JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 1, NUMBER §

SEPTEMBER-OCTOBER, 1960

Normal Form of Antiunitary Operators

Evucene P. WIGNER
Palmer Physical Laboratory, Princeton Universily, Princeton, New Jersey

(Received April 25, 1960)

Antiunitary operators are characterized in a manner similar to the characterization of unitary operators
by their characteristic vectors and characteristic values. It is shown that a complete orthonormal set of
vectors can be defined, some of which are invariant under the antiunitary operator. The rest of the vectors,
which are always even in number, form pairs in such a way that the antiunitary operator transforms each
member of a pair into a multiple of the other member of the same pair [Eq. (11)]. The extent to which the
vectors of the orthonormal set are determined by the antiunitary operator is ascertained and the number
of free parameters in the various cases of degeneracy found.

1

NTIUNITARY operators!' play a significant role

in the theory of the invariance of quantum
mechanical equations. The symmetry operators which
involve the operation of time-inversion are antiunitary.
The antiunitary operators are antilinear, i.e., if ¢ and
¥ are two vectors of the complex Hilbert space in
which the antiunitary operator 4 is defined and if
a and b are two complex numbers,

A(ao+b)y=a*4 o+b*A¢. 1)

The asterisk denotes the conjugate complex. Further-
more, 4 changes the scalar product into its conjugate
complex

(Ao, A9)= (e )*= (¥, ). (2)

Actually, (1) follows from (2) so that the latter equation

can serve as the definition of the antiunitary nature

of A. However, unless the Hilbert space has only a

finite number of dimensions, it is also necessary to

specify that 4 has an inverse. This is also antiunitary.
If 4 is antiunitary, A? defined by

A%=A(4Y) )

is unitary. This follows directly from the defining
Egs. (1) and (2), and it is also clear that 4? has an
inverse if 4 does.

If Aw is given for all the members of a complete
orthonormal set of vectors u;ve,:-+, its antilinear
property defines it for all vectors v==2a;v:

Av=A (Z akvk) = z ak*A Uk« (4)

Hence, the normal form of A4 will be obtained by
specifying a complete set of orthonormal vectors 7 for
which A has a particularly simple form. These vectors
are the analogs of the characteristic vectors for unitary

1 Some of the results of the present article can be obtained on the
basis of theorems derived by E. Cartan in his Lecons sur la
Géoméirie Projective Complexe (Gauthier-Villars, Paris, 1931). I
am much indebted to Professor S. Bochner for drawing my
attention to the very profound investigations contained in this
treatise, which deals with general linear and antilinear trans-
formations. However, the direct derivations, given in the text
of the present paper, are hardly longer than the reinterpretation
and amplification of Cartan’s results (see particularly pp. 124-137)
would have been.

operators and will be, indeed, characteristic vectors of
A2, However, this property does not define them

completely.
If 94,05,--- form a complete orthonormal set,
Avy,Avy,- - also form such a set. The orthonormal

nature of the latter set follows directly from (2), the
completeness from the existence of the inverse of A.
If w were orthogonal to all A, then A~'w would be
orthogonal to all .

We mention further for the sake of completeness,
that if K is the operation of complex conjugation so
that, in a particular coordinate system,

Ky=y*; K=}, )

AK is unitary and it follows that every antiunitary
operator can be written in the form

A=UK, 6)

where U is unitary. It follows from (6) that
A:=UKUK=UU*K*=UU*, (N

where U* is the conjugate complex of U in the co-
ordinate system in which (5) is valid. Since UU* is
equivalent to its conjugate complex

UU*=UU*UU'=U(UU**U, 8
its characteristic values are either real or pairwise
conjugate complex. It follows that the square of an
antiunitary operator is equivalent to a rotation. The
last four equations will not be used explicitly.

2.

It will be assumed that the spectrum of A?=A is
discrete. The complications which arise if A has a
continuous spectrum are not serious, but their elimina-
tion is cumbersome. Let us consider then a characteristic
vector of A: .
Av=A%=wr. )

Since A is unitary, |w|=1. It then follows that Av is
also a characteristic vector of A,

Adv=A24v=AA%=Aww=w*4, (10)
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and belongs to the characteristic value «* Unless
w=1 or w=—1, w#w* and Av is orthogonal to =.
Hence, if we choose an arbitrary orthonormal base,
Da1,002,* - - among the characteristic vectors of w, we
can define, if  is complex,

(11

and the v, will form a full base of orthonormal
characteristic vectors to w*. The sign of the square
root in (11) is best fixed in such a way that the
imaginary part of ! shall have the same sign as the
imaginary part of w. Then (w*)= (w!)*. The purpose
of the w? factor will become evident at once.
Application of 4 to both sides of (11) gives

Vot k=W iA Vo8 OF A Voo, k= (wi) *ifwtk

(12)

so that the choice of the characteristic vectors to «*
made in (11) renders this equation valid also if w is
replaced by w*. The 7., may be called characteristic
vectors of 4 also.2 However, in contrast to the unitary
case, the characteristic vectors of 4 to w also define
the characteristic vectors of A to «* if we want (11)
to hold. If one recalls that A is equivalent to a
rotation it is not surprising that a certain amount of
simplification results if a relation exists between the
characteristic vectors of w and of w* In the case of
a rotation one would set s &= vy, k¥

Let us consider now a characteristic vector v to the
characteristic value 1:

Av=A%=1, (13)

1t then follows from (10) that Av is also a characteristic
vector to the characteristic value 1 and so is, unless it
vanishes, v=c(z+A4v); ¢ is a real normalization
constant. It follows from (13) that

Avpy=Ac(v+4v)=c(dv+v)=my, (14)

so that vy is invariant under 4. If y=—A4v we choose
91;=14v and have again

Avgr = () *4%.,1= (W) *0vs s =0, 1,

(15

Next we consider another characteristic vector v’ =Av
which is orthogonal to vy;:

(vu,0") =0.
Because of (2) and (14),
(v11,47") = (A%, Avy) = (A ,01) = (v,011) =0, (17)

A’ will also be orthogonal to v;;. We can write there-
fore v19=c(v’4+A4v') or, if this vanishes, v2=4', and
this will still be orthogonal to v;; and also invariant
under A. Proceeding in the same way, a full ortho-
normal base vy1,012,- -+ of characteristic vectors of A

Amm=4iv=—idv=1v=1n.

(16)

2The two vectors 9, and 7.« form a plane in our Hilbert
space. The line which corresponds to this plane in Cartan’s
projective space is the invariant line of the passage cited in foot-
note reference 1.
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to the characteristic value 1 can be found which are
invariant under 4,

Avy=11. (18)

The vectors which satisfy (18) can be called the
invariant vectors of 4. The procedure just used to
ensure (18) is similar to the separation of real and
imaginary parts of a number.

Let us finally consider a characteristic vector of A
to —1:

Av =A% =—1t-11. (19)

In this case again, because of (10), Av_n is also a
characteristic value to —1. Furthermore, Az 1s
orthogonal to z_1; because of (2) and (19):

(- Adr_)= (41,4 Poq1)=— (v_.n,AYJ_n). (20)
Hence we can write

(21

If A has further linearly independent characteristic
vectors to —1, a normalized v_;2 can be found which
is orthogonal to both v_y; and 2.y F urthermore, the
same will be true of v_pws=1%49_15. Thus, for instance,

D_1* 1= 74 Voyr 11 7*4 Vo == = 1A Vopr1e

(vagery¥rr) = (A V_12,0-11) = — (A 1-11,4%12)

= "'@("‘ 1.9...1*1,‘—?)..12) =0. (22)
Hence, proceeding in the same way, one can find a full
orthonormal base of characteristic vectors of A to —1,

(23)

Av_pp=—t_1n Al_m=—U_1x,
for which

v__m=z'Av_1k v_lk‘-?-"—iA'I)_pk=i*A_1*k (24)
holds. These equations are formally identical with the
Egs. (11) for complex characteristic values if one
considers — 1 to be two conjugate complex characteristic
values —1 and —1* of A, which happen to coincide.
The vy belong to the characteristic value —1, the
v_pm to the characteristic value —1* Equation (24)
becomes a special case of (11) if one sets (—1)¥=1;
(—1"=g*=—,
3.

On summarizing the preceding results, we can
characterize an antiunitary operator by two sets of
vectors, which jointly form a complete orthonormal
set, together with the characteristic values wiwi*ws,
ws*,- - - belonging to the second set. These characteristic
values are pairwise conjugate complex, of modulus 1,
but are not equal to 1. The first set of vectors are
invariant under the antiunitary operator, ie., (18)
applies to them; (11) is valid for the members of the
second set. The « may also be equal to —1, but this
characteristic value always occurs in pairs and one
member of the pair is denoted by ~ 1, the other by —1*%.

It will be shown now that any two sets of vectors
vy and v, which jointly form a complete orthonormal
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set, together with the corresponding w, give an anti-
unitary operator by means of (4), (11), and (18). In
other words, the sets vy and v. are not subject to any
further conditions except that there are just as many
vectors bearing the index w as there are with the
index «*. The number of vectors in the first set is arbi-
trary and so are the values of w except that w1, |w]| =1
and they occur in conjugate complex pairs.

In order to prove the preceding assertion we consider
two vectors ¢ and ¢ and expand them in terms of the
orthonormal set

¢=Z ak‘vlk-i—z bwkvwk
k wk

(25)
¥=3 avut2 duter.
k wk
A ¢ and Ay are then given by
4 ¢=Z ak*vlk"l‘z buk* (w*)*v,,,q,
k wk
(26)

AY=Y" etvptY du* (wh)*van.
k wk

Both conditions (1) and (2) of the antiunitary nature
of A can be verified to be consequences of (26) and the
orthonormality of the vy, v.x, provided that

(@)= (h* |o[=1. 27

For w=—1, this last condition is spelled out explicitly
in (23). As was mentioned before, (27) can most simply
be assured for complex w by using that sign for w? for
which the signs of the imaginary parts of w and of w?
are the same.

4.

Evidently, the two sets v, v and the corresponding
w completely determine 4. Conversely, A determines
the number of vectors contained in the set vy—this is
the multiplicity of the characteristic value 1 of 42—and
the value of the w and their multiplicities. However,
the vectors v are not completely determined by 4 and
the present section will be devoted to the determination
of the freedom that remains in the choice of these
vectors.

Let us denote two other orthonormal sets which
characterize the same antilinear operator by wy and
wee. Since the wy form a base for the characteristic
functions to the characteristic value 1 of A=4?
they are connected with the vy by a nonsingular
transformation

W= Z Triv1l. (28)

In fact, it follows from the orthonormality of the vi
and of the wy; that 7 is unitary. This is, however, not
the only condition on r: If the vectors wy are to be
invariant under 4, i.e., if they satisfy (18),

Aw1k=z rkl*Avu=Z Tkt*'0u=w1k, (29)
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the 7,; must be real. Hence, two different invariant
sets of vectors of the same antiunitary operator are
related to each other by a rotation

(30)

r=r* pr'=rrf=1,

The prime denotes the transpose, the dagger the
Hermitian adjoint.

For complex w, the sets w.: and v, span the same
linear manifold. Hence, we have

(1)

W =2, Ut V1,

and it again follows from the orthonormality of the
w, and v, that % is unitary. By calculating Aw.
again, we find

Awa=Y " Avar=3 wa " (W) v,  (32)

so that if we want Aw, = (w*)tw. to remain valid,
we must have

(e = gy (@ (33)
i.e.,, the unitary transformations which belong to
conjugate complex characteristic value are conjugate
complex.

The preceding argument does not apply if w=-—1.
It is indeed clear that in this case the w_y may be
linear combinations of the 7_y; and of the v_» because
all these belong to the characteristic value —1 of A.
Hence we set

Woe=2_ Sy 3 lv_ix (34)
The condition (24) that w_j4=174w_ 1 now reads
w_wme =14 (X skt-ut+2 tav—141)
=3 sirtdv Y ha*iAdv_m
=2 —tutr_ut2 swttm (35)

Hence, the sets of vectors w_; and w_;» are obtained
from the sets v_;, v_i« by the transformation

s

S= . . (36)

—t* 8*

This will guarantee that (24) is valid for the w_;, w_;«
if it is valid for the v_;, vy« because the second set of
Egs. (24) can be obtained from the first set by applying
A to these. However, in order to make the w_;, w_;+ an
orthonormal set, the S of (36) must be unitary. The
conditions for this are obtained by setting SST=1 or,
in terms of the submatrices s and ¢,

sstit=1 st'=1u". (37)
It is easy to see that if the conditions (37) are satisfied,

S becomes a simplectic matrix, i.e., it leaves the form
0 1] *

-1 0 (38

|
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invariant in the sense that

SFS'=F. (39)

It follows that the sets w_j, w._im are obtained
from the sets v_y, »-m by a unitary simplectic
transformation.

The calculation of the last paragraph shows that the
role of vectors vux, vom for w= —1 is quite different from
the role of the vectors v.x, v, for complex w. The fact
that the same Eq. (24) holds for w= —1 and for complex
w is somewhat accidental.

It may be well to note at this point that the equation

Aw=yw (40)

with complex » does not imply that » is one of the w.
In fact, (40) holds with w= (»¥)*s;, and an arbitrary ».

S.

Lastly, we shall determine the number of free
parameters in an antiunitary transformation which
can be characterized by / invariant vectors; 2m vectors
with the characteristic value —1; 2p different complex
characteristic values with positive imaginary parts
and their complex conjugates with multiplicities
€1,62," * 6, These are then also the multiplicities of
the corresponding conjugate complex characteristic
values. Hence,

42m+2c,+2¢04« - - +2¢,=n,

where # is the number of dimensions of the underlying
Hilbert space which will be assumed to be finite
- dimensional in the present section.

The number of free parameters will be calculated by
adding the free parameters necessary to characterize
the complete orthonormal set v1;, %,x and the w, and
subtracting the number of parameters contained in the
transformations which alter the v but leave 4 un-
changed. These were determined in the preceding
section,

A complete orthonormal set in # dimensions can be
characterized by 2r—1+(2n—3)+4----+3+1=n* pa-
rameters. The number of free parameters in the o is
just p. Hence, #n*-}p parameters are necessary to
characterize the » and the w.

A rotation in the /-dimensional space of the vy does
not change A. The number of parameters of such
a rotation is 3/(/—1). Similarly, a 2m-dimensional
unitary simplectic transformation remains free for the
vectors v_j;, ***, U—im U1, *° *, U—1¥m. Lhe number of
parameters of such a transformation is m(2m~+1).
Finally, an arbitrary unitary transformation of the
Vectors .1, V., --- leaves 4 alse unchanged if the
conjugate complex transformation is applied to the
VectOTS Uus1, Uwvz, - -. The number of parameters in
such a transformation is just the square of the cor-
responding ¢. Hence, the total number of free parame-

(41)
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ters in the antiunitary transformation is

prttp— Y= D= mm D=3 c?
1

=M= 1) —mCmr ) =2 (2 =1).  (42)

For even #, the number of parameters is just #* if
all the characteristic values are complex and simple.
Two invariant vectors decrease the number of parame-
ters by 1, two characteristic values —1 by 3, if a
complex characteristic value is doubly degenerate
(the same then holds for the conjugate complex
characteristic value) the number of parameters is also
decreased by three.

The number of free parameters is also #? if # is odd
and there are m—1 simple complex characteristic
values and one invariant vector. Multiplicities among
the complex characteristic values and the presence of
a characteristic value —1 (which is always at least
double) reduce the number of free parameters as in
the case of even #.

The fact that the number of parameters is #? in the
general case could have been inferred from the possi-
bility of representing an antiunitary transformation
in the form (6), i.e., as the product of a unitary trans-
formation and complex conjugation. The number of
free parameters in an n-dimensional unitary trans-
formation is just #2. The decrease in the number of
free parameters (by 3) caused by the presence of a
single pair of characteristic values —1 is remarkable.

6.

The preceding results will now be formulated in the
language of projection operators and thus extended to
the case in which there is a continuous spectrum.
However, the proofs, which are rather obvious, will
be omitted.

Consider again the unitary operator A=A42 If 1 and
—1 belong to the point spectrum of A, denote the
corresponding projection operators by E; and E_.
The projection operator which belongs to an interval
J of the unit circle in the complex plane will be denoted
by Eys. All these projection operators are self-adjoint,
commute with A and with each other; the product of
two of them is equal to the projection operator which
corresponds to the intersection of the domains to
which the two factors correspond. Furthermore,

AEI - E1 AE——I = e E—I limAEJ' = (:)EJ 1 (43)

where the lim in the last equation indicates that J is
an infinitely narrow interval around «. We define the
antiunitary operators

Ay=AE;, A=AE, A;=AE;  (4)

then

A=4,+4_,+lim Z Ay, (45)
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The lim again indicates that the intervals J are
infinitely narrow; they cover all the unit circle with
the exceptions of the points 1 and —1. The intervals J
will be assumed to lie either entirely in the upper
half-plane, or entirely in the lower half-plane. The
interval J* will be the conjugate complex of the
interval J.

It is good to recall, for the rest of this discussion,
that A~ is also an antiunitary operator and is, in fact,
given by

A'=A14 = AN (46)

A transforms every projection operator into the
projection operator which corresponds to the conju-
gate complex domain

AElA_1=E1 AE_lA_1=E_1 AEJA—1=EJ*. (47)

These equations can be given a variety of forms by
combining them with (43) and (44). The most interest-
ing of these forms gives the projection operators in

413

terms of the 4 ;. Thus

Ar=AFEAE,=E,A'E,=E\AE\=E*=E;. (48)
Similarly,
A_p=—E; limdpds;=wE;. (49)
Whereas, if J and L do not overlap,
ApsA ;=0. (50)

These equations form a substitute for the equations
involving the characteristic vectors » of 4. As an
example, we show that v_y; and Av_y are orthogonal
or, in the present language, that E ;¢ and AE_,¢ are
orthogonal for any ¢

(E_10,AE_10)= (A2E_10,AE_;¢)

=(—E_10,AE_19)=0. (51)

The second form follows from the antiunitary nature
of A, the third from (43).
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