
Chapter 7The Hartree-Fok Method7.1 IntrodutionThere are many problems of interest, for example in solid state physis,and indeed, the whole of hemistry, where we need to onsider the quantummehanial behaviour of many interating eletrons. This is a very di�ultproblem. In earlier letures, we disussed how to solve the Shrödinger equa-tion for a single eletron in various ways, e.g. Numerov integration of thetime independent equation, speial tehniques for solving the time depen-dent equation, and various variational approahes. We shall now turn ourattention to solving the many-eletron problem.There is, of ourse, a hierarhy of tehniques that an be used to solvethis problem, whih di�er in the approximations used. There is usuallya trade-o� between omputational speed and auray. For example, wehave lassial moleular dynamis whih neglets the existene of individualeletrons altogether and onsiders the interation between atoms with someempirially derived potential. Then there are the semi-empirial methods,whih start with a more or less rigorous treatment of the quantum mehanis,but then replae many of the terms in the equations with parameters derivedfrom experiments. Finally, there are the ab initio (from �rst priniples)methods, whih require no experimental input, but an still di�er in theapproximations made and so have varying ost and auray.The two most widespread ab initio methods are the Hartree-Fok methodand Density Funtional Theory. Traditionally, Hartree-Fok (HF) was usedby hemists and Density Funtional Theory (DFT) was used by physiists.This is beause for many years hemists were primarily interested in pre-diting the struture and spetra of moleules to high auray, whereasphysiists were more onerned with prediting the more general featuresof band strutures in solids. However, there have been many tehnial im-provements in the implementation of DFT over the last 10-15 years, whihhas meant that more hemists are starting to use DFT in preferene to HF.61



62 CHAPTER 7. THE HARTREE-FOCK METHODWe shall start by disussing some of the basis that underly the HFmethod, before disussing the method itself. We shall leave a disussion ofDFT until the next leture. There are also Quantum Monte Carlo methodsthat an be used to solve this problem whih we will disuss at the end ofthis leture ourse.7.2 Born-Oppenheimer approximationObviously, when onsidering the study of atoms, moleules, solids, et. weshould onsider the whole system as an interating QM whole. For exam-ple, eah eletron is moving in the eletri �eld generated by all the othereletrons and all the nulei. Therefore, we have a large numbers of inter-ating degrees of freedom. The most obvious approximation is to onsiderthe eletrons as moving in the lassial �eld generated by stati nulei, aseah eletron is muh lighter, and therefore moves muh faster, than anynuleus. (The mass of the proton is 1835 times the mass of the eletron.)This therefore deouples the nulear and eletroni degrees of freedom, andthe remaining problem is then how to solve for the eletroni struture of thesystem. This approximation, known as the Born-Oppenheimer approxima-tion, is almost universally used. The total energy of the system is now thesum of the energy of the eletrons and the nulei. We often also neglet theQM of the nulei, and instead just use the eletrostati energy of the nulei.Note that the positions of the nulei an be varied in a quasi-stati mannerin order to �nd the minimum energy of the ombined system, in whih asewe onsider the eletrons to be moving on the potential energy surfae givenby the nulei (also known as the Born-Oppenheimer surfae). This is notalways a valid approximation - see my own researh for more details!7.3 Many-eletron HamiltonianWe an now write down the Born-Oppenheimer Hamiltonian for the eletronsin atomi units:
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(7.1)where the indies i and j refer to one of the N eletrons, and the n indexrefers to one of the K nulei. The eletrons are at positions ri and the nuleiat Rn. The �rst term then represents the kineti energy of the eletron,the seond the Coulomb repulsion between di�erent eletrons, and the thirdterm represents the Coulomb attration between eletrons and nulei.The urious thing is that although we an write down the exat many-body Hamiltonian, we do not know the form of the orresponding exat



7.4. INDEPENDENT PARTICLE APPROXIMATION 63many-body wavefuntion! The di�ulty in solving the many-body Shrödingerequation is primarily the seond term in equation 7.1 whih ontains the in-terations between all the eletrons. The simplest way around this problemis therefore to approximate this term in a manner that deouples the inter-ations. This is the basis of the independent partile approximation.7.4 Independent partile approximationThe independent partile approximation e�ets the two fundamental partsof the problem - the Hamiltonian and the wavefuntion. We replae theeletron-eletron repulsion term with one that only depends on repulsionbetween an eletron and the average position of all the other eletrons. Wean then ombine the seond and third terms in equation 7.1 to yield:
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) (7.2)where Veff (r) is the e�etive potential, whih depends on the position ofall the nulei {R} and also on the wavefuntion ψ that the Hamiltonian isating upon! The other part of the approximation is to assume that we anwrite down the basi form of ψ in terms of one-eletron wavefuntions, suhas the atomi orbitals of an isolated Hydrogen atom.We therefore have to solve this problem self-onsistently : that is, givena set of nulear oordinates {R} and a guess at ψ we alulate Veff , form
Ĥ, and solve to get a new ψ. We then use this new ψ to make a new Veff ,et and repeat until there is no further hange in ψ, whereupon we have theself-onsistent solution.The Born-Oppenheimer and the independent partile approximation arethe basi ingredients of many ab initio approahes - the di�erenes arise inthe form of Veff and ψ hosen.7.5 Hartree methodOne of the oldest methods is the Hartree method. In this, the N -eletronwavefuntion is hosen to be a simple produt of one-eletron wavefuntions
φk (otherwise known as orbitals):

Ψ (r1, r2 . . . rN ) = φ1 (r1)φ2 (r2) . . . φN (rN ) (7.3)and the orresponding Hamiltonian is:
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64 CHAPTER 7. THE HARTREE-FOCK METHODwhere this form for the seond term is known as the Hartree potential.The simple produt form of the many-eletron wavefuntion is alledunorrelated, beause the probability of �nding an eletron at r1 and anotherone at r2 is unorrelated as it an be written as the produt of two one-eletron probabilities. Note that we are not saying that the two eletronsare not interating - there is still the 1
|r1−r2|

term in the Hamiltonian, butthat this interation has been taken into aount in an average way. Itis the average harge distribution of r2 that interats with the eletron at
r1. This neglet of orrelations an lead to unphysial results - the mostfamous of whih is that it predits that an H2 moleule will dissoiate (asthe H −H bond length is inreased) into a state where both eletrons sit onthe same atom. The other major �aw with this form of the many-eletronwavefuntion is that it is not anti-symmetri under partile exhange asrequired by the Pauli Exlusion Priniple for fermions.We know, for example, that when dealing with a two partile system thatthe overall wavefuntion is not just the produt of the two individual wave-funtion - we need to form a proper symmetrised ombination. In general, ifpartile 1 is in state α (r1) and partile two is in state β (r2) then the overallwavefuntion is:

ψ (r1, r2) =
1√
2

(α (r1)β (r2) − α (r2) β (r1)) (7.5)as the eletrons are indistinguishable, and the overall wavefuntion must beanti-symmetri (i.e. hanges sign) under partile exhange. If we inludespin, then it is the overal produt of spae*spin that must be antisymmetri- for example, for two eletrons that an eah by either spin-up or spin-down,we know that there are 4 possible results - 3 states making a triplet withnet spin 1~ and a singlet with net spin 0~. We therefore �nd that the basiHartree method neglets all e�ets of exhange and orrelation.There is also a �aw in the Hartree potential, in that it ontains theinteration of any given orbital with itself, as the summation in the hargedensity runs over all suh funtions. This is an example of a spurious self-interation, whih must be orreted.Both of these de�ienies are remedied in the Hartree-Fok method.7.6 Hartree-Fok methodThe two major �aws in the Hartree method an be ured by writing the
N -eletron wavefuntion as an anti-symmetrised produt of orbitals, whih



7.6. HARTREE-FOCK METHOD 65an be expressed most onisely as a Slater determinant :
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(7.6)whih has the useful side-e�et of also making the resulting wavefuntionorrelated. The result is that every eletron is surrounded by an �exhangehole� within whih there is only a very small probability of �nding anothereletron.Note that the term �orrelated� is used in various ways in eletroni stru-ture theory. The term �orrelation e�et� is usually taken to refer to orrela-tions other than those due to exhange, for example dynami orrelations dueto Coulomb repulsion between eletrons. As suh, the Hartree-Fok methodis usually onsidered to neglet orrelation but to treat exhange exatly.The Hartree-Fok method may be derived by applying the variationalpriniple to equation 7.1, using a single Slater determinant wavefuntionand minimising the expetation value of the energy w.r.t. the orbitals. Theresult is:
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′ (7.10)where Ĵ is known as the Coulomb operator, and K̂ as the exhange operator.The Hartree method an be onsidered as (ĥ+ Ĵ
), but the exhangeoperator is the new addition due to Fok. It looks like the Coulomb operator,but with the two orbital labels k and l interhanged. This is an exampleof a non-loal operator, that is, the e�et on φk (r) is determined by theassumed values for φk (r′) at all positions r

′. The exhange term vanishesfor orthogonal states φk (r) and φl (r) so that two eletrons with the samequantum numbers but di�erent spins do not feel this term - as required bythe exlusion priniple. Note that the exhange term also anels the self-energy term in the Hartree potential as a result of the anti-symmetry. Note



66 CHAPTER 7. THE HARTREE-FOCK METHODalso that the exhange term has a negative sign - that is, exhange lowersthe total energy of the system, due to the tendeny to keep two eletronswith the same spin apart.As in the Hartree method, this equation must also be solved by the self-onsistent approah. A subtlety is that the total energy of the system is notmerely the sum of the eigenvalues of the Fok operator, εk, but rather isgiven by:
〈E〉 =

N∑

l=1

(
εk − 1

2

∫
φ⋆

k (r)
(
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) (7.11)where the seond term is subtrated o� the sum of the eigenvalues, to preventdouble ounting ertain integrals.The most time onsuming part of the problem is the alulation of allthe integrals in the Coulomb and exhange operators, whih are known astwo-eletron integrals. Remember that in order to alulate εk we need toevaluate
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φt (r) dr′dr (7.13)where the di�erent labels p, q, r, s vary aording to whether alulatingHartree or exhange terms, with some symmetry of labels as appropriate.Note that if we expand eah orbital in terms of some basis funtions, with

M basis funtions in total, then there will be approximately M4

8
of thesetwo-eletron integrals to perform. For example, a small system, with say 6atoms and 12 basis funtions per atom, will require approximately 3.4 milliontwo-eletron integrals per iteration towards self-onsisteny! The results ofall these integrals are then used to form the Fok matrix, whih then must bediagonalized, whih as mentioned before is an O (M3

) operation. Therefore,a lot of e�ort has been devoted over the years towards minimising the sizeof the basis set required (as disussed earlier in the leture on Basis Sets),and to approximating or even negleting various subsets of these integrals.7.7 Approximate Hartree-FokIt used to be quite ommon pratie to neglet various subsets of the two-eletron integrals. The rudest suh approximation was to neglet all inte-grals whih involved the overlap of Gaussians from di�erent atoms - an ap-proah known as Complete Neglet of Di�erential Overlap (CNDO). This isdrasti! Whilst suh integrals may be small, there are many of them and theiroverall e�et is not insigni�ant. Therefore, other less drasti shemes were



7.8. IMPROVING THE HARTREE-FOCK APPROACH 67

a b cFigure 7.1: Shemati of some of the di�erent Slater determinants in a Con-�guration Interation alulation. (a) shows the referene spin-polarized HFgrounds state, (b) shows a sample single exitation, () shows a sample dou-ble exitation. This an be extended to higher multipliities. In a full CIalulation, all suh determinants are inluded.devised, suh as Intermediate Neglet of Di�erential Overlap (INDO), andModi�ed Intermediate Neglet of Di�erential Overlap (MINDO) and others.In these shemes, some of the integrals are replaed by semi-empirial param-eterizations, whilst others are done analytially. Obviously, suh approahesare signi�antly quiker than Hartree-Fok, but are severely ompromised inauray and reliability, and are not muh used nowadays.7.8 Improving the Hartree-Fok approahWhilst the Hartree-Fok method has many strengths, it has some weak-nesses, suh as the neglet of Coulomb orrelations. This an be remedied ina systemati way by improving upon the form of the many-body wavefun-tion used. Instead of onsidering just a single Slater determinant, onsider alinear ombination of determinants, where eah determinant is onstrutedfrom the ground state by exiting eletrons. See �gure 7.1 for an example.The resulting wavefuntion must produe a lower ground state energy as itontains more basis funtions. This approah is known as the Con�gurationInteration (CI) method. Obviously, it is only possible to onsider a lim-ited number of additional determinants as the ost of the alulation risesdramatially. However, it is possible to extrapolate results from a sequeneof alulations with progressively more determinants, to the �full CI� limit.Suh results are in priniple exat (within the Born-Oppenheimer approxi-mation) but in pratie will be limited by the �nite basis set size used foreah determinant. Note that the total number of determinants is M ! where
M is the size of the basis set in eah determinant.



68 CHAPTER 7. THE HARTREE-FOCK METHODOther, more omplex shemes, suh as Møller-Plesset, attempt to inludethe e�et of orrelations using perturbation analysis, at di�ering levels: MP2orresponds to a seond-order perturbation theory (where Hartree-Fok isatually the �rst-order theory) and adds the orrelation between pairs ofeletrons. Similarly, MP3 adds the interation between pairs of pairs ofeletrons, and so on for higher orders. Whilst Hartree-Fok sales as M4,MP2 sales as M5, MP3 as M6, et. Very few alulations go beyond MP4,and even that is only for very small moleules ontaining at most 10-20eletrons.7.9 ResultsUsing the analyti expressions for the Hamiltonian and the orbitals, it ispossible to alulate expressions for the fores, i.e. the �rst derivative ofthe total energy. This gives higher auray than numerial di�erening,and an be used to great e�et in alulating the equilibrium geometry ofthe system, i.e. the arrangement of atoms whih minimizes both the energyand the fores on the atoms. It has also more reently beome possibleto alulate the seond-derivatives of the total energy, whih then makes itpossible to alulate vibrational frequenies and loate saddle-points of thepotential energy surfae (e.g. transition states of hemial reations).The many-body wavefuntion found an be used to alulate many ele-troni and optial properties, suh as the eletron harge density, polariz-abilities, et. and the one-eletron orbitals an be used in an approximateway to interpret photo-emission spetra using Koopman's Theorem.In situations where the Hartree-Fok method works, suh as for organimoleules, or lusters of atoms from the main group of the periodi table,it produes results of high preision (as many of the omputations are donepseudo-analytially), and with a reasonable auray. For example, bondlengths are generally orret to within ±0.003 Å , angles to within ±3◦, andrelative energies an be as good as 0.05 eV/atom. However, it typially over-estimates vibrational frequenies by about 10%, and underestimates bindingenergies by as muh as 50%.Whilst the basi ost of alulating the matrix elements of the Hamil-tonian is O (M4
), in pratie a large number of these integrals an be jus-ti�ably negleted for su�iently large systems, and the omputational ostis then dominated by diagonalizing the Hamiltonian, whih therefore meansthat the overall ost sales as O (M3

). Calulations of individual moleulesontaining a few hundred atoms have been performed, but the inlusion oforrelation with multiple determinants redues the aessible system size toa few tens of atoms. There have also been developments in applying themethod to solids but it has been found to be unsatisfatory for metallisystems and works best for high-symmetry insulators.



7.10. FINAL COMMENTS 697.10 Final ommentsA few �nal points to highlight:
• The Hartree-Fok method is most often applied to the study of moleules.
• It gives an exat treatment of the e�ets of eletron exhange by usinga Slater determinant form for the many-body wavefuntion.
• It is most often used with a Gaussian basis set.
• It does not inlude any e�ets of dynami orrelation.
• Suh e�ets an be inluded by more omplex shemes, suh as CI, butare exeedingly expensive.7.11 Further reading
• Hartree-Fok theory in �Methods of Eletroni Struture Calulations�by M. Springborg, Chapter 9
• Hartree-Fok theory in �Computational Physis� by J.M. Thijssen,hapter 4
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