
Chapter 6Basis Sets6.1 IntrodutionIn previous letures, we introdued the variational method as a means of�nding an approximate value for the ground state energy without knowingthe exat ground state wavefuntion. Knowing the ground state energy, andhow it varies under ontrolled onditions, is a very useful way of alulatingmany properties of a quantum sytem. In many ases, the best way to dothis alulation is to use the linear (matrix) method, wherein the unknownwavefuntion ψ (x) is expanded in terms of some basis set of known funtions
{χi (x)} :

ψ (x) =

N
∑

i=1

ciχi (x) (6.1)where the {ci} are the omplex expansion oe�ients. Note that in generalthe set {χi (x)} must be linearly independent in order to form a basis set,but they do not need to be omplete, nor orthogonal, nor normalized! Inthis leture we will disuss some of the most ommon hoies of basis sets,their usage and impliations. These will form some of the basi tools usedin many di�erent omputational QM approahes, suh as will be disussedin the remaining letures.6.2 Revision of variational methodIn an earlier leture we saw that the task of �nding a variational value for theground state energy of a system is equivalent to solving the matrix equation:
HC = ESC (6.2)where H is the Hamiltonian matrix, S is the overlap matrix and C is thevetor of expansion oe�ients. Non-trivial solutions to this matrix equation51



52 CHAPTER 6. BASIS SETSare only possible if the equation is singular, i.e. the determinant:
|H −ES| = 0 (6.3)whih an then be solved for the eigenenergies {E} in the usual way.The solution of equation 6.3 is muh simpler with an appropriate hoieof basis set. This should be hosen to satisfy the appropriate boundaryonditions, and also to be similar in �shape� to the solution funtions, so thata minimal number of basis funtions are required to ahieve onvergene inthe results. Note that if the χi basis funtions are orthonormal, then theoverlap matrix redues to the identity matrix and life is a bit simpler.For example, in the example of the in�nitely deep square well disussedin an earlier leture, we used a simple polynomial basis set as it led to simpleexpressions for the overlap integrals. However, an equally valid (and perhapsmore obvious) hoie for a basis set would be the {sin (nx) , cos (nx) , 1} setused in Fourier series, with appropriate boundary onditions, e.g. ψ (x) → 0at x = ±π.More useful for alulations of atoms in moleules are the atomi or-bitals {

e−ξrYl,m (θ, φ)
} found as solutions to the Shrödinger equation foran isolated hydrogen atom. Unfortunately, these form a non-orthogonal ba-sis, with non-trivial overlap integrals, and the more ompliated generalizedeigenvalue problem must be solved. There are two ommon approahes tothis problem:Chemists, whose interest is primarily moleules or small lusters of atoms,typially use Gaussian basis sets {

e−αr2

}. These still form a non-orthogonalbasis set, but have the advantage that many of the overlap integrals an bedone analytially. The basis funtions are short-ranged and have a similar�shape� to the atomi wavefuntion, and an atomi orbital an typiallybe �tted by a few Gaussians. Consequently, a small basis set (typially 3or 4 Gaussian funtions/orbital/atom) may be used. We will disuss thisapproah in more detail in setion 6.3.Physiists, whose interest is primarily extended systems, prefer to exploitBlöh's theorem and use a plane-wave basis set, {

eik.r
}. The plane-wavesform an orthogonal basis set, with the periodiity given by the unit ell,but typially require many more basis funtions (typially 50-100 plane-waves/eletron). One advantage of the plane-wave basis is that it is partiu-larly trivial to Fourier transform, whih makes alulations of derivatives ofthe energy (e.g. fores) very simple. We will disuss plane-waves and someommon triks to improve their e�ieny in setion 6.4.6.3 Atomi-style basis funtionsPerhaps the most obvious basis set to hoose in any atomi alulation is thatof atomi orbitals, that is, the eigenfuntions of an isolated atom. As the



6.3. ATOMIC-STYLE BASIS FUNCTIONS 53atoms in a solid or moleule ome together to form bonds, the inner eletroniorbitals of eah atom will be only slightly modi�ed, whereas the outer oneswill overlap with those on other atoms to form hybrid orbitals. The resultis known as the Linear Combination of Atomi Orbitals (LCAO) method,and is widely used in di�erent quantum hemistry methods. Unfortunately,analyti forms for atomi orbitals are only known for the hydrogen atom!Therefore we assume that an atomi orbital for any single atom an bewritten in the general form of a Slater-type orbital (STO):
χµ (r,R) = rmPl (x, y, z) e

−µ(r−R) (6.4)where rm is a simple polynomial forming the radial part of the orbital anddepends on the quantum number n, Pl is the appropriate Legendre polyno-mial at angular momentum l, µ is the �range� of the orbital and R is theentre-of-mass oordinate of the atom. This works very well for atoms, andoptimal values for µ an be found whih minimize the energy of the atomfor a given set of basis atomi orbitals.Unfortunately, this approah does not work well when there is more thanone atom present as the integrals required to evaluate the energy from theHamiltonian often require produts of two or four suh exponentials, whihare hard to alulate. For instane, if we assume that eah eletron interatswith the average harge density of the N − 1 others, then we may write asimple form of the eletron-eletron interation as:
Ve−e =

N
∑

i=1

∫

∣

∣χi

(

r′
)∣

∣

2 1

|r− r′|
dr′ (6.5)whih is known as the Hartree potential. Using this we may then alulatethe Hartree energy (part of the total energy) from integrals suh as

∫

χ⋆
k (r)Ve−eχk (r) dr (6.6)whih learly involves produts of four exponentials in this ase.However, these integrals are onsiderably easier to alulate if we re-plae the exponentials by primitive Gaussian funtions, resulting in so-alledGaussian-type orbitals (GTOs):

χα (r,R) = QM (x, y, z) e−α(r−R)2 (6.7)where QM is given by the spherial harmonis in Cartesian form. Thisis beause of the �Gaussian produt theorem�, that is, the produt of twoGaussians entred on di�erent atoms an be expressed as a new Gaussianentred on the �entre-of-mass� of the two atoms:
e−α(r−RA)2 .e−β(r−RB)2 = e−(α+β)(r−RP )2 (6.8)
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Figure 6.1: Approximation of a 1s Slater-type orbital using 1,2 and 3 Gaus-sians, i.e. STO-1G to STO-3G.where
RP =

αRA + βRB

α+ β
(6.9)whih means that many of the two-eletron integrals an now be done ana-lytially.The minimal basis set ontains one GTO per atomi orbital. The value of

α in the exponent is then hosen suh that the GTO �ts the atomi orbital insome optimal way. This is not very satisfatory. A better approah is to havemultiple GTOs per atomi orbital. The oe�ients of eah Gaussian maybe found by �tting to the STO solution of the atomi alulation. Theseare then ombined in �xed linear ombinations to form a new basis set,whih obviously has less basis funtions than omponent GTOs, and heneis known as a ontrated basis set. See �gure 6.1 for an example of using thisproedure with the simplest possible STO.This is why the individual GTOs are alled primitive funtions, as theyare used to build the basis funtions of the ontrated set. It is also possibleto take an intermediate approah, and ontrat some but not all of theGTOs resulting in a split-basis set. There are many other variants uponsuh themes.Obviously, when reporting the results of a quantum hemistry alulationit is important to speify the size and type of basis set used, so that someassessment of the auray of the alulation may be made. There is aommon shorthand for this: saying that a alulation used an STO-3G basis



6.3. ATOMIC-STYLE BASIS FUNCTIONS 55means that 3 GTOs have been ontrated to make eah STO, similarly anSTO-31 basis means that 3 GTOs have been ontrated and that 1 (theoutermost one) has not been ontrated.Note that the use of GTOs as a basis implies that the basis funtions arenot orthogonal - therefore as disussed in earlier letures on the VariationalMethod, the generalised eigenvalue problem will have to be solved.6.3.1 Aside - Solving the generalized eigenvalue problemIn order to solve the generalized eigenvalue problem, equation 6.2, we mustperform a basis transformation to onvert the overlap matrix S into the unitmatrix I whih will then make it possible to onvert the problem into thenormal form. We start by diagonalizing the overlap matrix:
Sdiag = U†SU (6.10)and then notiing that the eigenvalues of S are positive-de�nite, it is possi-ble to de�ne (Sdiag)

− 1

2 (whih is just the inverse of the square root of theeigenvalues of S on the leading diagonal), and so
(Sdiag)

− 1

2 U†SU (Sdiag)
− 1

2 = V†SV = I (6.11)whih means that the matrix
V = U (Sdiag)

− 1

2 (6.12)has the desired property of onverting the overlap matrix into the unit ma-trix.We an now substitute this into equation 6.2 as:
V†HVV−1C = EV†SVV−1Cand so de�ning

C′ = V−1C (6.13)
H′ = V†HV (6.14)we now obtain
H′C′ = EC′ (6.15)whih is just the normal eigenvalue problem but with transformed matries.We an now solve this using standard tehniques to get the eigenvalues {E}and eigenvetors C′ whih an then be transformed into the eigenvetors ofthe original problem by inverting equation 6.13.



56 CHAPTER 6. BASIS SETS6.4 Solid-style basis funtionsWhen onsidering solids (or liquids) rather than isolated moleules, we aremore onerned with extended (in�nite) systems. Hene the most ommonhoie of basis funtion in this ase is the plane-wave and so we an expandour wavefuntion as:
ψ (r) =

∑

g

cge
ig.r (6.16)where g is a reiproal lattie vetor. If we now apply periodi boundaryonditions it an be seen that {g} form a disretized set as there must bea longest wavelength that an be represented within the periodi unit ell,orresponding to a shortest g. This plane-wave expansion, of ourse, is anin�nite expansion in priniple and so in pratie must be trunated at somemaximum uto� energy, given by:

Ecut =
~

2 |gmax|
2

2m
(6.17)The hoie of the plane-wave basis has several advantages - it is positionindependent (unlike atom-entred Gaussians) whih makes moving the atomsaround straightforward. It is also unbiased, and simple to extend - if we wantto improve the basis by adding more basis funtions, then this an simplydone by inreasing the uto� energy. It is also simple to Fourier transformthe wavefuntion from real spae to reiproal spae (beloved of ondensedmatter physiists) whih from a omputational point of view, makes thealulation of the kineti energy (and any other derivatives) trivial:

∇2ψ =
∑

g

|g|2 cge
ig.r (6.18)One disadvantage of plane-waves, however, is that whilst they are a natu-ral basis for desribing the smoothly varying wavefuntion far from an atom,they do not losely represent the wavefuntion lose to the atom. For thisreason, a plane-wave basis set tends to ontain many more elements thanthe orresponding Gaussian-type orbital basis. Worst of all, is that ertainwavefuntions, suh as the 1s state of hydrogen, have a usp at the origin (see�gure 6.2), whih is impossible to �t with a �nite number of plane-waves.This is ommonly dealt with by the pseudo-potential approximation.6.4.1 Pseudo-potentialsWhen onsidering the eletroni properties of a material, suh as the makingof hemial bonds, the quantity of interest is the wavefuntion at some dis-tane from the atomi entre. Indeed, with multi-eletron atoms, many ofthe eletrons play no part at all in everyday proesses. This leads to a natural
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Figure 6.2: 1s hydrogeni wavefuntion showing usp at origin.division of the eletrons into ore and valene eletrons. The ore eletronsdo not ontribute to the properties of interest and so may be ombined withthe atomi nuleus to form an inert ion, whereas the valene eletrons willneed to be treated in detail. This redues the number of eletrons that needto be onsidered in the problem.Moreover, we do not need to have an aurate wavefuntion for all dis-tanes from the nuleus, but only those beyond some ritial radius wherethe physially relevant proesses take plae, suh as inter-atom wavefuntionoverlap in bond formation. Within this radius the valene wavefuntion willin general have various nodes beause of the requirements of orthogonality tothe ore wavefuntions. This means that it will be rapidly hanging and againrequire many plane-waves to �t it aurately. However, we may (with someare) approximate the wavefuntion within this region without e�eting anyphysial observables. This is the basis of the pseudo-potential approximation- we replae the true ioni potential by a muh smoother pseudo-potentialwithin some ritial radius, so that the orresponding pseudo-wavefuntionis smooth and an be represented in many fewer plane-waves. There mustbe areful mathing of the pseudo and true potentials at the ritial radius,so that outside this ritial radius the pseudo-wavefuntion is idential tothe true wavefuntion. This is shown in �gure 6.3. The net result is thatwe an orretly reprodue the original wavefuntion in the physially rele-vant region of spae with many fewer plane-waves than would otherwise beneessary.6.4.2 SuperellsAt this point, you may be wondering how an we have reiproal lattievetors if we are trying to treat a moleule - surely they only exist in in�niteperiodi systems? The answer is that we use the superell tehnique - that is,
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Figure 6.3: Shemati showing the original eletron-ion potential and or-responding wavefuntion (solid lines), and the replaement pseudo-potentialand pseudo-wavefuntion (dashed lines). The pseudo-potential (wavefun-tion) is mathed onto the original potential (wavefuntion) at the radius rcand beyond this radius there is no di�erene.any non-periodi struture is plaed within a su�iently large unit ell andrepeated with periodi boundary onditions. Obviously, if the intention isto alulate the properties of a single isolated moleule, then the size of thisell must be hosen su�iently large that there is negligible overlap betweenthe wavefuntion of the moleule and that of its periodi images. Using thistehnique of superells, it is then possible to alulate many di�erent kindsof systems, inluding moleules, lusters of atoms, surfaes, et.6.5 Final ommentsA few �nal points to highlight:
• We an express a wavefuntion in terms of basis funtions, whih thenturns the Shrödinger equation into an eigenvalue equation whih anthen be solved numerially using the linear variational method.
• If the basis set is inomplete, then the eigenvalues obtained will beupper bounds on the true eigenvalues.
• If the basis set is non-orthogonal, then the generalized eigenvalue prob-lem has to be solved.
• Within quantum hemistry, a Gaussian basis set is often used.
• Within physis, a plane-wave basis set is often used.



6.6. FURTHER READING 596.6 Further reading
• Basis sets in �Methods of Eletroni Struture Calulations� by M.Springborg, Chapter 10
• Gaussian basis sets in �Computational Physis� by J.M. Thijssen, se-tion 4.6
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