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m \What is function minimization?

s Quasi-Newton methods
m Steepest descents
s BFGS / L-BFGS
m Conjugate gradients
s TPSD

s Example
® Summary
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Function Minimization
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s Simplein 1D

= Move downhill in some function f () until
get to the bottom

= Minimum defined by [’ (z) =0

m This is obviously easier if have derivative
information about the function

m If function is non-differentiable or too
expensive to differentiate then have to
proceed by search method, e.g. bisection
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m Start with Newton-Raphson method for
finding roots of a function z* s.t. f (z*) =0

Tt T e ()
T

m Can also be extended to locating minimum
by finding roots of [’ (z) ...

" (2n)
£ ()

Tpi1 = Tn + Ax = xp
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m |[n 3D
Xnt1=Xn — [H(f)] " Vf (xn)

where Vf (x) is the gradient of f (x)
Vi = ohiv 2y S
8x 8y 0z
and H is the Hessian of the function which is
the matrix of second derivatives

0 f
Hijj N 6’:1;,,,6’%
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s Newton-Raphson and Newton’s method only
work well if have analytical derivatives

m Generally it is very hard to calculate Hessian
m And expensive to calculate matrix inverse

m Approximating it by finite differences is both
very expensive and not very accurate / stable

m Hence use quasi-Newton methods instead ...
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m Before we go into quasi-Newton methods,
what happens if we just use gradient?

s At any point we can do Taylor series
expansion and so to 15t order:

Xn+1 — Xnp — ’anf (Xn)
where vy is the step-size

m Hence each iteration move downhill in
direction of steepest slope - steepest
descent method
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m A very simple and robust method
m Need to combine with a line minimization
m Find y that minimizes f(x) in search direction
s Always goes downhill at each step
s No memory of previous directions
m Hence can zig-zag depending on shape of f(x)
m Can be very slow & inefficient
m Hence quasi-Newton methods preferred ...
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Traversing a long, narrow valley

<)

Enlargement of a single step showing
the line minimisation in action — the step
continues until the function starts to rise
again whereupon a new direction is
selected which is orthogonal to the
previous one
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Quasi-Newton Methods
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m Start with Taylor series expansion:

F(xn+ A%) >~ F(x,) + VF(x,) Ax+ %AXTBAX

s Where B is an approximation to H

s And change in gradient is
Vf(x,+Ax)~Vf(x,)+BAx
m SO best guess for how to update x, is

Ax = -B7'Vf(x,)
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m We start off with an initial guess for B = By
m [hen do iterative update based upon

Vf(x,+Ax)~Vf(x,) +BAx

also known as the secant equation

= So we use currentX». ,f (X, )etc to generate:

Axy = —a, B 'V f(x,)
Xn+1 = Xp T AXn

= And then use f (x,+1) etc to update B, ....
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m Broyden-Fletcher-Goldfarb-Shanno (BFGS)

= Instead of calculating B, and then B_.* we
make an iterative update of B, =

7 Ax,yl TB_l 7 ynAxL IAXRAXZ
yI'Ax,, " vIAx, ) yTAx,

m where

Yn = V[ (Xnt1) — V[ (Xn)
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m BFGS is an efficient scheme

m For an N-dim quadratic function it should
converge in max N iterations

m As long as have exact line search etc

m A general function may take more iterations
due to non-quadratic and/or inexact line min

m [he Hessian is built up iteratively

m Can accelerate convergence with good initial
guess — like a preconditioner

m Can analyse H to get useful info about system
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= Need a good initial guess at B, (or B-",)
m Solved in CASTERP for ionic minimization

= Requires ~O(N? ) storage

m [f we used this electronic minimization then
N~Ng for each band and k-point

m Prohibitive!
m OK for N.

ons TOr geometry optimization

mAs long as N._..<1000 as matrix is not

I0NS

distributed — memory limitation for large
system — hence use L-BFGS instead
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s Low-memory version of BFGS
s Each BFGS update adds 2 rank-1 vectors

m So store list of updates instead of entire B’
» With m updates the storage is ~O(mN)
m [ypical m~30 so this is a BIG saving

m This also helps with non-quadratic functions

m Builds a short-term memory into B, so does not
remember initial steps where updates were
poor due to non-quadratic shape

s Added in CASTEP v6.0
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What about
electronic minimization?



THE UNIVERSITY of /071K EleCtr0n|C M|n|mlzat|0n

m SO how can we minimize the electronic E?

m Learned previously about iterative approach
m Use energy derivative

m Applying Hamiltonian in real/reciprocal space
— diagonal representation for speed & RAM

= Need to ensure orthogonalization
m Cannot use BFGS as no Hessian

s Now for more details ...
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= Energy expression: Ezz <‘I/i\[:[ks\‘lfl.>

SE .
m Gradient: 5<Y’ _Hk

2

S

i
s Orthonormalization constrained gradient:

G|W)=H W)= JHIY )| )

G
m S0 could use this for steepest descent
search and do line minimization etc.
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m Better approach than steepest descents (SD)

s The problem with SD is it has no memory

m \With exact line minimization each step is
orthogonal to previous one

m SO0 new directions can repeat/undo old ones

m Conjugate Gradient (CG) constructs new
search direction to be conjugate to present
and all previous search directions!

m Again is exact for quadratic form
m And does not require an explicit Hessian
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Traversing a long, narrow valley

« )

 The initial search direction is given by steepest descents.
» Subsequent search directions are constructed to be
orthogonal to the previous and all prior search directions.

* No explicit Hessian required or generated.
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s Conjugate?
m Search direction h, and gradient g,
= Then conjugate => g;. g=0, h,.B.h=0, g.h=0
= But we want to eliminate Hessian B?
m [t can be shown that
hi1 1 =g;,1 +vh;
(gi—l—l —g;) 8i+1
8i " 8i
= wWhich is what CASTEP uses for electrons

Yi =
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s S0 use CG with constrained gradient to get
min energy

= But that was with given input initial p"(r)
m S0 not self-consistent as H=H|p]

» Should we update H during the SCF cycle?
m Cheaper to use fixed density during line min

= Hence need to update  ,0ut — Z \wbk\Z
bk
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m Correcting for line min error suggests
pnew _ (1 _ Cv)pin 4 Ck,OOUt
s And iterate to self-consistency whence
pin _ pout
m This is linear mixing — often sloshes
m Better to use a dielectric response model
s CASTEP has both Pulay & Broyden schemes

m Or could update p whenever 1y changes
m Expensive but robust EDFT method
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SD Revisited
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m Two-point steepest descents (TPSD)
m A little known algorithm for minimization
m No need for Hessian or a line minimization

m Used as an alternative to BFGS — better for
random structures and/or cell constraints

s Based upon normal SD but with two-point
approximation to secant equation hence g-N:

Xn+1 — Xp — /anf (Xn)
(Xn — Xn—l)T (Vf(xn) = V[ (Xn-1))

" (%) = 9 (ke ) T (VS (%) = VS (1)
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s TPSD has been shown to be significantly faster
than SD

m But ought to be a LOT slower than CG or BFGS

m BUT for CASTEP geometry optimization we can
borrow some preconditioning tricks from the
BFGS routines which make it a LOT better

s And does not require line minimization

= which is what stops BFGS from working
efficiently with cell constraints (long story)

m But not guaranteed to go downhill
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Example:
S1(100) surface
reconstruction
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Si(100) supercell with vacuum gap ... with added hydrogen passivation

9 layers of Silicon and 7 A vacuum
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s Converge cut-off energy — 370 eV

m Converge k-point sampling — 9 k-points

m Converge number of bulk layers — 9 layers
= Converge vacuum gap — 9 A

m only then see asymmetric dimerisation:

2.254(2.26)

2.36 (2.34)
2.31(2.29)

()=best lit. value

2.36 (2.35)

236 2.35)
> -;_-,‘;;'9"" y 4
( 2.39 (2.38) A7 233Qm)
J
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Si(100) — BFGS progress

Energy (ey)
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Iteration

Initial slow decrease in energy due to surface layer compression.
Then small barrier to dimer formation overcome around iteration 14.
Then rapid energy drop due to dimerisation.

Final barrier to asymmetric dimerisation overcome around iteration 24.
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Summary
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s Newton method

s Simple but too expensive in CASTEP as
requires analytical Hessian

m Quasi-Newton methods

m Either approximate/iterative Hessian (BFGS)
or no Hessian at all (CG)

m CASTEP uses BFGS for ions & CG electrons
m But there are alternatives e.g. TPSD

m NB All of these ONLY do /local minimization —
global minimization is another lecture ...
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