from a knowledge of the total energy, or di�erenesin total energy, and how it varies under various perturbations. In ondensedmatter physis, we are interested primarily in a system of eletrons and ions.This is the lass of system we shall onsider for the rest of this leture ourse.For instane, the equilibrium lattie onstant of a rystal is that whihminimises the total energy. Similarly, the equilibrium bond lengths of atomsin moleules, and the struture of surfaes and defets, will all be those whihminimise the total energy. For example, if a series of total energy alulationsare performed as a funtion of the lattie parameter, then when plotted as in�gure 5.1, the predited theoretial equilibrium lattie parameter an be seenas the minimum of this urve. This an also be repeated for di�erent rystalstrutures, e.g. fae-entred ubi, body-entred ubi, et. to reate afamily of suh urves, from whih the most stable rystal struture at a givenapplied pressure an be dedued. In this way, phase-transition pressures anbe alulated. Similarly, various elasti onstants of the rystal, phononmodes, piezoeletri onstants, et. an also be alulated.Whilst suh quantities an often be simply measured in a laboratory, thisis not always the ase. For example, there is a lot of interest in knowing thestruture and elasti properties of iron at temperatures in the range 4000 Kto 8000 K and pressures of 500,000 to 3,500,000 atmospheres! Why? Beausethis is believed to be the onditions that exist in the Earth's ore and theproperties of iron in suh onditions are largely unknown, yet hugely impor-tant for determining the struture and dynamis of the planet! There aremany other ases, where it is preferred to alulate rather than measure suhquantities, for example, when designing andidate new ultra-hard materials45
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Figure 5.1: Sketh of variation in total energy with lattie onstant, showinghow the equilibrium value an be predited.to know if it is worth bothering to try to make them!5.1.1 ForesWe an also go beyond simply alulating the total energy. For example, weknow that in lassial mehanis, that the fore on a partile an be derivedfrom the potential:
F = −∇V (r) (5.1)and the orresponding expression in quantum mehanis is
F = −∇〈E〉 (5.2)where 〈E〉 is the expetation value of the total energy

〈E〉 =

∫
φ⋆ (r) Ĥφ (r) d3r∫
φ⋆ (r)φ (r) d3r

= N

∫
φ⋆ (r) Ĥφ (r) d3r (5.3)where φ (r) is the wavefuntion of the system (not neessarily an eigenfun-tion of the Hamiltonian) and N is an appropriate normalisation onstant.Therefore the fore on the ions is
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F = −N

{∫
∇φ⋆ (r) Ĥφ (r) d3r +

∫
φ⋆ (r)∇Ĥφ (r) d3r +

∫
φ⋆ (r) Ĥ∇φ (r) d3r

}(5.4)by the hain rule.That is, we an use the hange in the expetation value of the totalenergy of the system upon moving the ioni oordinates {R} to derive thefores upon the ions. Note that if we expand the wavefuntion of the systemin some position-independent basis-set, suh as plane-waves:
φ (r) =

∑

k

cke
ik.r (5.5)then we an use the Hellmann-Feynman theorem to rewrite equation 5.4 as

F = −N∇

{∫
φ⋆ (r) Ĥφ (r) d3r

}

= −N∇

{∫ ∑

k′

c⋆k′e
−ik′.rĤ

∑

k

cke
ik.rd3r

}

= −N∇

{
∑

k′k

c⋆
k′ck

∫
e−ik′.rĤeik.rd3r

}

= −N
∑

k′k

c⋆k′ck∇

{∫
e−ik′.rĤeik.rd3r

}

= −N
∑

k′k

c⋆k′ck

∫
e−ik′.r∇Ĥeik.rd3r (5.6)where the last line follows from the fat that we are applying the ∇ operatorto the positions of the ions {R} not to the eletrons {r}.So, instead of having to apply the ∇ operator to the wavefuntions andthe Hamiltonian, we only need apply it to the Hamiltonian and we an thenalulate the fores using the same expansion oe�ients ck et as used toalulate the total energy. This is an immense saving in omputational e�ort.If, for some reason, we have to use a position dependent basis-set, then wehave an extra ontribution to the fores, known as the Pulay fore, from thee�et of applying ∇ to the basis funtions.Having derived the fores on the ions, we an now use this to move themaround, either to �nd diretly the geometrial arrangement whih minimisesthe energy (i.e. has zero net fore everywhere) or to do moleular dynamis.In this way, we an do study dynamial e�ets as well, inluding the e�etof �nite temperatures. Note that the simplest moleular dynamis ensem-ble is NVE, that is onstant number of partiles (N), onstant volume (V)and onstant energy (E). An experimentally more realisti senario is NVT



48 CHAPTER 5. TOTAL ENERGIESdynamis, where an appropriate thermostat is used to hold the temperature(T) onstant and onsequently allow some �utuations in the energy.5.1.2 StressesJust as we an derive the fores from the hange in total energy upon varyingthe ioni positions, we an also derive the stress on the unit ell from thehange in total energy upon varying the ell vetors. The details are a bitmore omplex, as the ell stress is a 3x3 tensor whereas the ioni fore is a3x1 vetor, and the ell strain is a 3x3 tensor whereas the ioni displaementis a 3x1 vetor.However, one we have the stress, we an either use it to �nd diretlythe ell size and shape whih minimises the energy (i.e. has zero stress), orto ombine it with the fores to do moleular dynamis with a dynamiallyvarying ell shape. This then enables us to do NPT dynamis, i.e. withonstant pressure (P), whih is the most ommon experimental situation.5.1.3 Charge DensityIn a single partile system, we are used to alulating the wavefuntion andassoiating the probability of �nding the partile in a small volume dV at apoint r with the wavefuntion as
P (r → r + dV ) = |ψ (r)|2 dV (5.7)and

1 =

∫
P (r) d3r (5.8)This is not so useful when we have multiple partiles, partiularly in aondensed matter system where there may be a very large number in a maro-sopi sample (say ∼ 1023 in a mole of substane). A more useful quantity,whih is experimentally measurable and losely related to the probabilitydensity, is the harge density n (r) where

N =
1

V

∫
n (r) d3r (5.9)and N is the number of partiles in the volume V (for example, in the unitell of a rystal).The harge density an be alulated from the wavefuntion of the sys-tem, but as we shall see in later letures, it is also a fundamental quantity inits own right. In fat, speifying the harge density uniquely determines thestate of the system, and there is a unique harge density that orresponds tothe ground state of the system and therefore whih minimises the total en-ergy of the system. It is experimentally measurable using various satteringtehniques.



5.2. APPLICATIONS 495.2 AppliationsIn the handout there are many examples of di�erent theoretial alulationsof experimentally veri�able quantities whih will be disussed in the leture.A variety of di�erent theoretial tehniques are used to alulate the totalenergy whih is the basis for all these alulations - primarily, the Hartree-Fok method (whih we shall disuss in more detail in a later leture) andDensity Funtional Theory (in the leture following Hartree-Fok). As suh,the alulations presented all represent properties of the ground state of thesystem.It should be noted that there are many other quantities of interest thatan be alulated, suh as optial properties, but that in general these areproperties of exited states of the system. As suh, they an sometimes bealulated using modi�ations to the above tehniques, but there are sometehnial di�ulties assoiated with the (often) lak of a variational priniplefor exited states.5.3 Final ommentsA few �nal points to highlight:
• Many quantities of interest are properties of the ground state of thesystem and as suh are aessible through alulation of the total en-ergy.
• If the alulation is a �rst-priniples, parameter-free alulation (apartfrom speifying the types of atom and their masses) then it is oftenknown as an ab initio alulation.
• It is often possible to alulate the fores on the ions from the totalenergy and hene both relax strutures to equilibrium, and also domoleular dynamis. Similarly, for periodi systems, the stress on theunit ell an be alulated whih enables the shape of the unit ell tobe determined and for moleular dynamis with pressure ontrol.5.4 Further reading
• Hellmann-Feynman Theorem in �Methods of Eletroni Struture Cal-ulations� by M. Springborg, Chapter 20
• Example appliations in many hapters of �Methods of Eletroni Stru-ture Calulations� by M. Springborg
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