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Elementary parameter-differentiation techniques are developed to systematically derive a wide variety
of operator identities, expansions, and solutions to differential equations of interest to quantum physics.
The treatment is largely centered around a general closed formula for the derivative of an exponential
operator with respect to a parameter. Derivations are given of the Baker-Campbell-Hausdorff formula
and its dual, the Zassenhaus formula. The continuous analogs of these formulas which solve the
differential equation dY(t)/dt = A(t) Y (1), the solutions of Magnus and Fer, respectively, are similarly
derived in a recursive manner which manifestly displays the general repeated-commutator nature of
these expansions and which is quite suitable for computer programming. An expansion recently obtained
by Kumar and another new expansion are shown to be derivable from the Fer and Magnus solutions,
respectively, in the same way. Useful similarity transformations involving linear combinations of
elements of a Lie algebra are obtained. Some cases where the product e4e® can be written as a closed-
form single exponential are considered which generalize results of Sack and of Weiss and Maradudin.
Closed-form single-exponential solutions to the differential equation d¥(r)/dt = A(r) Y(¢) are obtained
for two cases and compared with the corresponding multiple-exponential solutions of Wei and Norman.
Normal ordering of operators is also treated and derivations, corollaries, or generalization of a number
of known results are efficiently obtained. Higher derivatives of exponential and general operators are
discussed by means of a formula due to Poincaré which is the operator analog of the Cauchy integral
formula of complex variable theory. It is shown how results obtained by Aizu for matrix elements and
traces of derivatives may be readily derived from the Poincaré formula. Some applications of the results
of this paper to quantum statistics and to the Weyl prescription for converting a classical function to
a quantum operator are given. A corollary to a theorem of Bloch is obtained which permits one to
obtain harmonic-oscillator canonical-ensemble averages of general operators defined by the Weyl
prescription. Solutions of the density-matrix equation are also discussed. It is shown that an initially
canonical ensemble behaves as though its temperature remains constant with a “canonical distribution”
determined by a certain fictitious Hamiltonian.

1. INTRODUCTION both sides of an equation satisfy the same first-order

PERATOR identities, expansions, and solutions differential equation and the same initial condition.
to differential equations occur widely in quantum ~ We refer to this tool as the differential equation method.
physics and have been derived with the aid of a Another device, used to obtain results for general
variety of abstract or complicated methods. These Operator functions from those involving exponential
include functional analysis, Lie algebra theory, the Operators, is to assume that the general functions can
Feynman ordering-operator calculus,! the commutator be expressed as linear combinations of exponential
superoperator, special function theory, and special —operators. We refer to this tool as the method of linear
methods which appear to be of limited use. Although Stperposition. Special cases of it are Fourier and
we do not doubt the power and usefulness of some Laplace series or integrals. This procedure is often
of these methods, it is interesting to see what may be €asier to apply than the often-used method which
accomplished with a few simple but versatile tools. ~constructs general functions from linear combinations
One of these tools, the parameter differentiation of ~Of powers of operators,® but the set of functions which
quantum-mechanical linear operators, has been in- May be represented by either method appears to be
structively discussed by Aizu.2 However, that treat- the same. Using mainly these tools, we intend to
ment is confined to obtaining matrix elements and derive a variety of scattered results in a concise
traces involving derivatives. We are here particularly ~Systematic - and elementary manner which many
interested in identities involving operators themselves, ~Physicists may find easier to understand. Nevertheless,
especially exponential operators. A device which we ~We believe that we have occasionally obtained a new
make extensive use of in establishing identities application or generalization of a known result.

involving exponential operators is to require that
3 W. H. Louisell, Radiation and Noise in Quantum Electronics

1 R. P, Feynman, Phys. Rev. 84, 108 (1951). (McGraw-Hill Book Company, Inc., New York, 1964), Chap. 3,
2 K. Aizu, J. Math. Phys. 4, 762 (1963). p. 98.
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EXPONENTIAL OPERATORS AND PARAMETER DIFFERENTIATION

Although everyone knows how to differentiate an
ordinary exponential function, it is not widely realized
that a general closed formula exists for the derivative
of an exponential operator with respect to a parameter.
[See Eq. (2.1) of Sec. 2.] We believe that this formula
is sufficiently simple and useful that many physicists
and applied mathematicians can profitably commit
it to memory. In Sec. 2, this formula is verified by the
differential equation method and compared with
formulas of Feynman! and Kubo.? A basic lemma is
derived which displays the formal correspondence
between parameter differentiation and commutation.
The concept of differentiation with respect to an
operator is also discussed. In Sec. 3, Eq. (2.1) is shown
to be of use for problems in equilibrium quantum
statistics. In Sec. 4, Eq. (2.1) and the differential
equation method are used to easily derive the Baker—
Campbell-Hausdorff (BCH) formula.® This important
formula determines Z such that e4e? = eZ is identi-
cally satisfied. A good review of the history of this
formula is given by Weiss and Maradudin.® A formula
of Zassenhaus,” said to be the dual of the BCH
formula, is also derived in Sec. 4 in a similar manner.
This formula expresses e4*% as an infinite product
of exponential operators. A number of examples
of the type of problem which exploits the BCH
formula occur in connection with the Weyl prescrip-
tion for converting a classical function to a quantum
operator. This is described in Sec. 5. A more direct
derivation of a useful formula recently obtained by
Daughaday and Nigam® is given there, while inter-
esting theorems of McCoy,® Moyal, and Wigner!® are
stated without proof.

In Sec. 6, a definition of a Lie algebra is given and
examples of various Lie algebras which occur in
quantum mechanics are given. Similarity transforma-
tions involving operators which are linear combi-
nations of Lie elements (denoted LCLE) are readily
obtained by the differential equation method. The
results may be used to “‘change the representation” in
quantum-mechanical problems, and are also used
in Secs. 7, 8, and 10. In Sec. 7, Eq. (2.1) and the

4 Lectures in Theoretical Physics R. Kubo, W. E. Brittin, and L.
G. Dunham, Eds. (Interscience Publishers, Inc., New York, 1959),
Vol. I, p. 139, Eq. (2.17).

5 J, E. Campbell, Proc. London Math. Soc. 29, 14 (1898); H. F.
Baker, ibid. 34, 347 (1902); 35, 333 (1903); 2, 293 (1904); 3, 24 (1904);
F. Hausdorff, Ber. Verhandl. Saechs. Akad. Wiss. Leipzig, Math.-
Naturw. KI. 58, 19 (1906); N. Jacobson, Lie Algebras (Interscience
Publishers, Inc., New York, 1962), Chap. 5, p. 170.

8 G. H. Weiss and A. A. Maradudin, J. Math. Phys. 3, 771 (1962).

? W, Magnus, Commun. Pure Appl. Math. 7, 649 (1954).

8 H, Daughaday and B. P. Nigam, Phys. Rev. 139, B1436 (1965).

9 N. H. McCoy, Proc. Math. Acad. Sci. U.S. 18, 674 (1932).

105, E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949); E.
P. Wigner, Phys. Rev. 40, 749 (1932); C. L. Mehta, J. Math. Phys.
5, 677 (1964).
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differential equation method are used to obtain
closed-form expressions for Z = In (e4eB) for certain
cases where 4 and B are LCLE’s. Generalizations of
formulas obtained by Sack and by Weiss and
Maradudin® are obtained. A corollary to a theorem
of Bloch!? is also derived which is useful for obtaining
harmonic-oscillator thermal averages of general
operator functions.

In Sec. 8, we obtain solutions to the important
operator differential equation, dY(¢)/dt = A(t) Y(2).
In Sec. 8.1, we obtain the Magnus” and Fer!? solutions
in a manner similar to that used to derive the BCH
and Zassenhaus formulas, respectively. It should be
noted that all four of these formulas are derived by a
recursion procedure which manifestly displays the
repeated-commutator nature of these expansions and
which is quite suitable for computer programming.
An expansion recently obtained by Kumar! and
another new expansion are shown to be derivable
from the Fer and Magnus solutions, respectively, in
the same way. Both of these expansions may be more
suitable than the Zassenhaus expansion for certain
purposes. In Sec. 8.2, Lie algebraic solutions in terms
of a single exponential are obtained and compared
with corresponding multiple-exponential solutions of
Wei and Norman. In Sec. 9, solutions of the density
matrix equation, Eq. (9.1), are discussed. It is shown
that an initially canonical ensemble behaves as though
its temperature remains constant with a “canonical
distribution” determined by a certain fictitious
Hamiltonian.

In Sec. 10, a collection of old and recent results
involving normal ordering of operators are efficiently
derived with the aid of the results and methods of
previous sections. Derivations, corollaries, or general-
izations of formulas obtained by Louisell,> Heffner
and Louisell,’® Schwinger,'” McCoy,!® Kermack and
McCrea,?® and Cohen® are given. In Sec. 11, higher
derivatives of exponential operators are treated with a
formula due to Poincaré.?! [See Eq. (10.1).] Although

11 R, A. Sack, Phil. Mag. 3, 497 (1958).

12 F, Bloch, Z. Physik 74, 295 (1932).

13 F. Fer, Bull. Classe Sci. Acad. Roy. Belg. 44, 818 (1958).

14 K. Kumar, J. Math. Phys. 6, 1928 (1965).

15 3, Wei and E. Norman, J. Math. Phys. 4, 575 (1963).

16 H. Heffner and W. H. Louisell, J. Math. Phys. 6, 474 (1965).

Y7 Quantum Theory of Angular Momentum, J. Schwinger, L. C.
Biedenharn, and H. van Dam, Eds. (Academic Press Inc., New
York, 1965), pp. 274-276.

18 N, H. McCoy, Proc. Edinburgh Math. Soc. 3, 118 (1932).

1 W, O. Kermack and W. H. McCrea, Proc. Edinburgh Math,
Soc. 2, 220 (1931).

20 L. Cohen, J. Math. Phys. 7, 244 (1966).

2L H, Poincaré, Trans. Cambridge Phil. Soc. 18, 220 (1899); see
also R. Bellman, Introduction to Matrix Analysis (McGraw-Hill
Book Company, Inc., New York, 1960), p. 103, Ex. 43. This formula
is the basis of resolvent theory. See, e.g., Messiah, Ref. 48, Chap. 16,
Sec. 3, p. 712.
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even greater formal efficiency may be obtained
with the Feynman ordering-operator calculus,® we
have preferred to use the Poincaré formula since it is
more firmly rooted in classical analysis and since it
readily permits one to differentiate general operator
functions in a concise manner. It is shown to provide
a compact alternative for the derivation of formulas
of the type derived by Aizu.? We note that such for-
mulas may be used to derive all of the interesting sum
rules and hypervirial theorems treated in a recent paper
by Morgan and Landsberg.2?

2. DERIVATIVE OF EXPONENTIAL
OPERATOR

If the operator H is a function of a parameter 4,
H = H(?), then
0 sm J"’ ~-wa OH _ug
— et = | eV — e du. 2.1
oA 0 oA @D

This identity (aside from notation) has been derived
and used by Snider in treating a quantum Boltzmann
equation.” Snider’s derivation was based upon the
commutator superoperator and an integral repre-
sentation for the beta function. The present author
found Eq. (2.1) independently by employing the pa-
rameter-differentiation technique explained by Aizu,?
together with the well-known expansion

e‘Be 4 = B + [4, Bl + (1]2D)[A4, [4,B]1 + - - - .
2.2)

The author has applied Eq. (1) to the calculation of
the polarizability of a one-dimensional NaCl lattice.?
Equation (2.1) has also been obtained recently by
Kumar,?® but the full generality of the result is not
obvious in that treatment.

Like any operator identity, Eq. (2.1) may be
verified by showing that the matrix elements of both
sides of the equation are the same in some suitable
representation. This may be done, using Aizu’s
techniques,? by choosing a representation in which
H(A) is diagonal. However, an easier method is to
show that both sides of the equation satisfy the first-
order differential equation

[0F(B)/9] + HF(B) = —(0H/[o)e™*H, (2.3)
with the initial condition F(0) = 0.

2 D, J. Morgan and P. T. Landsberg, Proc. Phys. Soc. (London)
86, 261 (1965).

28 R. F. Snider, J. Math. Phys. 5, 1586 (1964), Appendix B.

2¢ See, e.g., Louisell, Ref. 3, p. 101, Eq. (3. 14).

5 R. M. Wilcox, National Bureau of Standards Report (1964).

26 Reference 14, Eqgs. (46) and (A1),

R. M. WILCOX

A special case of Eq. (2.1) is an identity of Feynman,?”

I:i ea+eﬂ:| =fle(1—s)aﬂem ds,
de =0 0

where o and § are independent of e. Equation (2.4)
has been obtained by Feynman by means of his
ordering-operator calculus, and this method may
also be used to derive Eq. (2.1).%8 Also, Eq. (2.1) may
be obtained from Eq. (4) by considering the Taylor
expansion

HQ\ + €) = HQ) + «(3H/32) + O(ed).

However, Eq. (2.1) is a more convenient form to use
than Eq. (2.4), particularly for differential equations.
An identity of Kubo is a corollary of Eq. (2.1).4

(2.4)

B
[4, %] = — J; due”P—VR[4, Jle K. (2.5)

In Eq. (2.5), 4 and X are arbitrary operators. This
identity has had much use in the theory of irreversible
processes. Like Eq. (2.1), it is easily established by the
differential equation method, as Montroll has noted.?
It may also be derived from Eq. (2.1) by making the
similarity transformation

H(A) = 43e4,

e—ﬂH

— M e—ﬂJC o . (2.6)

Conversely, Eq. (2.1) follows from Eq. (2.5) by setting
¥ = H(2) and 4 = 0/dA. Another form of Eq. (2.5),
obtained by setting § = —it/h, occurs as the solution
to the Heisenberg equation of motion, A(f) =
ih~1[J, A(1)), for X independent of . A generalization
to the case where X is time dependent may also be
readily established by the differential equation
method.?

Equations (2.1) and (2.5) may be used to derive a
useful basic lemma.

Lemma: If [A, H(A)] = 0H[0A, then [4, f(H)] =
9f (H)[0A. (Note: in the language of Lie algebra, 4 is
said to be the generator of an infinitesimal transforma-
tion due to a change in the parameter A.)

Proof: Equations (2.1) and (2.5) imply this result
for the special case where f(H)= e#H, while the
general case easily follows by the method of linear
superposition.

37 Reference 1, Eq. (6). A related identity occurs in R. Karplus and
J. Schwinger, Phys. Rev. 73, 1025 (1948), Eq. (1. 8).

28 The author is indebted to Dr. J. H. Shirley for pointing this
out to him.

#° E. Montroll, in Lectures in Theoretical Physics, W. E. Brittin, B.
W. Downs, and J. Downs, Eds. (Interscience Publishers, Inc., New
York, 1961), Vol. III, p. 259, Eq. (XL.6).

30 See, e.g., R. L. Peterson, Rev. Mod. Phys. 39, 69 (1967), Eq. (23).
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EXPONENTIAL OPERATORS AND PARAMETER DIFFERENTIATION

Another kind of differentiation which frequently
occurs in quantum physics is the differentiation of an
operator by an operator. This may be defined by
means of parameter differentiation as follows.3! Let
H= H(Q,,0:, ", 0,) be a function of the
operators Q;, O, ' -+, Q, which need not commute
with each other. Then the operator derivative with
respect to Q; is defined by

o0H
— =i AN A, 0) 7
20, llf(l) P (01 Q, + Q.- (27
From Eqgs. (2.1) and (2.7), it follows that
—BH B
[ B .
00, 00,

The above basic lemma is also clearly valid with
A replaced by Q;. To obtain a familiar result which
we make use of later, let A = ¢, H = p, A = plik, so
that [g, p] = ifi'= ihdp/dp. Then by the lemma,

9. f(p)] = iR2f (p)[p-
Letting f(p) = e~*?/*, Eq. (2.9) becomes

[q, €49/ = ™ol (2.10)

From Eq. (2.10), it follows by a simple standard
argument that if |¢’) is an eigenstate of ¢ so that
q19>=4'|¢’), then e*P* acts as a displacement
operator,3

2.9

e gy = |q' + p). 2.11)

3. APPLICATION OF EQ. (2.1) TO EQUILIB-
RIUM QUANTUM STATISTICS
Equation (2.1) is well suited for applications to
equilibrium quantum statistics, where the thermal
average of any operator Q is given by

(@) = Tr [e PXQ)/Tr e 7%, 3.1

In Eq. (1), B denotes (KT)~2, where K is Boltzmann’s
constant and T is the absolute temperature. We
assume that J depends upon » parameters 4;, & =

X(Ay, A, -+, 'A,), and that Q is independent of A,.
Then it easily follows that
0 _
%0 [ < “RQ> +K(5)©
=— f du<euJ€A 3—36 e‘"JeAQ>, (3.2)
0 0,

where AQ = @ — (Q), etc. If we consider the case
where the Hamiltonian has a perturbation A7 added

31 See, e.g., Louisell, Ref. 3, p. 108, Egs. (3.34).
32 See, €.g., Louisell, Ref. 3, Sec. 1.11.
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to an unperturbed part X,, so that & = ¥, + AV,
then Eq. (3.2) becomes

*V) V) _

oA
Assuming, for notational convenience, discrete energy
levels X, or X,, one easily obtains
aw)
04

f dul(e**AVe AV, (3.3)

= —(Tr e )y 3 [l AV |j)?

]
xf du exp (—p¥, + uk, — uXk)), (3.4
(1}

which is seen to be nonpositive.?® This result is the
quantum-statistical analog of the well-known result
that the second-order perturbation energy of the
ground state is always negative. The latter result may
be obtained from Eq. (3.4) as a special case by evalu-
ating the integral in Eq. (3.4) and letting B become
arbitrarily large.

Another application of Eq. (3.2) is to a system with
dipole moment M subjected to an applied field E, so
that it is described by the Hamiltonian

% = J, — M-E. (3.5)

The field-dependent isothermal static susceptibility
tensor y,4(E) for a sample of unit volume is defined by

xaﬂ(E) = a<Ma>/aEﬂ s (36)

where «, 8 = x, y, or z. It follows from Egs. (2) and
(5) that

8
Xap(E) =f du(e**AM ﬂe‘“JeAM,),
0

a result given by Kubo for the zero-field case.3

Before leaving this section, we note that thermo-
dynamic perturbation theory may be conveniently
based upon Eq. (2.1).%® For lattice-dynamical systems,
a diagrammatic analysis may be developed which is
topologically the same as the ones given by Cowley for
nonequilibrium quantum systems, and by the author
for classical thermostatic systems.3¢

4. THE BAKER-CAMPBELL-HAUSDORFF
FORMULA AND RELATED IDENTITIES

To derive the BCH formula and for later applica-
tions, we prefer to use the form

1
0¢Z|0A =J; dxe*?Z'(A)e *Ze? @.1)

83 C. Kittel, Quantum Theory of Solids (John Wiley & Sons, Inc.,
New York, 1963), p. 127, Problem 2.

3¢ Kubo, Ref. 4, Eq. (2.48).

35 L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts, 1958),
Chap. 3, Sec. 32, p. 93.

38 R. A. Cowley, Advan. Phys. 12, 421 (1963); R. M. Wilcox, Phys.
Rev. 139, A1281 (1965).
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obtained from Eq. (2.1) by substituting Z = Z(4) for
—H, 1 for 8, and 1 — x for u. We seek to express Z
as a power series in A such that

zZ Ad ,AB

e’ = e*“e 4.2)

is identically satisfied. Thus,

Z=31Z,, ZW)=3n""Z,, (43)
n=1 n=1

where the Z,, are to be determined. Note that Z = 0
when A = 0 as required by Eq. (4.2). Differentiating
Eq. (4.2) with respect to A and multiplying both sides
from the right by e-% = e~*Be~*4, one obtains

1
j dxe®2Z'(A)e % = A + *4Be™*4.  (4.4)
0

The quantity e*4Be~*4 is easily expanded by Eq. (2.2)
in the form

e}.ABe—).A = 211(11)—1{14 9', B}, (4.5)
=0

where the repeated commutator bracket is defined
inductively by3
{4° B} = B, {4"", B} = [4,{4", B}]. (4.6)

Similarly, since [} x’ dx = 1/(j + 1), Eq. (4.5) implies
that

J‘ldxe’”ZZ’e_"Z = §: ————{Zk’ Z'} .
0 o (k + 1!

Substituting Egs. (4.3), (4.5), and (4.7) into Eq. (4.4),
we obtain

éo"(k :L D! (éfmz'”)k’ ,21"”_12"}

-4 +§°j}.’( iV B). (4.8)

@&.7

Since Eq. (8) must be satisfied identically in 4, we
equate coefficients of A’ on the two sides of the equa-
tion. For j = 0, one obtains

Z,=A+ B 4.9
For j = 1, one obtains
{2°2Z,} + ${Z:,Z} = {4, B} (410)
or
Z, = }[A, B]. (4.11)
For j = 2, one obtains
{Zo’ 323} + %{Zl’ 222} + %{Zz, Zl}
+ 4{Z3,7,} = ${4*, B}. (4.12)

37 Note that our convention for the repeated-commutator bracket
is opposite to that of Weiss and Maradudin, Ref. 6.

R. M. WILCOX

Equation (12) may be simplified by means of Eqgs.
(4.6), (4.9), and (4.11) to obtain

Zy = 144, [4, Bl] + 4[4, B], Bl. (4.13)
The BCH formula to third order is obtained by
substituting Eqgs. (4.3), (4.9), (4.11), and (4.13) into
Eq. (4.2) and setting 4 = 1:
e4e® = exp {A + B + 3[A, B] + 1:[4, 4, B]

+ 12[[4, B, B1 + - -}. (4.14)

The recursion scheme based upon Eq. (4.8) may, in
principle, be carried out to arbitrarily high order.
Weiss and Maradudin have manually calculated Z
out to the fifth order,® while Richtmyer and Greenspan
have calculated Z out to the tenth order by computer.38
The expansion is not unique due to the existence of
the Jacobi identity

[[4, B, C] + [IC, 4], B] + [[B, C], 4] = 0,
the identity
[[[4, B, C], D] + [I[B, C], D}, 4] + [IIC, D}, 4], B]
+ [[[D, 4], B, C] = [[4, C, [B, D],
and others.
It frequently happens that the commutator of 4

and B commutes with both 4 and B. In this case, Eq.
(4.14) reduces to

oAeB = oABHO_ (AB 0 HCrB  (415)

where C = [4, B]. Equation (4.15) has been derived
in various ways and is frequently employed in physical
problems.?® Another form of Eq. (4.15), which has
been used by Moyal and by Sudarshan, is10-4

B,24,B

ePe?de 2A+2B.

(4.16)

Equation (4.16) follows from Eq. (4.15) if one inter-
changes the order of 4 and B in Eq. (4.15),

=€

eBe (4.17)

and then multiplies Eq. (17) by Eq. (15) from the
right. Another derivation of Eq. (4.16) has been given

by Sudarshan.*®
To derive the Zassenhaus formula, we set

— eA+Be—%c,

2 3
e}.(A+B) AAd }.Bel C’ze). Cs...

= eidp (4.18)

Differentiating both sides of Eq. (4.18) with respect to
A and multiplying it from the right by

3 2
e——MA+B) _ . e—}. Cse—}. C'ge—lBe—i.A,

38 R. D. Richtmyer and S. Greenspan, Commun. Pure Appl.
Math. 18, 107 (1965); The author is indebted to Dr. Greenspan for a
private communication.

38 A partial list of references includes Refs. 3, 8, 9, 10, 18, 19, 48,
50, 52, and 53.

40 B C. G. Sudarshan, in Brandeis Summer Institute Lectures in
Theoretical Physics (W. A. Benjamin, Inc., New York, 1962), p. 181.
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one obtains
A+ B= A+ e*Be*4 4 *4 4 *B(2AC,)e *Be 4
+ eerABezzog(:; 12C3)e_"20“e_we_“ 4o,
4.19)

The quantities e*4Be—*4, etc., and again expanded by
means of Eq. (4.5) so that Eq. (4.19) becomes

0 An «© w0 Am+n
0=z —;{A”,B}+2ﬂ.z z"'—'—'—‘{Am,Bn, C2}
n=1 R m:n:

m=0 n=0 .
0w
>3

0 m=0 n—o k! m! n!

Ak+m+2n

(A%, B™, CE, Cq) + -

(4.20)

The quantities {4”, B} are defined by Eq. (6), while

the quantities {4™, B, C,} are defined inductively as

{4° B, Gy} = {B", Gy}, (4.21a)

{A™L, B, Cp} = [4, {4™, B", C,}]. (4.21b)

Higher-order repeated-commutator brackets are simi-

larly defined. Clearly the coefficients of 2’ must vanish

in Eq. (20). Setting j = 1, one obtains
Cs = —}4, B].

Setting j = 2, one obtains
0 = }{4% B} + 2{4, B°, C,} + 2{4", B, C;}
+ 3{4°% B°, C3, C;}
or, upon using Eqs. (4.6), (4.21), and (4.22),
C, = 3[B, [4, B]] + 3[4, [4, B]]. (4.23)

We note that both the BCH formula and the
Zassenhaus formula could have been derived a little
more simply by repeatedly differentiating Eqs. (4.2)
and (4.18), respectively, and setting 4 = 0 after each
differentiation. Although Z, and C, may be obtained
in a recursive manner by this procedure, this method
does not manifestly display the general repeated-
commutator nature of the expansion. This method
has been used by Huang®! to obtain the first three
factors in the Zassenhaus formula. Huang has used
the result to treat quantum deviations from the
classical limit of the partition function for both a
Bose-Einstein and a Fermi-Dirac gas.

Ms

+ 312
k

(4.22)

5. WEYL’S PRESCRIPTION FOR QUANTIZING
A CLASSICAL FUNCTION
Let p, g denote a conjugate pair of canonical vari-
ables of classical mechanics, and let P, Q denote the
corresponding quantum operators,*?

[0, P] = ih. (5.1)

a1 K. Huang, Statistical Mechanics (John Wiley & Sons, Inc.,

New York, 1963), p. 217, Eq. (10.60). )
42 Only in Sec. 5 do small p and g denote classical variables.
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Then, on the basis of group-theoretical considerations,
Weyl has proposed that the quantum operator
F(P, Q) corresponding to a given classical function
Jf(p, q) be represented by the Fourier integral®®

F(P, Q) =f f_w g(o, )T do dr,  (5.2)

where g(o, 7) is the Fourier transform of the classical
function f(p,q). The generalization of the Weyl
prescription to the case of n independent pairs of
canonical variables has been considered by Daughaday
and Nigam (DN).? In effect, this amounts to inter-
preting the quantities occurring in Eq. (2) as

P=(P,Py,"+,P,),

0 =(01,05,"",0,),

do = do, doy* * + do,,,
oP = o P, + 0Py + -+ +0,P,,
etc.

By a rather tortuous process, DN obtain the useful
result that the quantum function F(P, Q) corre-
sponding to the classical function

fp, @) = pipt - plo(drs s> 5 4)

is given by®

et I, Pilygs Palip - Pulys (5:3)

where [¢, P;],, refers to the anticommutator bracket
repeated « times. For example,

[, Pyl = [¢P, + P, Pyl
= (pr + 2P,¢P; + Pf(p.

In DN, Eq. (3) has been used to obtain the quantum
Hamiltonian for the case of two charged spinless
particles interacting by retarded fields. We show here
that Eq. (3) may be derived much more directly with
the aid of Eq. (4.16) written in the form

ei(aP+rQ) — e%iaPeirQeéiuP‘ (54)
Equation (5.4) is valid, since ¢P and 7Q both commute
with their commutator. The Fourier transform of
f(p,q), g(o, 7), is easily found to be given by

it 9 (0)0 P 0g) - - - §P(eu(r),  (5.5)

where, e.g., 6(c) denotes the «th derivative of the
“Dirac 6 function” and u(7) is the Fourier transform
of ¢(g). One easily obtains Eq. (5.3) by substituting

43 H. Weyl, The Theory of Groups and Quantum Mechanics (E. P.
Dutton & Co., Inc., New York, 1931), p. 274.
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Eqgs. (5.4) and (5.5) into Eq. (5.2), and using the well-
known formula of distribution theory,

[ 29ers@) de = —yro)

We state without proof some other interesting
results involving the Weyl prescription which may be
derived with the aid of the BCH formula and the
Fourier integral theorem.

Theorem (McCoy®): Let F(P, Q) be the quantum
operator which corresponds to the classical function
f(p,q) according to the Weyl prescription, and let
Fy(P, Q) be the function obtained from F(P, Q) by
ordering all Q factors to the left of all P factors with
the aid of Eq. (5.1). Then Fy,(P,Q) may be obtained by
replacing p and ¢ by P and @ with the Q’s to the left
of the P’s in all terms of the power-series expansion of

az
—3ik ,
[oxe (-3 57-) |70
- _ihdfp, @)
=fp.9) -~ 2p9q
_ (E ‘1 9Y(p, 9)
2) 2! 9p*oq®
In DN, Eq. (5.6) is generalized to the case of more

than one degree of freedom, and is used to derive
Eq. (5.3).

+ . (56)

Theorem (Moyal'®): Let F(P, Q), G(P, @), and
C(P, Q) be defined in the Weyl manner in terms of
the classical functions f(p,q), g(p,q), and c(p,q),
respectively, and let

[FP, 0, GP, 01 = C(, Q). (57)
Then

T. h(0 0 9 0
A9 = ZI[Sm 2 (5q1 op,  Om 3qz):l

X f(p1> 4)8(P2> 92)s (5.8)

evaluated at p, = p, =pand g, = ¢, =q.

In the limit as 4 — 0, this reduces to the well-known
relation between the quantum commutator and the
classical Poisson bracket. This result and the corre-
sponding law for operator multiplication have been
treated by Mehta* with the aid of the BCH formula.
Moyal’s result originated in a paper which formulates
quantum mechanics in terms of phase-space distri-
bution functions, and occurs also in Sudarshan’s
study of the structure of dynamical theories.%®

44 M. S. Lighthill, Introduction to Fourier Analysis and Generalized
Functions (Cambridge University Press, Cambridge, England, 1959),
p- 19, Eq. (17).

45 Mehta, Ref. 10,
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Theorem (Wigner'®): Let G(P, Q) be any operator
defined in the Weyl manner, and let

(G) =@l GP, Q) v (5.9)

be the expectation value of G in the state |p). Then
(@) may be calculated from the phase-space distri-
bution function f(p, g) by means of

G) = f f dpdag(p, Df(pra),  (510)

where
1 .
fo. =5 f v*(q — Hime (g + di) dr, (5.11)

with w(g) = (g | v).

As shown by Moyal,® this result may be easily
proved with the aid of Eqgs. (2.11), (4.16), and the
Fourier integral theorem.

6. LIE ALGEBRAIC SIMILARITY
TRANSFORMATIONS

In quantum physics, one frequently encounters sets
of operators X,, X,, -+, X, such that the commu-
tator of any pair is a linear combination of members
of the set according to the rule

[X:, Xj]l = conXy + cipp X+ -0 + X, (6.1)

The X;’s are said to be elements of a Lie algebra,
while the ¢,;; are called the “‘structure constants™ of
the algebra.*® For our purposes here, we do not require
any knowledge of this highly abstract and technical
subject. The “closure property” expressed by Eq.
(6.1) is sufficient. We seek to perform a similarity
transformation on X of the form eZX,e~%, where Z
is a given linear combination of the X.’s,

Z=dX,+dX,+ - +dX,. (62

Now from Egs. (6.1), (6.2), and (2.2) it follows that
eZX,e~Z is also a linear combination of the X s,
X’ =3 g X, =g;-X (6-3)

i=1
From the basic property of a similarity transforma-

tion, it then follows that any function of the X’s,
F=FX,,X,, -, X,), is transformed to

eZFe_Z=F(g1'X’g2'X9“'agn'x)' (64)

Although the g,;’s may in principle be determined
from Egs. (6.1), (6.2), and (2.2), in practice the infinite
summation may become very complicated to perform.
In this case, a better approach is to introduce a

46 See, e.g., H. J. Lipkin, Lie Groups for Pedestrians, (John Wiley
& Sons, Inc., New York, 1965), or Jacobson, Ref. 5.
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parameter x into the exponentials and determine
the differential equation which e*2X,e~*Z must
satisfy. It is seen that this procedure generally leads
to a coupled set of linear homogeneous first-order
differential equations which, as is well known, may be
solved as an eigenvalue problem.

The lowest-dimensional Lie algebra of physical
interest is the non-Abelian two-dimensional algebra
with elements {X, Y} satisfying

X, Y]= Y. (6.5)

This algebra has been treated by Sack™ in connection
with his “Taylor’s Theorem for Shift Operators” and
by Wei and Norman.!® The latter authors have shown
that this algebra occurs in two master-equation
problems: (a) a system of simple harmonic oscillators
with Landau--Teller transition probabilities; (b) the
deuterium exchange reaction with only nearest-
neighbor transition probabilities. Other realizations
of this algebra are known in quantum mechanics. The
set {g/u, e~"?/*} satisfies Eq. (6.5), as may be seen from
Eq. (2.10). Some realizations which involve annihila-
tion and creation operators are {—a'a, a}, {a'a, a'},
{—yag, a®, {ya'q, (@)%, {yaq,q%}, and {—yalq, ¢,
where a = (g + in7'p), a' =y(g—io7p), y=
(w/2h), and [a, a’] = 1. This algebra also occurs as
a subalgebra of larger Lie algebras. For example, in
the algebra SU, there are 12 distinct pairs of elements
which satisfy Eq. (6.5).%¢
To illustrate the parameterization method alluded
to above, let
Z=aX+ pY,

G = aX + bY,
G(x) = e*2Ge "2
= a(x)X + b(x)Y.
Then G(x) satisfies the differential equation

(6.6)
6.7)
(6.8)
(6.9)

G'(x) = [Z, G\ (6.10)
subject to the initial condition
G0) = G. (6.11)

Substituting Eqgs. (6.6) and (6.9) into Eq. (6.10) and
using Eq. (6.5), one finds that

d (X)X + b(x)Y = [ab(x) — Ba(x)]Y. (6.12)

Since X and Y are independent operators, as is easily
proved from Eq. (6.5), we must have

a(x) =0, b(x)=ab(x)— fa(x) (6.13)
subject to the initial condition
a(0) = a, b(0) =b. (6.14)
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The solution of Eqs. (6.13) and (6.14) is easily found
to be given by

a(x) = a, b(x) = faje + (b — Balw)e**. (6.15)

From Egs. (6.6)~(6.9) and (6.15), we then find that

eaX+ﬂY(aX + by)e—aX—ﬂY
= aX + [fac + (b — BauY)e’1Y. (6.16)

Note that it could have been foreseen from Egs. (2.2)
and (6.5) that a(x) = a. In future calculations, we
make such possible simplifications at the outset without
comment. From Eqgs. (6.4) and (6.16), it follows that

eaX+ﬁYF(X’ Y)e—aX—ﬂY
= F[X + (1 — &)Y, e°Y]. (6.17)

Special cases of Eq. (6.17) are®”

SXE(X, V)e*X = F(X, e'Y),  (6.18)

HfTF(X,Y)e?Y = F(X — BY, Y).  (6.19)

A frequently occurring three-dimensional Lie
algebra is spanned by the operators {P, Q, I} with
the commutation relations

[P,Ql=cl, [P,I]=[Q,I]=0. (6.20)

It is exemplified by the coordinate-momentum or
annihilation-creation operator commutation rules.
Since all results for this algebra are well known, we
do not explicitly derive them here. However, all such
results may be obtained as a special case of the four-
dimensional Lie algebra which we consider next.

A Lie algebra of interest for harmonic oscillator
problems is spanned by the operators {P, Q, W =
P2 4 (2, cl} with the commutation relations defined
by Eq. (6.20) and by!®

[W, P] = _ZCQ’ [W’ Q] = 2cP, [VV, I] = 0.

(6.21)

A physical realization of this algebra is provided by
the set {p, wgq, p* + w¥?, —ikwl}. An alternative and
more convenient set to use is {W, X, Y, sI}, where

X=Q—iP, Y=0Q+iP,

W=XY—34sI, s=2ic. (6.22)

Equations (6.21) and (6.22) imply the commutation
relations
W, X] = —sX,

(W, Y]=sY, [X,¥]=sl. (6.23)

47 Examples of Eqs. (6.18) and (6.19) occur in Louisell, Ref. 3,
Theorems 9 and 6, respectively.
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A physical realization of this algebra is provided by
the set {a'a, a, a', I}. Let

Z = yW 48X + pY, (6.24)
G =gW + dX + rY, (6.25)

and let G(x) be defined by Eq. (6.8). Then Egs. (6.10)
and (6.11) are again satisfied. Letting

Gx) =gW 4+ dxX)X 4 r(x)Y + u(x)1,
one finds the differential equations
d'(x) = —sy d(x) + sdg,
r'(x) = syr(x) — spg,
u'(x) = s0r(x) — sp d(x),
subject to d(0) =d, r(0) =r, and u(0) = 0. The
solution is easily found to be given by
d(x) = gdy™ + (d — gdy™)e™™,
r(x) = gpy™ + (r — gpy )™,
u(x) = 8y~X(r — gpy Y™ — 1)
+ pyi(d — gdyH)(e™® — 1). (6.26)

From Egs. (6.4), (6.8), (6.24), (6.25), and (6.26), one
finds

e?F(X, Y)eZ = F(U, V), (6.27)

where
U=e"X + py (e — I, (6.28a)
V = e"Y + Sy N — I (6.28b)

Expressed in terms of Q and P by Egs. (6.22), one
finds, with Z = P 4+ 8Q + y W,

¢?F(P,Q)e~% = F(R, S), (6.29)
where
R = Pcos2cy + @sin2cy
— 3yl — cos 2¢cy) — Bsin 2cy], (6.30a)
S = —Psin2cy + Q cos 2cy
— 3y~ sin 2cy + B(1 — cos 2cy)].  (6.30b)

Another well-known Lie algebra is that of the
angular momentum operators (or rotation generators)
{JzsJys J,}, where

Ve, L=, [N, 1=, [J,,J,]=il,. (6.31)
(We use units in which 4 = 1.) Let
b(x) « I = by(x)J, + b,(x)J, + b,(x)J,
= e~ #J(b . J)etwa-J, (6.32)

where a and b are constant vectors. Then
b(x)-J = —i[la-J, b(x)-J]
= [a x b(x)] - J.

R. M. WILCOX

Hence b'(x) = a x b(x) subject to b(0) =b. The
solution is easily found to be given by

b(x) = (4 - b)d(1 — cos ax)

+ bcosax + d x bsin ax, (6.33)

where a = [a| and 4 = a/a. Hence

e""“"F(Jw s Jv ’ Jz)e_i..J = F(Kw H Kv ’ Kz)’ (634)
where

K=d@ -J)(1 —cosa)+ Jcosa+ J x dsina.
(6.35)

Equations (6.34) and (6.35) specify how a general
operator function of J must transform under an
arbitrary rotation of the coordinate axes characterized
by the vector a. An interesting special case is where
a, = a and a, = a, = 0. Then Egs. (6.34) and (6.35)
reduce to*®

exp (—iaJ)F(J,,J,, J,) exp (iaJ,)
= F(J,,J,cosa + J,sina,J,cosa — J, sin a).
(6.36)

Another three-dimensional Lie algebra of wide
interest is the “split three-dimensional simple algebra™
characterized by?

[E,Fl=H, [E Hl=2E, [F, H]l=—2F (637)

A physical realization of the set {E, F, H} is given by
{iJ_,iJ,,2J,}, where J, and J_ are the angular
momentum raising and lowering operators, respec-
tively, J. = J, + iJ,, J_ = J, — iJ,. These operators
occur, not only for ordinary spin, but also for isotopic
spin and for quasi-spin in many-fermion systems.*®
Another guise in which these operators occur is where

J_=c'b, J. =ble, J, =340~ clc), (6.38)

and b7, ¢f, b, and c are the creation and annihilation
operators of a two-dimensional harmonic oscillator,

6,6 1=1[c,c"I=1, [bcl=1[bc']1=0. (6.39)

Another physical realization of the set {E, F, H} is
given by {P%/2¢c, Q%2c,(QP + PQ)/2c}, where [P, Q] =
cl’® Let

Z=aE+ BF+ yH, G=aE + bF + gH, (6.40)
and let G(x) once more be defined by Eq. (8). Letting
G(x) = a(x)E + b(x)F + g(x)H, 6.41)

48 Special cases of Eq. (6.36) are as follows: A. Messiah, Quantum
Mechanics (John Wiley & Sons, Inc., New York, 1962), Vol. II, p.
578, Ex. 8; C. P. Slichter, Principles of Magnetic Resonance (Harper
and Row, Inc., New York, 1963), p. 26, Eq. (13).

49 See, e.g., Schwinger, Ref. 17; Heffner and Louisell, Ref, 16;
Messiah, Ref. 48; Lipkin, Ref. 46.
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one finds the coupled equations
a'(x) = —2ya(x) + 2ag(x),
b'(x) = 2yb(x) — 28g(x),
g'(x) = —pa(x) + ab(x).

The solution of Eqgs. (6.42) subject to a(0) = a, b(0) =
b, g(0) = g, is found to be given by

(6.42)

a(x) = (af + bx — 2gy)ap~? sinh? px

+ acosh 2px + (ga — ay)p~? sinh 2px,
b(x) = (aff + bo. — 2gy)Bp~? sinh?® px

+ bcosh 2px + (by — gB)p~ sinh 2px,
g(x) = (aBy + bay — 2guf)p~? sinh® px

+ g + 4(ba — af)p~* sinh 2px,
where
p= [y — aflt.

Thus, with Z given by Eq. (40), one finds

¢%f(E,F, H)eZ = f(J, K, L),
where J, K, and L are defined as
J = u(a, §, E + BwF + v(a, B, v)H,
K = «*wE + u(a, f, —9)F — v(f, «, —y)H,
= —20(B, o, VE + 20(a, B, —)F
+ (1 — 2¢8w)H, (6.44)

(6.43)

w = p~2sinh? p,
(e, B, ¥) = cosh 2p + afiw — yp~*sinh 2p,

v(x, B, ¥) = Byw — £Bp~* sinh 2p. (6.45)
In case y = 0, w, u, and v simplify to
w = («f)*sin® (af)},
u(a, B, 0) = cos? (“ﬂ)*:
o, f,0) = =3Byt sin 2(xp)t.  (6.46)

Some other special cases,

eEf(E, F, H)e °F = f(E,F + «H + o’E, H + 2«E),
! Ff(E, F, H)e ¥ = f(E — BH + ﬂzF, F,H — 2fF),
¢"Bf(E, F, H)e™"® = f(¢V'E, ¢F, H), (6.47)

may also be easily obtained directly from the com-
mutator expansion, Eq. (6.22).

Consider now the six-dimensional Lie algebra whose
elements are I, P, Q, P2, QP, and Q2, with [P, Q] =cL.
The most general second-degree polynomial in P
and Q is a linear combination of these elements. Let

Z=oaP?+ Q%+ yQP + 0P 4+ €Q, (6.48)

and let

eZPe%Z = d(x)P + e(x)Q + f(x)I. (6.49)

971

Then d = d(x), e = e(x), and f = f(x) satisfy
d' = 2coe — cyd, € = cye — 2cfd,
[ = cde — ced,
subject to d(0) = 1, e(0) = f(0) = 0. The solution is
given by
d(x) = cosh Ax — pcA sinh Ax,
e(x) = —2fcA-1sinh Ax,
f(x) = —ecAsinh Ax
+ (c/)¥ey — 2B8)(cosh Ax — 1), (6.50)
where
A= cy? — 4apld. (6.51)

The expression for e*2Qe~*Z may be obtained from
Eqgs. (6.49) and (6.50) by making the following
substitutions:

PeQ,
We conclude this section by considering an infinite-
dimensional Lie algebra. This set, which occurs in the
work of Kermack and McCrea,'® consists of P and
all functions of Q, where [P, Q] = cI. Clearly this set
satisfies the closure condition since [P, ¢(Q)] = c¢'(Q)
is in the set. Let ¢(Q) and f(Q) be arbitrary functions,
and let
(exp {x[«P + ¢(DIIBP + f(Q)]
x (exp {—x[aP + (Q)]}) = P + F(Q, %), (6.52)
where a, §, and x are parameters. Then F(Q, x) must
satisfy the differential equation

0F(Q, x)[0x = [aP + ¢(Q), BP + F(Q, x)]
= acdF(Q, x)/0Q — feg'(Q), (6.53)
subject to the condition that F(Q,0) = f(Q). The
solution is easily found to be given by
F(Q, x) = f(Q + acx) — fa{p(Q + acx) — ¢(Q)].
(6.54)

Three special cases of interest are obtained by letting
f(Q), B, and «, respectively, go to zero:

(exp {x[P + (@)1} P(exp {—x[P + ¢(Q)]})
=P — ¢(Q + cx) + ¢(Q), (6.55)

(exp {x[P + @I Sf(@Xexp {—x[P + ¢(@)]})
= f(Q + ¢x), (6.56)
QP Q = P — co'(Q). (6.57)
7. PRODUCT OF LIE EXPONENTIALS

Let A and B be LCLE’s and let e4e® = ¢%, Then
from the BCH formula, Eq. (4.14), and the “closure

C—>—e, agzf, 0e
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property,” Eq. (6.1), it follows that Z is also a LCLE.
In this section, we determine the form of Z, given
A and B, for some of the Lie algebras introduced in
the previous section. We parametrize the problem
by setting

Z — o2 _ ,i4,B

e”, (1.1)

subject to Z(0) = B. Then differentiating Eq. (7.1)
with respect to 1 by means of Eq. (4.1) and multiplying
from the right by e=? = e~Be—*4, one obtains

€

1
f dxe*2Z'(N)e "2 = A. 7.2
0

We again consider first the non-Abelian two-dimen-
sional Lie algebra of Eq. (6.5), [X, Y] = Y. Let 4 =
X+ B,Y,B=0X+ f,Y,and Z(2) = « X + B(A) Y,
where « = a, + Aa; and B(0) = f,. From Eq. (6.16),
the quantity e*2Z’(A)e~*2 is seen to be given by

o X + [Boya™ + (8" — o a)e]Y.

Then integrating over x in Eq. (7.2) and equating
coefficients of Y, one finds that 8(2) satisfies

afot + (B — afoa (e — 1) = B, (7.3)
Defining u = u(4) = fa?, Eq. (7.3) becomes
(Br— o) w = ("~ D' = (L — ), (7.4)
which may also be written

—0[In (xu — £)]/04 = 9[ln (1 — e™)/2A. (7.5)
Integrating Eq. (7.5) and solving for 8(4), one obtains

B = Ap1p(Aas, xo) + Bop(—0te, —Aoy), (7.6)
where
px,y) = (1 + x7Y) e — D — 7 (7.7)
Hence
[exp (1 X + i )][exp (2 X + B, Y)]
= exp [(% + @)X + B(1)Y], (7.8)
where (1) is obtained by setting 2 = 1 in Eq. (7.6).
Some special cases of Eq. (7.8) have been derived
by Sack by means:of his “Taylor’s Theorem for Shift
Operators™ 11:
exp [a(X + AY)] = e*F exp [A(1 — €%)Y]
= {exp [A(e* — 1)Y]}e*X. (7.9)
Sack has applied Egs. (7.9) to the last four realizations
of this algebra listed above Eq. (6.6) in order to obtain

a formula for the matrix elements of a Gaussian
potential.5

80 Sack, Ref. 11. Matrix elements for generalized Gaussian
potentials and other potentials which may be represented as Fourier
integrals are obtained in R. M. Wilcox, J. Chem. Phys. 45, 3312
(1966).
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Next, consider the four-dimensional Lie algebra
defined by Eqs. (6.23). Let A = y,W + 8, X + p, ¥,
B =y, W + 0,X + p,Y, and Z(A) = yW + d(DX +
PA)Y + o(D1, where y = y; + Ay;, 6(0) = &5, p(0) =
p2, and ¢(0) = 0. Then from Egs. (7.2) and (6.26)
one finds, after integrating over x and equating
coeflicients of X, Y, and I, respectively,

Y10y + (8 — pi 0y ) (—yps) e = 1) = 6y,
(7.10a)

7107 + (0 — yipy Nys) (e” — 1) = p,, (7.10b)

o' + 3y~ p' — yipy Dys) (e — 1) — 1]
+ py 8 — yOy (=) (e — 1) — 1] =0.
(7.10¢)

Equations (7.10a) and (7.10b) are of the same form
as Eq. (7.3), so that their solutions may be obtained
from Eq. (7.6) by appropriate changes of variables:

0(4) = A0,9(—Ay1S, —y28) + Sop(vas, Ay18), (7.11)
P(A) = Apyp(dyss, y2s) + pa(—7ss, —Avis).  (7.12)
From Egs. (7.10a), (7.10b), and (7.10c), one finds that
o’'(A) = y0(pd)[0A — p,0 — 8,p].  (7.13)

Equation (7.13) is integrated with the aid of Eqgs. (7.11)
and (7.12) by putting the terms in a form similar to the
right side of Eq. (7.5). Setting

T1=pi/V1, T2 = pafvas 1= 0ify1, pg = Oyly,,
(7.14)
one obtains finally

o(1) = (y1 + v2) (D) — yy7ipty — yoraps + 6,
(7.15)
where
6 = 257y — 79)(u1 — o) sinh (3sy,)
X sinh (3sy) csch [3s(y; + v)]. (7.16)
This result may be stated in terms of the X and Y
operators as follows: Let [X, Y] = sI. Then the
equation
exp [11(X + 7 I)Y + p,0)] exp [yo(X + 7)Y +u,1)]
=exp [(y1 + )X + 7INY + pl) + 0I] (7.17)

is identically satisfied provided 6 is defined by Eq.
(7.16), and provided = and x are defined by

T = 19(y1, ¥2) + Top(—ve, —v1),  (7.18)
= myp(—=vy, =) + pp(¥s, 71),  (1.19)

where y(x, y) is defined by
Y(x, y) = [ — 1]fer'™) — 1L, (7.20)
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The result may alternatively be stated in terms of
the P and Q operators: Let [P, Q] = cI. Then the
equation /

exp {71l + »D)® + (Q + w.J)’l}
x exp {yal(P + vI)* + (@ + wuI)]}
= exp {(y1 + (P + vI)* + (2 + oI)*] + 01}

(7.21)
is identically satisfied provided

6= c (v, + ) + (w0; — wz)zll(yla 72)3 (722)

v = vx(y1, 7o) + vex (2, v + (02 — 01, Vo),
(7.23)

o = 033(p1, ¥2) + 0222, 71 + (1 — 2)A(1, 7o)
(1.24)
where
2(x, ¥) = sin (cx) cos (¢y) csc [e(x + )], (7.25)
A(x, y) = sin (ex) sin (cy) csc [e(x + p)].  (7.26)

Some special cases of Eqs. (7.17) and (7.21) are of
interest:

In [exp (xX + BY) exp (yXY)]
= y[X + Bs(e” — DY + as(l — )]
— $afs coth (3sy), (7.27)
In [exp (Q* + P?) exp («P + $Q)]
= y{P + ¥clx cot (yc) + BI}*
+ »{Q + }c[B cot (yc) — «]}?

— }e® + BPc cot (yc). (7.28)
Equation (7.28) with y = 1 has been obtained by
Weiss and Maradudin,® who derive the result directly
from the BCH formula by a rather intricate summa-
tion procedure.

As an easy application of Eq. (7.28), we state a
corollary to Bloch’s theorem concerning the charac-
teristic function of a harmonic oscillator in thermal
equilibrium 1

Theorem: Let the thermal average be defined by
Eq. (3.1) with ¢ = $p? + $w?® and (g, p] = ih. Then

(ei(¢p+fq)> — e—%r*(q*)e —§52<p2>, (729)

where
(p% = w¥q® = }hw coth (3phw).

By means of Eq. (5.2), this result may be used to
obtain thermal averages for general observables
represented in the Weyl manner.5' Related corollaries

51 Equation (29) may also be derived easily from the condition
that both sides satisfy the same first-order differential equation
with respect to a parameter. Still another derivation of Eq. (29)
is obtained by first calculating the matrix elements of exp (iop + itq)
in the harmonic oscillator representation (as one may do by em-
ploying the method which the author used in Ref. 50 for the case
where ¢ = 0) and then carrying out the trace sum with the aid of the
generating function for the Laguerre polynomials.
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to Bloch’s theorem have occurred in connection with
the scattering of x rays or neutrons by molecules or
harmonic lattices,’ as well as in treatments of the
coherent states of the radiation field.®?

We conclude this section by treating a special case
of the infinite-dimensional Lie algebra whose elements
are P and all functions of Q, where [P, Q] = cI. We
seek to find a function Z = Z(Q, ) which satisfies

(7.30)

where A = P + ¢(Q) and ¢(Q) is an arbitrary given
function. Then by differentiating Eq. (7.30) with
respect to A, multiplying both sides from the right by
eZ = e*Pe~*4  and applying Eq. (6.55), one finds,
after some cancellations, that

e = P,

0Z[0A = ¢(Q + cd). (7.31)
Since Z must vanish when 4 does,
A
Z(Q, ) = f dx@(Q + cx). (7:32)
0

From Egs. (7.32) and (7.30), one obtains

A
exp (i[P + ¢(Q)}} = exp [jaxee + ) |,
(1.33)

This result is used in Sec. 10 to obtain a normal-
ordering expansion of Kermack and McCrea, Eqs.
(10.42).

8. SOLUTIONS OF dY(9)/dt = A)Y ()

The operator differential-equation system
dy@)/dt = AOY(), Y(0)=1 8.1

has been extensively studied by mathematicians
because of its relevance to the theory of coupled or
higher-order ordinary differential equations. Some
examples of this equation which occur in quantum
physics are the equation of motion for the time-
evolution operator, Eq. (9.3), the Bloch equation,
—0e % 0B = Je* , and master or rate equations.

8.1. Expansions of Magnus and Fer

Instead of dealing with Eq. (8.1) directly, we intro-
duce the iteration parameter 4 as

dY,(n/dt = MAD Y1), Y0 =1 (8.1)
and seek to join Yo(f) = I to Y,(t) = ¥(¢). To derive

52 A C. Zemach and R. J. Glauber, Phys. Rev. 101, 118 (1956);
Weiss and Maradudin, Ref. 6; A. A. Maradudin, E. W. Montroll,
and G. H. Weiss, Solid State Phys. Suppl. 3, 239 (1963); N. D.
Mermin, J. Math. Phys. 7, 1038 (1966).

53 R, J. Glauber, Phys. Rev. 131, 2766 (1963); Louisell, Ref. 3,
p. 244.
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the Magnus formula, we assume a solution of the
form

Y (1) = exp [Q(4, )] = €%, (8.2).
where
Q(4, 1) = X A"A (D). (8.3)
n=1

From Eqs. (8.1,), (8.2), and (4.1), it follows that

1
f dxe™ Qe ™ = 1A(r), (8.4
0
where Q = 9Q(4, 1)/0t. Using the commutator expan-
sion and integrating over x, as in Eq. (4.7), and sub-
stituting in Eq. (8.3), one obtains

{ éo z +1 5 ( élm,,(t))k, élzmAm(z)} = 24().
(8.5)

A recursive procedure again results from equating
coefficients of 2’ on the two sides of Eq. (8.5). For
j =1, one obtains A(f) = A(¢). Hence,

A = L tA(-r) dr. (8.6)
For j = 2 one obtains
Ay(D) + HA, A1) = 0.
Hence,
1 i 4
Ay(t) = ELdG J; dr[A(0), A(7)]. 8.7

For j = 3 one obtains
Ay + 3A1, Ayl + 3[4y, Aj] 4 3A, 1A, Al = 0.

After carrying out the integration and putting the
results in “time-ordered’’ form, one obtains

1 t t1 173
A == f dt, f dtzf dt,
6Jo 0 )

X {[[Al’ A2]’ As] + [[Aa’ Aa]: Al]}a (88)

where A, = A(f,), etc. The fourth-order term is
similarly calculated. We find

1 H t1 ta t3
A = —f dtlf d‘zf dtsf dt,
12 Jo 0 0 0

X {[[[4s, 4s], Ad), A1) + [[[4s, A4], 4s), 4;]
+ [[[Al > Az], AS]’ A4] + [[[A4’ A1]9 AB]a AZ]}
(8.9)

The solution of Egs. (8.1) to fourth order is given by
Eqgs. (8.2), (8.3), and (8.6)-(8.9) with A = 1.5 This

54 Magnus, Ref. 7, and Weiss and Maradudin, Ref. 6, have carried
out the calculation to third order. Their third-order terms, though
not given in such a symmetrical form, may be shown to be equivalent
to ours. A special case of this formula has also been calculated by
Kumar, Ref. 14, to third order.

R. M. WILCOX

result is said to be the continuous analog of the BCH
formula.

We now derive the Fer formula,’® which may be
said to be the continuous analog of the Zassenhaus
formula. Let the solutions of Egs. (8.1,) be given by

Y;.(t) — ezslez“s,el”ss cee (810)
where S; = S,(¢), etc. Substituting Eq. (8.10) into
(8.1;), multiplying from the right by

eSS = [0,
and expanding in terms of repeated commutators as
in Eq. (4.20), one obtains
@0 ln+1 ® ©®

2 {S1,83+3 %

So(n + 1) o Eoml(n + 1)1
S‘ W © Am+2n+3k+3
x {ST’ S3, LR
{87, 5i 2}+mz=:OnZ=:ok§om!n!(k+l)!
x {ST, Sz, SE, $a} + -+ - = AA(1), (8.11)

where the repeated commutators are again defined by
Eqgs. (4.21). The recursion scheme based upon Eq.
(8.11) leads to

Si(®) =J:A(-r) dr,

lm+2n+2

(8.12)

Sy(f) = % L ‘o L "41[4(0), A, (8.13)

1 t i1 123
Sa(t = - f dtlf dtzf dt3
3Jo 0 o

X {[Aza [Aaa Al]] + [ASs [A29 Al]]}‘ (814)

Equations (8.10), (8.12), (8.13), and (8.14), with A = 1,
give the first three factors in the infinite-product
solution to Eqs. (8.1). The paper by Fer discusses the
convergence of the infinite product and derives
recursion relations, but does not obtain explicit
expressions for the §,’s.13

A(t) = e%be®, Y,(1) = eU(Y), (8.15)

where a and b are independent of ¢. Then U(f) must
satisfy
du(t)/dt = (a + AD)U(), UO) = I,

which implies that

(8.16)

U(t) = ot (8.17)

Kumar’s expansion for e@+** as an infinite product
is given byl

e(a+).b)t= atY;_(t), (818)

where Y,(t) is given by Eqgs. (8.10), (8.12), (8.13),

(8.14), - - -, and (8.15). An alternative expansion for
e+ as a product of only two exponentials may
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be more suitable for some purposes. It is obtained
from the Magnus solution to Eqgs. (8.1;) and is given
by Eqgs. (8.18), (8.2), (8.3), (8.6)—(8.9), - - -, and (8.15).
These expansions are more complicated than the
Zassenhaus expansion, Eq. (4.18), but appear to be
more useful when Ab is “small” compared with a.
They also appear to be more useful for large values
of ¢, provided U(z) is unitary. A fuller heuristic com-
parison of the two infinite-product forms for the case
where ¢ — oo has been given by Kumar.!4

8.2. Lie Algebraic Solutions

We now consider the case where A(f) in Eq. (8.1)
may be expressed as a LCLE,

A@) = ay() X1 + ax() X + - - + a,(DX,.
Then if a solution of the form
Y(t) = 2 (8.19)

exists, the repeated-commutator form for Q and the
“closure property” of the Lie algebra imply that
€2(r) is also a linear combination of the X,’s. We will
find some closed-form solutions for two Lie algebras
of physical interest by a method similar to those
employed in previous sections. Our method is also
basically the same as the method employed by Wei
and Norman to obtain solutions in the product form?®

Y(t) = exp [g(D X1] - - - exp [g,(D)X,]  (8.20)
if one ignores the technical group-theoretical con-
siderations of that treatment. In practice, however,
the single-exponential solutions are more difficult to
obtain.

We again consider first the two-dimensional algebra
where [X, Y] = Y. In Eqs. (8.1), let

A = a()X + b(1) Y, (8.2
where a(t) and b(¢) are arbitrary functions of ¢, and let
Q) = a(OX + fO)Y (8.22)

in Eq. (8.19). Substituting Eqgs. (8.21) and (8.22) into
Eq. (8.4) with 2 = 1, using Eq. (6.16), integrating over
x, and equating coeflicients of X and Y, one obtains

& =a(t), au + u(e* — 1) =b(t), (8.23)

where
u(t) = B(6)[(2). (8.24)

Integrating Eqs. (8.23), one obtains

ot) = J; ta(‘r) dr, (8.25)
B = I — T hutp(),  (8.26)

where
(1) = f tdfb(T)e—“‘” dr. (8.27)
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For the case where A(tf) is given by Eq. (8.21), Egs.
(8.19), (8.22), (8.25), (8.26), and (8.27) constitute the
solution of Eq. (8.1). By means of Eq. (7.9), this
result may be shown to be equivalent to the product
form of Wei and Norman,5

Y(t) — ea(t)Xerlt)Y‘ (828)

A solution may also be obtained for the four-
dimensional harmonic-oscillator algebra of Egs. (6.23).
In Eqgs. (8.1) and (8.19), let

A = g(OW + dOX + r(t)Y + u(®)I (8.292)
= g(OIX + wOILY + o(OI) + f(OI, (8.29b)
Q) = y(OW + 8(OX + p(DY + u(®)]  (8.30a)
= Y(OLX + oON[Y + »(O)I] + ¢()I. (8.30b)

Then proceeding in the same way as before, using
either Eqgs. (6.26) or Eq. (6.27), one obtains the
differential equations

7=8
gv+ (1l —e)s ! =d = g,
gw + (e — s = r = gw,
¢ = gw — w)(v — ») + f(1),
where y = y(f), g = g(t), etc. The solution, subject

to the conditions y(0) = 8(0) = p(0) = u(0) = 0, is
given by

y() = f 'gr) dr, 8.31)
w(t) = [ — 1] s(t), (8.32)
() = [1 — eI 158(p), (8.33)

olt) = f g — oW — 1] + @),

(8.34)
where
a(t) Eftd('r)e”(” dr, (8.35)
Bt) = f tr(T)e-”‘f’ dr. (8.36)
(]

For the case where 4(#) is given by Eqgs. (8.29), Egs.
(8.19) and (8.30)—(8.36) constitute the solution of Eq.
(8.1). This may be compared with the product form
of Wei and Norman,%

Y(t) = ey(t)Wea(t)Xeﬁ(t)Yew(t)l, (837)

35 Wei and Norman, Ref. 15, derive differential equations, but
do not explicitly give their solution since they are mainly interested
in determining whether or not solutions exist.
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where a(t), B(t), and y(¢) are given by Eqs. (8.35),
(8.36), and (8.31), respectively, and where

(D) Efotd-r[u('r) — sa(r)r(r)e ). (8.38)

One may use either of these solutions to solve the
problem of the driven harmonic oscillator, without
the necessity of first transforming to the interaction
representation as is usually done.%¢

9. SOLUTIONS OF ifide(s)[or = [J6(D), p(?)]

Consider the equation for the time evolution of
the density matrix p(f), for a system described by a
Hamiltonian JE(7),%

ihdp(1)| 0t = [X(2), p(1)]. o1

(Aside from a sign, the same equation of course
applies to any Heisenberg operator.) In case J(¢) is an
LCLE and p(¢) is initially an LCLE, then Egs. (9.1)
and (6.1) imply that p(z) will remain an LCLE for all
time. A solution may then be readily obtained, as in
Sec. 6. However, the condition that an arbitrary
density matrix be expressible as an LCLE is very
restrictive, so that not many cases occur in practice.
A case where an arbitrary density matrix may be
expressed in terms of an LCLE occurs in the problem
of a spin —} magnetic moment in a time-varying
magnetic field.®

However, as is well known, even if p(0) is not an
LCLE, a solution of Eq. (9.1) is given by

p(5) = UOROU'(), ©2)
where U(¢) is a solution of
ihoU®) [0t = (OHU(), U©O) = 1, 9.3)

the problem discussed in Sec. 8.
A case of much interest is where the density matrix
is initially in thermal equilibrium®®:
p(0) = & PXO Ty [p¥0], 9.4

It follows from the basic lemma given at the end of
Sec. 2 that a solution to Eqs. (9.1) and (9.4) is given by

p(t) = e PH Ty [0, 9.5)
where H(?) satisfies
iHOH([0t = [3e(), H(H)], H(©) = ¥(0). (9.6)

Since H(t) satisfies the same differential equation as

¢ See, e.g., Louisell, Ref. 3, p. 119, Sec. 3.5.

57 See, e.g., Louisell, Ref. 3, Chap. 6. Other references are given
there.

58 See, e.g., F. A. Kaempffer, Concepts in Quantum Mechanics
(Academic Press Inc., New York, 1965), Sec. 4.

59 This situation has been treated by Kubo, Ref. 4,

R. M. WILCOX

p(f), it may appear that nothing has been gained.
However, it may be easier to apply the boundary
conditions to H(0) than to p(0). In particular, H(0) =
J(0) may be an LCLE although p(0) is not. Consid-
ering the various methods available for handling
exponential operators, Egs. (9.5) and (9.6) may also
be a useful starting point for dealing with practical
many-body systems for which exact solutions are
impossible.

Since Tr p(f) = 1 at all times, as is implied by Eq.
(9.4), Eq. (9.1), and the cyclic property of the trace,
Eq. (9.5) may also be written in the form

p(t) = ePE Tt [ #HY), ©.7)

Equation (9.7) shows that at all times the system
behaves as though its temperature remains constant
with a “canonical distribution” determined by the
instantaneous value of the fictitions Hamiltonian
H(?). It may thus be possible to treat nonequilibrium
situations by the methods of equilibrium statistical
mechanics.

A simple illustrative example is the problem of an
arbitrary spin magnetic moment in an arbitrary time-
varying magnetic field with a Hamiltonian

@) = yh(t)-J

= y[h()J, + B0, + A ()]  (9-8)
Then H(¢) is of the form
H(f) = vb(r) - J. 9.9)

It easily follows from Eqs. (9.6), (9.8), (9.9), and
(6.31) that the fictitious field b(r) precesses about the
instantaneous direction of A(f) according to the
equation )

b(¢) = yh(r) x b(2),
with b(0) = h(0).

(9.10)

10. NORMAL-ORDERING OF OPERATORS

Normal-ordering techniques are useful for solving
operator differential equations,®® evaluating matrix
elements,® and finding the quantum operator corre-
sponding to a given classical operator. We have
already encountered an example of this last application
in McCoy’s theorem, Eq. (5.6). Using methods and
formulas of previous sections, we may efficiently derive
a number of related results.

The derivations are greatly facilitated with the aid
of the “normal-ordering operator” N defined as

80 J, L. Anderson, Phys. Rev. 94, 703 (1954); N. N. Bogoliubov
and D. V, Shirkov, Introduction to the Theory of Quantized Fields
(Interscience Publishers, Inc., New York, 1959), p. 486; see also
Louisell, Ref. 3, and Heffner and Louisell, Ref. 16.

$! G. Wick, Phys. Rev. 80, 268 (1950); Bogoliubov and Shirkov,
Ref. 60, Sec. 16; Louisell, Ref. 3; Wilcox, Ref. 50,
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follows®2: With [P, Q] = cI, let the function f(P, Q)
be defined by its formal power-series expansion,

f(P,Q)=al+bP+dQ + ePQ +gQP++--.
(10.1)

Then the linear “superoperator” N acting on f(P, Q)
moves all P’s to the right of the Q’s as though P and
Q commute; i.e.,

NIfP, Ql=al +bP+dQ +(e+gQP+---.
(10.2)

Although other operator expressions may be obtained
from f(P, Q) by application of the commutation
relation, we emphasize that their functional forms
will be different. Thus, even though (P, Q) = g(P, 0)
in the usual operator sense, it need not follow that
N[f(2, )] = N[g(P, Q)]. Some useful properties of
N are a direct consequence of its definition. If
f(P, Q) and g(P, Q) are any two opefator functions,
then

NIf (P, Q)g(P, D] = N([g(P, Q)f(P, Q). (10.3)

If |P’') and |Q’) are eigenstates of P and Q, P|P’') =
P’'|P")and Q|Q') = Q' |Q"), then

NP, QB IP) = f(P', Q) IP"),  (104a)
(QNUAP, DT = (Q' f(P, @), (10.4b)
QNI QB IP) = f(P', @*)KQ' | P'). (104c)

Equations (10.4) usually occur in practice for the case
where P and Q correspond to the annihilation and
creation operators a and a', respectively, and the
vacuum state |0) is involved, a |0) = 0 or (0| a’ = 0.
If the f in Eq. (10.1) also depends upon a parameter
A, f=f(P, Q, ), then it is apparent that N com-
mutes with 9/04 since

N[of(P, Q, /o]
=N[dI+bP+dQ+eePQ+g'QP+ -]
=dI+bP+dQ+( +g)QP+ "
= H{N[f(P, Q, H]}/04,

where @’ = 8a(1)/04, etc. From the definition of the
derivative with respect to an operator, Eq. (2.0), it
readily follows that N also commutes with /0P and
0/0Q.

An important problem of normal-ordering is to
express the product of two normal-ordered products
in normal form.®16

(10.5)

62 Qur definition of the ‘“‘normal-ordering operator” is not the
same as that given by Louisell, Ref. 3, and Heffner and Louisell,
Ref. 16, but we believe it is more convenient.
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Theorem: Let F(P, Q) and G(P, Q) be in normal
form: F(P, Q) = N'[F(P, Q)]; G(P, Q) = N'[G(P, Q)]
Then the normal form of the product is given by

NIF(P + c8/2Q, Q)G(P, Q)]. (10.6)

Proof: We prove the result first for the special case
where F(P, Q) and G(P, Q) have the forms

F(P, Q) = e¥9°F, G(P, Q) = e*%e*F,
Then
F(P, Q)G(P, Q) = e“%e"Fer@eF
— ewcewoevoea:PezP
=N [ewvcewoevoexPezP]
— N[ewoez(P+cu)ere=P]
=N [erez(P+ca/ 3Q )erezP]

= N[F(P + ¢9/0Q, Q)G(P, Q)].

The general case easily follows by the method of
linear superposition. The theorem may be readily
generalized to the case of more than one pair of
conjugate variables.

As an application of this theorem, consider the case
where F(P, Q) = P™, G(P, Q) = Q". Then
P"Q" = N[(P + ¢0/0Q)"Q"]
m m!Pm—J'ci aiQn
i=oj! (m — j)! 9Q?
% m! n! cfQ™ipm™I
T Sjtm =t — )
To show how the theorem may be used for solving
differential equations, and to compare with the treat-
ment of Heffner and Louisell,’®* we consider their
example of a spin magnetic moment in a rotating
magnetic field. The Hamiltonian is then of the form*®
3 = diwy(b'b — c'¢) + 3hyH (b et + c'be),
(10.8)

(10.7)

where the annihilation and creation operators b, b',
¢, and ¢! were defined in Eq. (6.39), and 4, w,, 7, Hy,
and w are costants. We assume that the solution of
the equation
ihU = ihdU[ot = XU
is of the form®
U = N{exp [(4 — 1)b'b + (B — 1)c'c
+ Db'c + Ec'b]}, (10.10)

(10.9)

where N orders b and c to the right of b' and c', and

83 For convenience, we define U such that 4, B, D, and E corre-
spond to the notation of Ref. 16, but this, of course, is not essential
for the solution of the problem.
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the scalar functions 4, B, D, and E are to be deter-
mined. It clearly follows that

U= AbtUb + Bc'Uc + Db'Uc + Ec'Ub. (10.11)

From the above theorem, 2JEU/A is given by

N[(wob" + yHyeeY(b + 9/0b"U
+ (—woc’ + yH e @B c + 8/ac) UL (10.12)
Since
oU[dbt = U[(4 — 1)b + Dc]  (10.13)
and
dU/dct = U[(B — 1)c + Eb],  (10.14)

it follows from Egs. (10.9)-(10.14), by equating
coefficients of b'Ub, c'Ue, b'Uc, and c¢'Ub, respec-
tively, that

i04/0t = twoA + YyH,e ™'E,
i0B[0t = —}w,B + }yH,e"'D,
ioD[0t = }wD + iyH,e "B,
i0E/0t = —}woE + }yH,e"'A.

We refer the reader to Ref. 16 for the solution of these
equations. Note that the treatment given here avoids
the necessity of transforming the annihilation—-
creation operator space onto a space of commuting
algebraic variables, and back again.

We next derive a general result which is primarily
of interest for cases where P and Q are annihilation
and creation operators. Let

e’Pe"9Fe'Q = N [exp (fQP + gP + hQ + sD)).
(10.16)
In Eq. (10.16), we regard f, g, h, and s to be scalar
functions of x which depend parametrically upon
z and y. Differentiating Eq. (10.16) with respect to
x and substituting Eq. (10.16) into the result, one
obtains

ezPQPea:QPer — QezPe:cQPeyQ(f’P + h')
+ ePe*@PevQ(g'P 4 5'I). (10.17)

Multiplying Eq. (10.17) from the right by e~v@e—=9F x
e*F, carrying out the similarity transformations, and
equating coefficients of QP, P, Q, and I, respectively,
on the two sides of the equation, one obtains

f’ — eca:’

4
g = cze”™,

(10.15)

W= cyf’ = cye"”, (1018)

s = cyg’ = cPyze.

Integrating Eqs. (10.18) subject to the conditions
f0) =0, g0) =2z h0)=y, and s(0) =cyz and
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substituting the results into Eq. (10.16), one obtains

e’Fe™@Fe?? = N{exp [c7(e”® — 1)QP
+ e““(zP + yQ + cyzD)]}. (10.19)

A special case of interest is obtained by setting z = 0,
P=a, Q =a',and c = 1 in Eq. (10.19):

e#lagua’ = exp (yeta’)N{exp [(¢* — Datal}. (10.20)

By the method of linear superposition on y, it follows
from Eq. (10.20) that

e'af(ah) = f(eFa)N{exp [(¢° — Da'al}. (10.21)

A special case of Eq. (10.20) or (10.21) has been derived
in Ref. 3 by a different method:

' = N{exp [(¢” — Da'al}  (10.22a)
=3 (e — el (10.220)

This result is also a special case of a theorem due to
McCoy. [See Eqs. (10.38) and (10.41).] Another result
given in Ref. 3 is easily obtained from Eq. (10.22b) by
using the binomial expansion,

(ea: — 1)' —_ i (_)r—sr! e

Sost(r—s)’

and employing the method of linear superposition
on x:

f(a’ra) = i é (_)r—s.f(s) aTrar.

r—0s=as! (r — s)! (10.23)

It is sometimes useful to put expressions in antinormal
form. Let N be the antinormal-ordering operator
defined similarly to N except that it puts the a’s to
the left of the as. Thus the antiequation of (10.22a) is
given by

et = e=Niexp [(1 — e®)alal}.  (10.24)

Substituting Eq. (10.24) into Eq. (10.21) and letting
(1 —e® =2z one obtains a result derived by
Schwinger in a different manner'?:

N[ezaTa]f(aT) = 1—iz f(l a_T z).N’l:exp (lzafa ):I

-2z
(10.25a)

Another formula given by Schwinger is similarly
derived:

f@New's = .N’[exp (fiaz):'l i z f(l i Z)'

(10.25b)

Using these formulas with a' = x and a = 9/ox,
Schwinger has derived some interesting operator
identities and classical formulas involving cylinder
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functions and associated Laguerre polynomials. A
corollary of one of these is the formula

a™ay™ = m! (@Y N[LT(—a'a)], (10.26)

a result which one may also obtain directly from Eq.
(10.7) by using the definition of the associated
Laguerre polynomial.

The next derivation shows how the exponential
of an arbitrary second-degree polynomial may be put
into normal form. This result generalizes a theorem of
McCoy. 28

Theorem: Let
eZ = N(e%), (10.27)
where
Z=aP?+ fQO* + yOP 4 0P + €0, (10.28)
W = AP?> 4+ BQ? + GQP + DP + EQ + FL
(10.29)
Then Eq. (10.27) is identically satisfied provided
o™l4 = 1B = H = (AJ)'sinh 4,
G=cYW(J1-1),
D = p*(+G + 2uAd),
E = p%(uG + 27B),
= —}InJ — {ey + pXg — yde) + plTuG
+ p*(dofy + 9 — 8xfyde)H,

(10.30)

where
J=coshA — pysinhd, p= 41

A = c[y? — 4afl}, p = ae? 4 p6?%,  (10.31)
T=y0 — 20e, u=ye— 2f0.
Proof: Instead of Eq. (10.27), consider
e*Z = N[, (10.32)
where W(0) = 0. In Eq. (10.29), W, 4, B, G, D, E, and
F are now considered to be functions of x. Differ-
entiating Eq. (10.32) with respect to x, one obtains
Zexz = .N’[W'(x)eW(z)]
= ArewZP2 + BleezZ + GlQea:ZP
+ D'¢"’P + E'Qe*” + F'e*%, (10.33)
where A’ = 04/0x, etc. Multiplying Eq. (10.33) from
the right by e~Z, one obtains
7 = Area:ZPZe—mZ + (GIQ + D/)ea:ZPe—a:Z
4+ B'0*+ E'Q + F'I. (10.34)
The quantities e*2Pe~*Z and
ea:Z Pze—xz = [ea:Z Pe—zz]z

are obtained from Eqgs. (6.48)-(6.51). Equating
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coefficients of P2, QP, Q%, P, Q, and I, respectively, on
the two sides of Eq. (10.34) leads to the differential
equations
a=Ad?, y=24'de + G'd,
p=A¢+ B + G'e, 6=24"df+ D'd,
e=24"ef+ G'f+ D'e + E',
0=Af2+ cA'de + D'f + F,
where d = d(x), e = e(x), and f = f(x) are defined by
Egs. (6.50). Equations (10.35) simplify to
A'la =B[f=d2 G =—cldd,
D' = p¥(7G" + 2ud’), E' = p(uG’ + 27B’),
F'= —3d'd? + pXp — yde) + p'ruG’
—dcy + p'(dafe + v — 8afyde)d2.
(10.36)
Integrating Eqs. (10.36) subject to A(0)=---=
F(0) = 0 and setting x = 1, one obtains Eqgs. (10.30)
for 4 = A(1), B = B(l), etc. Q.E.D.

Using Eq. (2.8), one may verify that both sides of Eq.
(10.27) satisfy the pair of partial differential equations

dUJOP = 2AUP + GQU + DU, (10.37a)
dUJ2Q = GUP + 2BQU + EU. (10.37b)

Some special cases of Eqs. (10.27)-(10.31) are of
interest. If 6 = € = 0, then D = F = 0 and

exp («P* + BQ* + yQP)

= [JeT*N[exp (AP% + BQ® + GQP)], (10.38)
where 4, B, G, and J are given by Eqgs. (10.30) and
(10.31). This result may be shown to be equivalent to
McCoy’s theorem.’® We note that McCoy gave an
ingenious derivation based upon a pair of partial
differential equations like Eqs. (10.37) with D = E =
0. If we set y = 0 in Eq. (10.28) and define

S=P+0l, R=Q+ol, y=2(@p?t, (10.39)
then
exp («S% + SR?)
= (sec y)tN{exp [(y* tan y)(xS? + BR?)
+ ¢ I(sec y — DRS]}. (10.40)
If we set « = § = 0in Eq. (10.28) and define S and R
by Eqgs. (10.39), then
e'BS = N{exp [ "(e” — DRS]}.  (10.41)

Equations (10.40) and (10.41) may also be derived
from Eq. (10.38) by using the fact that S and R satisfy
the same commutation relation as P and Q.

An expansion of Kermack and McCrea, which

(10.35)
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provided the starting point for Sach’s derivation of
his “Taylor’s theorem for shift operators,”!! is as
follows*®:

FIP + ¢(Q)]

ep

= .w{ [exp  dxel0 + cx)]F(P)} (10.42a)

= N{exp [¢(Q)0/0OP + }c¢'(Q)0"/0P"
+ 3c*¢"(Q)2*/0P® + - - -]}F(P). (10.42b)

For the special case where F(P) = ¢*F, Eq. (10.42a)
easily follows from Eq. (7.33), while the general case
follows by the method of linear superposition.
Equation (10.42b) follows from Eq. (10.42a) by Taylor-
expanding ¢(Q + cx) about x = 0 and carrying out
the integration over x.

A result recently obtained by Cohen is readily
obtained by setting ¢(Q) = Q@ and F(P)=P" in
Eq. (10.42b).

(P + Q) = Nl[exp (Q9/oP + }co*/oP*)1P*

Qa © (%C)kaZkP”/asz
= N]exp (=) D +—F—""
[ xp (aP) IZO k!
=[§L] (éc)kn! © Qs(aapn—Zk/aPs)
w=okl(n — 2k)!izo s!
[$n] n—2k (%c)"n' QsPn-Zk—a
5 Sokls!(n — 2k — 5)!
Equation (10.43) may be easily shown to be equivalent
to Cohen’s result which he obtained as an application
of his “Expansion Theorem for Functions of Opera-
tors.””2? In contrast to the normal-ordering theorems
considered above, this theorem requires for its ap-
plication that one knows the solution to an eigenvalue

problem. A slightly more general statement of Cohen’s
theorem and a briefer proof of it follow.

(10.43)

Theorem: Let F(g,p) be a Hermitian operator
function of ¢ and p, with [g, p] = ik, which satisfies
the eigenvalue equation

Flk) = oy |k). (10.44)
Then any operator function g(F) may be represented
by

g(F) =§0g(ak)wk(q)f_iw: (q + 0)e®?*dp, (10.45)

where v,(¢") = (¢'| k). If the eigenvalue spectrum of
F is continuous, the summation is to be replaced by
an integration.

Proof: Equation (10.45) may be verified by showing
that the matrix elements of both sides are the same
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between states (¢’| and [¢"). Since g(F) has the same
eigenstates as F, the left-hand side of Eq. (10.45) may
be written

o(F) = éog(«k) [Ry(k]- (10.46)

Hence
@) &F) 1" = éog(«k)wk(q')w:(q ". (10.47)

The corresponding matrix element of the right-hand
side of Eq. (10.45) is given by

pFICATACY f_ vh@'+ 6)q' [ € |g") db. (10.48)
From Eq. (2.11), we have

@ e gy = (q'| ¢" — 6)
=g —q" +0). (10.49)

Substituting Eq. (10.49) into Eq. (10.48), one obtains
Eq. (10.47). Q.E.D.

11. HIGHER DERIVATIVES

Higher derivatives of exponential operators may be
obtained straightforwardly by repeated application of
Eq. (2.1). The results obtained, however, are not in the
most concise and symmetrical form possible. Although
they may be put into a symmetrical “time-ordered”
form by a change of integration variables, we prefer
to proceed in a different manner which makes use
of an integral representation due to Poincaré®':

f(H) = Qi)™ f f(@)(zl — HyYdz. (11.1)

In Eq. (11.1), it is assumed that the contour of inte-
gration encloses a region of the complex z plane where
all the eigenvalues of H lie and throughout which
f(2) is analytic. Equation (11.1) may be verified by
taking matrix elements of both sides in a representa-
tion in which H is diagonal, and employing the
Cauchy integral formula. For convenience, we assume
that H is a positive-definite Hermitian operator with
a discrete eigenvalue spectrum although the results
obtained are often valid under less restrictive condi-
tions.

We consider first the case where f(z) = ¢~#%, and
rotate 90° to the x plane defined by x = iz. From
Eq. (11.1), it then follows that

E(B) = Qi) f " ePe(x — iHy'dx  (11.2a)
e 2 B> 0,
o <o (11.2b)
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The cases 8 > 0 and § < 0, respectively, are obtained
by choosing the contours of integration to be infinite
semicircles in the upper- and lower-half x plane.
For the special case where H = H(A) is of the form
H =X + AV, one finds that the nth derivative of
E(B) with respect to A, 9"E(8)/0A™ = E™)(p), is given
by
"' i f dxe*(x — iHY ' [V(x — ih)™*]". (11.3)

Equatlon (11.3) follows directly from Eq. (11.2a) by
using the formula for the derivative of the inverse,

Bl(x — iHY1)/0A = i(x — iH)W(x — iH).

A recursive formula for E®(8) which shows its “time-
ordered” form is given by

(n} —_ # _ (n—1)
E™(B) = nf duE( — w)VE"(u). (11.4)
(1]

Equation (11.4) follows from Eq. (11.3) by writing it
in the form

nli f dx dyd(x — y)e?=(x — iH){V(y — iH)]"

n'z

du dx dyem(y—-z) ifx

x (x — iH) ™ [V(y — iH) 1"

= —nf duE(B — u)VE"V(u). (11.5)
In the integrations over x and y, we have used Egs.
(11.2) and (11.3), respectively. Equation (11.5) is the
same as Eq. (11.4), since E(8 — u) =0if u > 8, and
E"-U(y) =0 if u < 0. For the case where n=1,
since E©(u) = E(u) = e *H, Eq. (11.4) constitutes
another derivation of Eq. (2.1). An equation like
Eq. (11.4) has been derived by Kumar in a different
manner, while the derivatives of the exponential
evaluated at 2 = 0 occur in a well-known expansion
of e¥+4  Of course, higher derivatives may also
be calculated from Eqgs. (11.2) in the same manner
when H does not just depend linearly upon 4, but the
results will be more complicated. For example, the
second derivative, E"(f) = 0% #H 022, is then given
by®4

B
E'p) = — f duE(p — uH"E(u)

B u
+ ZJ; duf0 dvE(f — w)H'E(u — v)H'E(v),

(11.6)
where H' = 0H/[0A and H" = 0*H[022.

8¢ An equivalent formula given by Snider, Ref. 23, Eq. (B7), is not
as concise and symmetrical,
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The Poincaré formula may also be used to efficiently
obtain results of the type derived by Aizu for general
operator functions.? A formula from which a number
of sum rules can be derived is obtained by considering
H to be a function of two parameters, 4 and y, and
taking matrix elements of 9% (H)/0A0u. Then from
Eq. (11.1), one obtains

m laa’;(aH) Iry = ml Ay + Ay + By 9, (11.7)

where
(mlA4;,|n= Z (MI ln)(nl - lr)Smm (11.8)

and
<m| BA‘; lr> = (m' 3).8 Ir>Tmr (11°9)
In Eqs. (11.8) and (11.9), S,,,,,, and T, are defined by
f(2)dz
”m' 27”-[ (Z - m)(z - H”)(Z - Hr)’ (11.10)
f(z) dz

T, = 2mf Z—H)z—H (11.}1)

Performing the contour integrations, one obtains

fHy) — f(H)

Tmr = Amr ! Hm mr 11.12
S + pu2 == (1112
and
Sm'nr = %AmnAnrf”(Hm) + Umm‘ + Urmn + Unrm’
(11.13)
where
A 1 {1’ Ha = H,, (11.14)
mn — Pmn— 0’ Hm#H”’ -
U = PmnPanrmf (H m)
- (Hm - Hn)(Hm - Hr)
fH) —fH,) f'(Hy)
A -
+ mﬂpﬂf[ (Hr _ Hm)2 Hr _ H
(11.15)

Equations (11.7)-(11.9) and (11.12)-(11.15) may be
shown to be equivalent to [25] of Aizu.2

It is straightforward to obtain matrix elements of
higher derivatives by the same method, but the results
obtained are complicated. If one specializes the
results so obtained to the case where f(H)=
S + AV) = exp (X + AV) and compares with the
matrix elements of Eq. (11.4), one finds that the latter
results do not immediately have such a simple form.
Comparison of the two forms reveals the existence of
the curious identity

N

N
Z H (x; — xk)_l =

=0 k=1
k#j

(11.16)
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where the variables x;, x;,°**, Xy, stand for H,,,
H,, H,, etc., and it is assumed that no two are equal.
Equation (11.6) may also be derived from the Lagran-
gian interpolation formula.%

Poincaré’s formula is also well suited to derive [27]
and [28] of Aizu, which depend upon the cyclic prop-
erty of the trace. We indicate the proof for [27].

Theorem?:
3 () dg(H)] _ 2g(H) 3 (H)
Tr ['P(H)__az e }—Tr. [«p(H) e ]

where ¢, f, and g are arbitrary functions.

5 The author is indebted to Dr. P, F. Wacker for suggesting to
him that this might be the case.
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Proof:

[ ]

x Te [ plaz — )™

f f(2) dzf g(w) dw
o0H
o4
X (z — H Y (w — H)™! oH w— H)—l].
op
Since (z — H) L, (w — H)%, and ¢(H) commute, z and

w can effectively be interchanged in the trace, so that
the theorem follows.
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