
Chapter 8Density Funtional Theory8.1 IntrodutionIn the previous leture we disussed the Hartree-Fok method. This is a pow-erful ab initio method for alulating the eletroni struture of moleules,but has only limited suess with ondensed phases in general, and opes par-tiularly poorly with metalli solids in partiular. An alternative method,that is partiularly suited to bulk materials, and espeially metals, is thatof Density Funtional Theory. Whereas the fundamental objet in HF isthe many-body wavefuntion whih is made up of one-eletron wavefun-tions (orbitals), the fundamental quantity in DFT is the eletroni hargedensity whih is made up of one-eletron densities. In this leture we shallgive a brief outline of DFT, disuss a few pratial details about ommonimplementations and typial strengths and weaknesses.8.2 A fundamental theoremDensity Funtional Theory is based upon the Hohenberg-Kohn theorem -whih is that the ground state energy of a system of eletrons is solely de-termined by the ground state harge density and that the harge densitywhih gives the minimum energy is unique. This is a tremendous simpli�-ation ompared to more traditional approahes suh as Hartree-Fok. Fora system with N eletrons, the many-body wavefuntion is 3N -dimensional,whereas the orresponding harge density is a 3D salar �eld! Furthermore,the theorem shows that this ground state energy an be found by minimizingan energy funtional w.r.t. the harge density. That is, the energy is givenby an integral of an (as yet) unknown funtion of the density over all spae,and we minimize the value of this integral to �nd the optimum density! Theproblem then is to determine what this funtion of the density is before wean start to minimize anything . . . 71



72 CHAPTER 8. DENSITY FUNCTIONAL THEORY8.3 The searh for a universal funtionalA year after the publiation of the Hohenberg-Kohn theorem (whih wasviewed at the time as interesting but not very useful) ame the publiationof the Kohn-Sham equations. It was this whih turned the Hohenberg-Kohntheorem into a pratial alulational sheme. The basis of their work was towrite down a form of this unknown energy funtional, and show how it ouldbe used to derive a set of e�etive one-eletron Shrödinger-like equations.One again, we start from the variational priniple, but now in the formof a funtional of the eletron density (using square brakets, E [n] to showthat this is a funtional and not a funtion), that is:
E [n] = min

Ψ|n

∫
Ψ⋆ĤΨd3Nr (8.1)where by minΨ|n we mean minimizing w.r.t. the set of many-body wave-funtions {Ψ} whih are onsistent with the density n (r). This proedureis equivalent to minimizing w.r.t. the density, whih must be subjet to theonstraint

∫
n (r) d3r = N (8.2)where N is the number of eletrons, whih therefore determines the normal-ization of Ψ.We use the Born-Oppenheimer approximation, and onsider the systemas a set of interating eletrons and ions. We proeed by separating theHamiltonian into two parts - Ĥ0 due to the homogeneous eletron gas (i.e.jellium - a system of eletrons in a uniform, neutralizing, bakground ofpositive harge) and Vext (r) being the external potential (e.g. the eletron-ion Coulomb attration). We then have

E [n] = min
Ψ|n

∫
Ψ⋆Ĥ0Ψd

3Nr +

∫
Vext (r)n (r) d3r (8.3)and the �rst term an be written as F [n], i.e. as a funtional of the eletronsalone. This funtional F [n] does not depend upon the ions or any otherexternal in�uene, and so must be a universal funtional of the eletrons.Now all we have to do is �nd this funtional!We know from our experiene with Hartree-Fok theory, that F [n] mustontain ontributions due to the eletroni kineti energy and the eletron-eletron Coulomb repulsion, as well as the e�ets of eletron exhange anddynamial orrelations. At this point, Kohn-Sham broke this unknown fun-tional into 3 parts:

F [n] = T [n] +
1
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′
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n (r) d3r′d3r +Exc [n] (8.4)



8.3. THE SEARCH FOR A UNIVERSAL FUNCTIONAL 73where T [n] is a kineti energy funtional, the seond term is the eletron-eletron Coulomb repulsion that we have seen before, and all the many-bodye�ets (inluding exhange and orrelation) are lumped together into thethird term - the exhange-orrelation funtional Exc [n].Unfortunately, it is not known how to alulate the kineti energy of aharge density. So, they then introdued a �titious set of non-interatingone-eletron wavefuntions, {ψi}, whih do not represent atomi orbitals butinstead are merely hosen to reprodue the ground state density:
n (r) =

N∑

j=1

|ψj (r)|2 (8.5)and so we an now write down the kineti energy in terms of these funtions:
T = −

1

2

N∑

j=1

∇2ψj (8.6)whih is atually the kineti energy of a set of non-interating eletrons thathave the same density as the interating system, and neglets any e�ets ofinteration on kineti energy.Note that at this stage, everything in F [n] is exat and universal for anyeletron harge density, and all the dependene on ions has been put into
Vext (r). The only unknown quantity remaining is the exhange-orrelationfuntional whih by de�nition therefore ontains all the ontributions notaounted for by the other terms!We an now perform the minimization of equation 8.1 w.r.t. the densitysubjet to the onstraint of equation 8.2, whih then results in the Kohn-Sham equations:

(
−

1

2
∇2 + Veff

)
ψj = εjψj (8.7)whih look like a set of one-partile Shrödinger equations for the Kohn-Shameigenfuntions in terms of an e�etive potential Veff where

Veff (r) =

∫
n

(
r
′
) 1

|r− r′|
d3r′ + Vxc (n (r)) + Vext (r) (8.8)and all the unknown terms are ontained in the exhange-orrelation poten-tial Vxc.At this point, we have all the ingredients for an e�ient and exat shemebar one - we don't know what to do for Vxc. So, in true physiist style, weapproximate it by things we do know!



74 CHAPTER 8. DENSITY FUNCTIONAL THEORY8.4 The Exhange-Correlation funtionalThe exhange-orrelation funtional is the key ingredient of DFT, and whilstthe Hohenberg-Kohn theorem assures us that it exists and is a universalfuntional that will apply to all eletron densities, regardless of how theeletrons are interating, it does not tell us what the form of this funtionalis! Kohn-Sham made the following apparently drasti approximation in thespirit of the mean-�eld treatment of everything else in DFT, that has ome tobe known as the Loal Density Approximation (LDA). That is, they assumedthat an eletron at a point with a given loal eletron density experienesthe same many-body response by the surrounding eletrons as if the wholematerial had this same density. Of ourse, if the entire system had the samedensity at all points, then this would orrespond to �jellium�, i.e. the uniformhomogeneous eletron gas. This approximation might be expeted to workwell for metalli rystals with relatively uniform eletron densities - whih istrue. It has also been found, somewhat more surprisingly, to be surprisinglyaurate for many other materials, inluding insulators and semiondutors(both solid and liquid), surfaes, and even moleules.Formally, we write:
Exc =

∫
εxc [n (r)]n (r) d3r (8.9)where εxc [n] is the exhange-orrelation energy per partile of a homoge-neous eletron gas at density n whih has been alulated using anothervery aurate tehnique - the Quantum Monte Carlo method - and has beenonveniently parameterized for use in LDA alulations.This approah (and indeed the whole of DFT) an also be extended tospin-polarized systems, where there is a di�erent number of spin-up andspin-down eletrons, and the exhange-orrelation funtional is split intotwo parts for the spin-up density and the spin-down density. This resultsin the Loal Spin Density Approximation (LSDA). New exhange-orrelationfuntionals have reently been developed that inlude both the loal densityand also the gradients of the loal density, whih are olletively known asthe Generalized Gradient Approximation (GGA).All forms of the exhange-orrelation funtional lead to the formation ofthe exhange-orrelation hole. That is, there is a region surrounding eaheletron where other eletrons are exluded - see �gure 8.1. This hole in theeletron density integrates to exatly one eletron, and therefore reveals asingle positive harge from the jellium bakground. It is the eletron and thishole that then move together as a single neutral entity. The LDA thereforerepresents this hole by a sphere, whilst GGAs put in more elaborate shapee�ets. The key to the e�etiveness of the LDA is that it orretly integratesto give exatly one exluded eletron in the exhange-orrelation hole.
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Figure 8.1: Simple view of the exhange-orrelation hole, with a typial size
rs being dependent on the loal eletron density.8.5 Solving the Kohn-Sham equationsThe traditional approah to solving the Kohn-Sham equations is to expandthe Kohn-Sham eigenfuntions in terms of plane-waves:

ψj (r) =
∑

g

cj,ge
ig.r (8.10)where g is a reiproal lattie vetor, as the one-eletron Kohn-Sham fun-tions do not have any onnetion with atomi orbitals, but are merely aonveniene for alulating the density and the kineti energy. If we thensubstitute equation 8.10 into equation 8.7 and integrate, we get the followingseular equation:
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cj,g = εjcj,g(8.11)whih an be trivially ast into matrix form and the Kohn-Sham eigenvaluesfound by matrix diagonalization as seen in previous letures. This an bea omputationally expensive proedure - a system with N eletrons and

M basis funtions will require the onstrution and storage of an M ×MHamiltonian matrix, whih will require O(M3) operations to diagonalizeper iteration towards self-onsisteny. The use of e�ient pseudopotentialshemes (as disussed in earlier letures) an help to redue M but exatdiagonalization is still an expensive operation. This was for a long timethe major bottle-nek in the method, and prevented the appliation of themethod to systems with any more than a few tens of atoms on even thefastest superomputers.



76 CHAPTER 8. DENSITY FUNCTIONAL THEORY8.5.1 Car-Parrinello approahA major breakthrough ame in 1985 when Car and Parrinello put forwardan alternative solution sheme. They onsidered treating eah oe�ient
cj,g in the plane-wave expansion as a separate dynamial variable by asso-iating a �titious mass with eah oe�ient. They therefore viewed theproblem as being analogous to lassial mehanis, with M partiles movingin some potential Veff whih ould then be studied using traditional mole-ular dynamis tehniques. If a �titious damping was added, then the netresult was that the oe�ients, initially set to some random values, wouldevolve to the lowest energy on�guration, and hene generate the groundstate wavefuntion of the system! As well as being a novel way of approah-ing the problem, it was also signi�antly faster than matrix diagonalization,requiring O(N2M) operations to reah the ground state. At a stroke, thisinreased by an order of magnitude the number of atoms that ould be rea-sonably studied.Car and Parrinello also showed how it was possible to inlude the motionof the real ions at the same time, and hene do ab initio moleular dynamis,i.e. move the atoms around using fores derived from the full QM treatmentof the eletrons. If damping was added to the ions as well, then this wasnow an e�ient sheme for generating the optimal on�guration of all theatoms in the system. It ould also be used, for the �rst time, to study realdynamial proesses with an ab initio method.8.5.2 Conjugate-gradients approahA few years later, another breakthrough was ahieved by Teter and Payne,when they realized that the Car-Parrinello method was e�etively treatingthe problem as one of funtion minimization, and that the minimizing al-gorithm they were using was equivalent to the standard steepest desentsalgorithm. Whilst this is a simple and robust algorithm, it is well know tobe far from the most e�ient minimizer available. Therefore, a new approahwas introdued, of iterative minimization using the onjugate-gradients al-gorithm. A shemati of the di�erene between these two methods is shownin �gure 8.2. This new algorithm produed another order-of-magnitude im-provement in speed (although the saling was still O(N2M)). The newmethod ould be used both to minimize the energy of the eletrons and alsoto move the atoms around, either in moleular dynamis fashion or to �ndthe equilibrium geometry.These algorithmi improvements, oupled with developments in the on-strution of optimal pseudo-potentials, mean that it is now routine to alu-late the ground state properties of systems with around a hundred atoms ona workstation, and several thousand atoms on a superomputer. In my ownresearh, I have used a single proessor workstation to alulate the optimal
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a bFigure 8.2: Shemati showing the searh strategy and onsequent perfor-mane of two di�erent funtion minimization algorithms, in a 2D anisotropiharmoni potential. The equipotentials are therefore ellipses as shown. (a)show the behaviour of the steepest desents minimizer whih takes manysteps to �nd the minimum, whilst (b) shows the onjugate-gradients mini-mizer whih requires just two steps.geometry of a system of 864 atoms using these methods (although it tookmany days to omplete and the alulation required 4GB RAM).8.6 Alternatives to Kohn-ShamReently, there has been a lot of e�ort in �nding new formulations of DFTthat do not require the introdution of the Kohn-Sham funtions, but ratherusing a di�erent formulation of quantum mehanis based upon density ma-tries. The advantage of suh a tehnique is that it would sale as linearlywith the number of atoms - that is, it would be an O (N) method. This issomething of a Holy Grail for eletroni struture alulations, as it would bemuh more e�ient than any other tehnique for large systems, and wouldenable the study of very large systems (e.g. 10,000+ atoms). For exam-ple, it would then be possible to do �rst-priniples alulations of biologialmoleules (proteins, et) for the �rst time. This is an area of intense ongoingresearh, with some some of the best results oming from the Cambridgegroup in reent months.There has also been muh interest reently in generalised Kohn-Shamshemes, where a variety of di�erent approahes to the unknown universalfuntional have been explored, for example, inorporating reent insightsfrom Many Body Perturbation Theory as in reent work from Prof. Godby'sgroup.8.7 ResultsLike Hartree-Fok, DFT alulations alulate the total energy of a systemof atoms, from whih many strutural, eletroni and dynamial propertiesan be derived. However unlike HF, it is also routinely applied to ondensedphases, whih opens up new possibilities, suh as the alulation of lattie



78 CHAPTER 8. DENSITY FUNCTIONAL THEORYonstants, strutural phase transitions, elasti onstants, phonon spetra,and more.Using the LDA, it is usually possible to get lattie onstants and inter-atomi distanes orret to at least ±0.02 Å , bond-angles to within ±3◦, rel-ative energies are typially orret to at least 0.005 eV/atom, and vibrationalfrequenies to within 10 − 50 cm−1. Similarly, it gives a good desription ofelasti onstants, dipole moments, magneti moments, et.However, the LDA tends to overbind atoms whih results in it over-estimating the metalli harater of a material. For example, one notablefailure is that it predits NiO to be a metal, whereas it is experimentallyknown to be an anti-ferromagneti insulator. Similarly, it overestimates veryweak bonds, suh as hydrogen bonds.It is possible, although not stritly justi�ed, to onsider the Kohn-Shameigenvalues as eletron energies. This often gives a good desription of theband-struture of the material, as well as quantities like the work funtion,optial and UV spetra. However, the LDA tends to underestimate the band-gap in insulators and semiondutors. This is not too surprising as DFT isintended to be a ground-state only theory!Using either the Car-Parrinello or onjugate-gradients tehniques, it ispossible to do ab initio moleular dynamis, using a typial time step of 1fse, and simulating dynamial proesses for up to 10 pse on a superom-puter. This makes it possible to diretly study dynamial phenomena suhas strutural phase transitions, di�usion, hemial reations and atalysis.The use of GGA improves ertain areas, and makes it possible to getabsolute binding energies as good as 0.05 eV/atom, and gives a muh betterdesription of subtle e�ets, suh as transition states and hydrogen bonds.Unfortunately, it does not give a uniform improvement for all quantities forall systems! The GGA is not a magi bullet. . .However, there are some more unusual materials for whih DFT as de-sribed is not an appropriate theory. These are known as strongly-orrelatedmaterials and require an approah whih goes beyond the mean-�eld ap-proah of DFT. (Surprisingly, HF often works quite well for these materi-als). Suh materials inlude high-temperature superondutors and olossalmagneto-resistane materials. Reent theoretial advanes in treating suhmaterials involve developing a time-dependent DFT whih is giving verypromising results.Note that the preision of DFT results tends to be less than HF beauseof the use of numerial integration on grids rather than analyti integration.However, it is simple to make the preision better than the auray due toapproximate treatment of exhange and orrelation, whih is therefore goodenough.



8.8. FINAL COMMENTS 798.8 Final ommentsA few �nal points to highlight:
• DFT is most often used to study ondensed phases, using periodiboundary onditions, involving any atom in the periodi table.
• It is an exat theory in priniple, but in pratie uses an approximatetreatment for exhange and orrelation.
• It is most often used with a plane-wave basis set and pseudo-potentials.
• There is no systemati way to improve the auray of the alulation(unlike HF with multiple determinants).
• It is simple to parallelize the method using di�erent sets of plane-waveson di�erent nodes of a parallel omputer. This makes it simple to applyto very large systems - up to a few thousand atoms.
• It an also be used to generate ab initio moleular dynamis, whihfurther widens the range of phenomena that an be studied.8.9 Further reading
• DFT in �Methods of Eletroni Struture Calulations� by M. Spring-borg, Chapter 15
• DFT in �Computational Physis� by J.M. Thijssen, hapter 5
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