
Chapter 9
Quantum Monte CarloMethods
Any numerial tehnique that uses random numbers, tends to be alleda 'Monte Carlo' method, after the famous asino. Here we shall disussvarious tehniques that have been developed to solve the many-eletronShrödinger equation, whih are therefore known olletively as QuantumMonte Carlo methods (QMC). The primary di�ulty in solving the many-eletron Shrödinger equation arises from the fat that the even the simplest(produt) many-eletron wavefuntion Ψ (r1, r2, . . . rN ) is a 3N -dimensionalquantity, and so the alulation of expetation values will require 3N -dimensionalintegrals. We have already seen how the Hartree-Fok method then usesthe independent-eletron approximation to redue this to a number of two-eletron integrals, i.e. 6-dimensional integrals, eah being over 4 basis fun-tions.But what if we want to go beyond the independent-eletron approxima-tion? What if we want to have an exat treatment of dynamial orrelation?We will then have to handle these 3N -dimensional integrals! What is thebest way to do this?We start by revising standard methods for numerial integration of 1Dfuntions, introdue the tehnique of Monte Carlo integration, and then showwhy Monte Carlo integration is superior for higher dimensional funtions. Wethen disuss two partiular Monte Carlo tehniques that have been developedto solve the many-eletron Shrödinger equation with very high levels ofauray. 81
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baFigure 9.1: Simple integration grid for a smooth funtion in 1D.9.1 Revision of numerial integration9.1.1 Uniform quadratureThere exist many ways to integrate a ontinuous, bounded 1D funtion onthe interval [a, b] as shown in �gure 9.1.The simplest approah is to de�ne a uniform grid of N points {xi} where
xi = a + ih (9.1)with h = (b−a)

N
being the step size, and the index i : 0 → N . We an thenapproximate the integral as the sum of the funtion values on the grid points:

∫ b

a

f (x) dx ≃ h

N−1∑

i

f (xi) + O (h) (9.2)This is an example of a �rst-order numerial integration (or quadrature)method and has very low e�ieny. We an easily generate higher-orderalgorithms. For example, to generate a seond-order method, we replaethe onstant value f (xi) that is used aross the interval [xi, xi+1] with a1st-order polynomial:
f (x) ≈ f (xi) +

(x − xi)

h
(f (xi+1) − f (xi)) (9.3)whih then gives the trapezium rule:
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∫ b

a

f (x) dx ≈ h

(
1

2
f (x0) + f (x1) + f (x2) + · · · + f (xN−1) +

1

2
f (xN )

)
+O

(
h2

)(9.4)Similarly, we an extend this to third-order by dividing up eah intervalinto subintervals and doing pieewise quadrati approximations over eahsubinterval, resulting in Simpson's rule (whih due to a fortunate anellationof errors is atually aurate to O
(
h4

)). The list an be extended to arbitraryorder.One useful method is to suessively repeat the trapezium rule for inter-vals of size h, h
2 , h

4 , et. whih results in a series of values of the integral.Fitting this series to a simple polynomial makes it possible to extrapolatethe result to zero step size, yielding a very aurate result. This is known asthe Romberg method.9.1.2 Gaussian quadratureAn alternative approah is to not hoose a uniform grid of points, but ratherto hoose the points in suh as way as to only sample the funtion at the mostimportant points, and then to add up the funtion values with appropriateweights at eah point. With the above example, we note that a simple hangeof variable will map the original interval [a, b] onto the interval [−1, 1]. Wean then exploit the properties of the Legendre polynomials, Pl (whih arisein the solution of the radial Shrödinger equation for the hydrogen atom),whih are orthogonal over this interval:
∫ 1

−1
Pl (x)Pm (x) dx = δlm (9.5)Instead of using simple polynomial interpolation of f (x) over the uniforminterval [xi, xi+1] we now use Legendre polynomials with the intervals beingnon-uniform. An N th order Legendre polynomial has N roots, i.e. N zeroes,and so we hoose these as our grid points, with an e�etive step size h = 2

N
.The resulting Gauss-Legendre algorithm is:

∫ 1

−1
f (x) dx ≈

N∑

i=1

wif (xi) + O
(
h2N

) (9.6)where wi are the weights assoiated with eah point and depend on the orderof the algorithm.Note that the auray of the method using N points is equivalent toa uniform-grid method using 2N points, and the order of the method isalso 2N . Hene this method an ahieve very aurate results using fewerfuntion evaluations than uniform grid methods, as long as the funtion is



84 CHAPTER 9. QUANTUM MONTE CARLO METHODSreasonably smooth over the interval. However, it is more omplex to odeand harder to extend to more points.Note also that other interpolating funtions and orresponding weightsan be used, whih gives rise to other Gaussian quadrature shemes.9.1.3 Higher dimensionsThese shemes an be simply extended to higher dimensions. However, thereare two major problems:1. The number of funtion evaluations required to ahieve a given a-uray. If an integral requires N points to get a satisfatory answerin 1D, then it will require Nd points in d-dimensional spae. So, 30funtion evaluations in 1D beome 27000 funtion evaluations in 3D,et.2. The region of integration is de�ned by a d−1 dimensional surfae whihmay be very omplex, and an make the reation of an appropriateintegration grid di�ult.Both of these di�ulties may be overome by the Monte Carlo integrationtehnique.9.2 Monte Carlo integrationIn Monte Carlo integration, we have eah point ontributing to the integralwith a uniform weight, but now we hoose the points randomly. Before wedisuss why this is a useful way of doing numerial integration, we shallre-ap a little basi probability.9.2.1 Revision of probability1. The probability that a ontinuous variable x lies in the range x →
x + dx is given by p (x) dx, where

∫ ∞

−∞
p (x) dx = 1, p (x) ≥ 0∀x (9.7)whih de�nes the normalisation of p (x).2. The mean value of the variable x is given by
〈x〉 =

∫ ∞

−∞
p (x)xdx (9.8)and the orresponding variane is given by

σ2 =

∫ ∞

−∞
p (x)x2dx − 〈x〉2 (9.9)



9.2. MONTE CARLO INTEGRATION 853. The average value of any funtion of x is given by
〈f (x)〉 =

∫ ∞

−∞
p (x) f (x) dx (9.10)et.4. For disrete variables, we distinguish between sample and populationstatistis. For a sample of size N we �nd that the sample mean 〈x〉 isan unbiased estimator of the population mean µ:

µ = 〈x〉 =
1

N

N∑

i=1

xi (9.11)but that the sample variane s2 is a biased estimator of the populationvariane σ2 and so we have:
σ2 =

N

N − 1
s2 =

1

N − 1

N∑

i=1

(xi − 〈x〉)2 =
1

N − 1

(〈
x2

〉
− 〈x〉2

)(9.12)5. Finally, the standard error in the estimate of the mean is given by
s〈x〉 =

s√
N

(9.13)and if N is large enough then the value of the mean will be Normallydistributed, aording to the entral limit theorem.9.2.2 Evaluating integralsWe now use the mean value theorem to evaluate the integral:
∫ b

a

f (x) dx = (b − a) 〈f〉 (9.14)That is, we hoose the set of N grid points randomly, evaluate f (x) atthese random points, and hene make an estimate of the average value of
f (x) whih therefore leads to a statistial unertainty in the result

σ =
(b − a)√

N

√
〈f2〉 − 〈f〉2 (9.15)We therefore have an integration tehnique that has an error O

(
N− 1

2

)regardless of the dimensionality of the problem, whereas in d-dimensions thetrapezium rule is O
(
N− 2

d

) and Simpson's rule is O
(
N− 4

d

). Clearly, the



86 CHAPTER 9. QUANTUM MONTE CARLO METHODSMonte Carlo method is better than the trapezium rule for d > 4 and Simp-son's rule for d > 8. In many-body quantum mehanis, even the simplestform of the N -body wavefuntion is 3N -dimensional, and so it an be seenthat the Monte Carlo integration tehnique is invaluable. Even very simplemoleules, suh as O2 will have 16 eletrons and so be 48-dimensional, andthe number of dimensions rises very rapidly with more omplex materials.9.2.3 Boundary onditionsWe an also use Monte Carlo integration in situations where the boundarysurfae is hard to sample randomly. All we need to do is de�ne a samplevolume V that inludes the region of interest, and extend the de�nitionof f (x) to be zero for points in V that lie outside the region of interest.Inluding suh zero-weighted points will not a�et the value of the integralbut will inrease the estimated error, as the e�etive number of points isredued. Obviously, it is best to arrange the sample volume to be as loseas possible to the region of interest.9.2.4 Importane samplingIt is often the ase that the ontributions to the integral from di�erent sub-volumes within the region of interest vary onsiderably. If there are smallsub-volumes that make a large ontribution to the overall integral, then thesewill only be sampled rarely, and so there will be large statistial errors inthe result. It is therefore better to inrease the density of sample pointsin those regions whih ontribute most to the integral. This is known asimportane sampling. Obviously, this requires some knowledge of the shapeof the integrand before the alulation starts! An alternative tehnique,known as adaptive Monte Carlo, seeks to loate these important sub-volumes�on-the-�y� by probing the funtion at random points without any priorknowledge of the shape of the funtion.9.3 Variational Monte Carlo9.3.1 Evaluating the energyThe Variational Monte Carlo (VMC) tehnique ombines the variationalmethod disussed in previous letures with Monte Carlo integration. Our aimis to �nd the best many-body wavefuntion, by minimizing the expetationvalue of the energy:
EV MC =

∫
Ψ⋆ĤΨd3Nr

∫
|Ψ|2 d3Nr

(9.16)



9.3. VARIATIONAL MONTE CARLO 87where Ψ (r1, r2 . . . rN ) is an N -eletron many-body wavefuntion. Note thatmany-body wavefuntions for eletrons are neessarily more omplex thanthe simple produt of N single-partile wavefuntions due to the require-ments of the Pauli Exlusion Priniple. As disussed before in the Hartree-Fok method, a simple way of making a wavefuntion anti-symmetri (i.e.of inorporating the e�ets of partile exhange) is to write it as a Slaterdeterminant :
Ψ =

1√
N !

∣∣∣∣∣∣∣∣∣

φ1 (1) φ1 (2) · · · φ1 (N)
φ2 (1) φ2 (2) · · · φ2 (N)... . . . ...
φN (1) · · · φN (N)

∣∣∣∣∣∣∣∣∣

(9.17)where φi (j) is a single-partile wavefuntion for partile j in state i. Asusual, we an expand eah single-partile wavefuntion in a basis set ofknown funtions. The problem is that as the number of partiles inreases,it rapidly beomes impossible to perform the integrations exatly using nor-mal quadrature methods. Similarly, if we expand the wavefuntion in somebasis, it again beomes rapidly impossible to do exat diagonalization of theorresponding matries.We therefore seek an alternative approah - that is, we rewrite equation9.16 in a form that is more amenable for Monte Carlo integration:
EV MC =

∫
|Ψ|2

(
Ψ−1ĤΨ

)
d3Nr

∫
|Ψ|2 d3Nr

(9.18)and so if we now de�ne the loal energy, EL as:
EL = Ψ−1ĤΨ (9.19)then equation 9.18 is now the same form as equation 9.10 with |Ψ|2 beingthe probability distribution.We now evaluate this integral M times, with di�erent on�gurations ofall the eletrons {ri} eah time, whih therefore gives us an approximatevalue for the energy:

EV MC ≈ 1

M

M∑

j=1

EL ({ri}) (9.20)where EL is drawn from the distribution of |Ψ|2 .Note that as we are using Monte Carlo integration, and therefore only�nding an approximate value for this integral, it is not unlikely that anygiven value of EL will be lower than the true ground state energy. Thevariational priniple, that the expetation value of a trial wavefuntion is



88 CHAPTER 9. QUANTUM MONTE CARLO METHODSonly an upper bound on the true ground state value, will only apply to theaverage value of EV MC .We must therefore generate di�erent sets of sample points, i.e. di�erenton�gurations. We do this using the Metropolis algorithm:1. For a given on�guration {rold} alulate EL2. Generate a new set of points by moving all the points by a randomamount3. Calulate EL for this new proposed on�guration {rnew}4. Deide whether to aept or rejet this new on�guration aording tothe Metropolis riteria:(a) alulate the ratio p =
∣∣∣Ψ({rnew})

Ψ({rold})

∣∣∣
2i. generate a uniformly distributed random number ξ between

[0, 1]ii. if ξ < p then aept the new on�guration, otherwise rejetit.This algorithm will therefore tend to push the sample points towards theregions of high probability, resulting in importane sampling, with a �naldistribution of sample points given by |Ψtrial|2. Note that suessive valuesof EL will ontinue to vary, resulting in an average value with a orrespond-ing standard error. Obviously, suessive on�gurations will be orrelated,and so are must be taken in alulating the variane as suessive mea-surements will not be independent - otherwise the variane will be badlyunderestimated. See �gure 9.2 for an example.The preision of this answer an therefore be simply improved by inreas-ing the number of on�gurations sampled.9.3.2 Improving the wavefuntionTo improve the auray of our answer we need to be able to improve thefuntional form of the trial wavefuntion. In pratie, we usually seek tooptimise the wavefuntion by minimizing the variane and not the energy,as the variane has a known lower bound of zero unlike the energy for whihwe do not have a lower bound. There are also e�ient and stable algorithmsfor minimizing objetive funtions whih an be written as a sum of squares.Note that as Ψtrial → Ψexact the average value, EV MC , will derease, aswill the instantaneous �utuations, i.e. the variane will tend to zero. Thisis a result of the zero variane priniple - sine
ĤΨ = EΨ (9.21)
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Figure 9.2: Sketh of evolution of EL during the ourse of a VMC alulation.The initial phase must be disarded, as this orresponds to on�gurationsthat are not very lose to |Ψtrial|2. Only the later points are kept for aver-aging.then for any eigenstate Ψ of the Hamiltonian we must have
Ψ−1ĤΨ = E (9.22)and so the loal energy EL is the same at all points in on�guration spae,and therefore EV MC has zero variane if Ψtrial = Ψexact .We an attempt to inlude the e�ets of eletron-eletron orrelationby inluding a Jastrow funtion J (α), writing our orrelated many-bodywavefuntion as a produt of a single-partile wavefuntion Φtrial (whih isnot varied) and a Jastrow funtion whih ontains a few tens of parameters,

{α}:
Ψ (α) = ΦtrialJ (α)We an now optimize this wavefuntion Ψ (α) by minimizing the varianeof the energy:

σ2
E (α) =

∫
|Ψ (α)|2 (EL (α) − EV MC (α))2 d3Mr

∫
|Ψ (α)|2 d3Mr

(9.23)where EV MC is variational and alulated as desribed above for a �xed
Ψ (α) :

EV MC (α) =

∫
|Ψ (α)|2 EL (α) d3Nr

∫
|Ψ (α)|2 d3Nr

(9.24)We therefore start the VMC alulation with an approximate trial wave-funtion from some less aurate eletroni struture method, suh asHartree-Fok, or Density Funtional Theory and then evaluate EV MC for an initial



90 CHAPTER 9. QUANTUM MONTE CARLO METHODSset of Jastrow parameters {α0} to derive a value for σ2
E (α0). We then ad-just the parameters {α} and re-run the VMC to get a generate a new set ofon�gurations and a new value for σ2

E (α). This is then repeated until wehave minimized σ2
E (α) whereupon the wavefuntion is as good as it an begiven the funtional form of the trial wavefuntion.9.4 Di�usion Monte CarloThe auray limitations of VMC an be largely overome by the Di�usionMonte Carlo (DMC) tehnique. This has a quite di�erent theoretial foun-dation, whih we shall not disuss in any detail here. In pratie, it is oftenused with VMC as a ��rst-stage� alulation! We start by onsidering thetime dependent Shrödinger equation in imaginary time, τ = it:

−1

2
∇2Ψ + V Ψ = − ∂Ψ

∂ (it)
(9.25)whih we an therefore imagine splitting into two parts - a di�usion equation:

−1

2
∇2Ψ = −1

2

∂Ψ

∂τ
(9.26)and a rate equation:

V Ψ = −1

2

∂Ψ

∂τ
(9.27)We an then simulate the solution of equation 9.25 using a distribution ofwalkers. Eah walker is a point in 3N -dimensional on�guration spae, whihmoves with a ombination of direted drift (equation 9.27) and di�usivemotion (equation 9.26). The number of walkers is not onstant - they maybe killed o� in regions of high V or multiplied in regions of low V . The netdistribution of walkers will then represent Ψ. This is shown shematially in�gure 9.3.One major problem is that Ψ is not positive-de�nite, and therefore doesnot make a very good probability distribution! The rate equation is alsobadly behaved. The solution to both of these problems is to work with adi�erent probability distribution:

f (r1, r2 . . . rN ; τ) = Ψ (r1, r2 . . . rN ; τ) Φtrial (r1, r2 . . . rN ) (9.28)where Φtrial (r1, r2 . . . rN ) is a �xed trial wavefuntion, whih is typially the�nal optimized trial wavefuntion from a VMC alulation, and Ψ is the�true� unknown many-body wavefuntion. By �xing this trial wavefuntion,whih is already a good approximation to the �true� wavefuntion, but al-lowing it to be multiplied by another funtion atually has the e�et of only
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Figure 9.3: Sketh of DMC in ation: a simple initial wavefuntion Ψinit isrepresented by an initial density of walkers. The walkers are then movedforwards in imaginary time τ , with some being killed o� in regions where Vis high and so Ψ ought to be small, and multiplied in regions of low V . The�nal density of walkers is then a better estimate of the wavefuntion, Ψfinal.



92 CHAPTER 9. QUANTUM MONTE CARLO METHODS�xing the points at whih the result has a zero value. That is, we have�xed the nodes of the resulting probability distribution, whih stops walkersrossing over from regions of positive Ψ to negative Ψ. This is known as the�xed-node approximation.We then alulate the energy as:
EDMC =

∫
ΨΦtrialELd3Nr∫
ΨΦtriald3Nr

(9.29)
≈ 1

M

M∑

j=1

EL ({ri}) (9.30)where the loal energy, EL is as before.9.5 ResultsThe limiting fator in the auray of a VMC alulation is the auray ofthe trial wavefuntion. This must be kept �xed as it is used in the Metropolisalgorithm to guide the sample points towards the most important regions toyield an aurate integration result. The preision of the VMC alulationan be arbitrarily inreased by simply running the alulation for longer,generating more samples and hene reduing the standard error in the results.With DMC, the only signi�ant assumption, whih is therefore the limitingfator to the auray of a DMC alulation, is the �xed-node approximation.Note that both VMC and DMC an be applied to exited states as wellas the ground state, and gives a good desription of a range of properties,not just the energy.As an example of the abilities of these methods, onsider table 9.1. Herewe onsider the level of treatment of the orrelation energy, Ecorr, whihan be onsidered as the di�erene between the exat ground state energy(within the Born-Oppenheimer approximation) and the Hartree-Fok en-ergy beause, as previously disussed, Hartree-Fok has no treatment ofdynami orrelation. We an put some treatment of dynami orrelationinto Hartree-Fok by using multiple determinants as in the Con�gurationInteration method. Here, we inlude results from the Coupled Cluster SDTmethod (CCSDT) (i.e. trunated Con�guration Interation by onsideringall determinants with single, double and triple exitations but no higher de-terminants). This is onsiderably more expensive than single determinantHartree-Fok and produes a onsiderable improvement. Note that the or-relation energy is not aessible as suh in DFT. The results for VMC andDMC alulations show the obvious advantages of these methods. We alsoinlude in this table a simple desription of the saling of the various methodswith inreasing system size (N eletrons).



9.6. FINAL COMMENTS 93Method Ecorr SalingHF 0 O
(
N4

)DFT N/A O
(
N3

)CCSDT ~75% O
(
N8

)VMC ~85% O
(
N3

)DMC ~95% O
(
N3

)Table 9.1: Ability of di�erent ab initio methods to treat dynamial eletron-eletron orrelation, and the saling of the method with system size.Method C Si GeDFT 7.58 4.84 4.02VMC 7.36±0.01 4.48±0.01 3.80±0.02DMC 7.46±0.01 4.63±0.02 3.85±0.02Expt 7.37 4.64 3.85Table 9.2: Cohesive energy of di�erent elemental semiondutors in eV/atom.As another example, in table 9.2 we show the ohesive energies, Ecoh, ofa range of simple semiondutors (the ohesive energy is the binding energyper atom in the bulk material). Whilst the DFT results are already quiteaurate (typially within 5% error), the QMC results are even better. Notethat this is a alulation that HF has a lot of di�ulty with, typially gettingup to 50% error!However, there is a very high omputational ost of alulating (a veryaurate value for) the energy using QMC tehniques. This may be o�setby implementing VMC and DMC on a massively parallel omputer, whihis straightforward to do - more so than HF or DFT! Consequently, QMCtehniques have only been taken seriously sine the beginning of the 1990'swith the advent of su�iently powerful parallel omputers, and even nowhave not been widely adopted.One de�ieny in any QMC method, that has not been highlighted untilnow, is that it is not possible to alulate QM fores analytially whih makesoptimizing the geometry of the atoms very di�ult. For this reason, thereis still onsiderable interest in less rigorous, less expensive tehniques, suhas Hartree-Fok or Density Funtional Theory.9.6 Final ommentsA few �nal points to highlight:
• Monte Carlo integration is muh more e�ient than either uniform orGaussian quadrature in higher dimensions.
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• VMC is an e�ient tehnique for evaluating the energy of a givenmany-body wavefuntion.
• VMC may also be used to optimize the wavefuntion via the Jastrowfuntion.
• Di�usion Monte Carlo is more aurate than VMC but is signi�antlyomputationally more expensive.
• Neither DMC nor VMC use the independent-eletron approximationand as suh are �true� many-body methods, whih may signi�antlyimprove the auray of any experimental observables alulated.9.7 Further reading
• QMC in �Computational Physis� by J.M. Thijssen, hapter 12


