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situation. This analogy defines an effective tem-
perature or “noise temperature” for the nonequi-
librium circuit. We can also define an entropy for
the nonequilibrium system via its distribution func=
tion, which will be identical to the entropy of the
equivalent equilibrium circuit. We have then shown
that dS=dQ/T, where —dQ is the energy given up
by the circuit elements to the reservoir, to the ex-
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tent that it exceeds the amount predicted from the
macroscopic circuit equations.

The attempt to proceed to circuits containing
more than one reactance has been handled suc-
cessfully only in cases where either all of the time
constants for the relaxation of the degrees of free-
dom are fast compared to one, or else the case
where all the effective temperatures are equal.
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For the description of an assembly of two-level atoms, atomic coherent states can be de-
fined which have properties analogous to those of the field coherent states. The analogy is not
fortuitous, but is shown to be related to the group contraction of exponential operators based
on the angular momentum algebra to exponential operators based on the harmonic-oscillator
algebra. The derivation of the properties of the atomic coherent states is made easier by the
use of a powerful disentangling theorem for exponential angular momentum operators. A com-
plete labeling of the atomic states is developed and many of their properties are studied. In
particular it is shown that the atomic coherent states are the quantum analogs of classical
dipoles, and that they can be produced by classical fields.

I. INTRODUCTION

Many problems in quantum optics can be dealt
with in terms of the interaction of an assembly of
two-level atoms with a transverse electromagnetic
field. In these problems a particular set of quan-

tum states has to be selected for the description of
both field and atoms. The choice of a particular
representation is always motivated by convenience
rather than by necessity. A good example is given
by the free field. Early treatments have made
large use of Fock states, i.e., photon number
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states which are eigenstates of the free-field
Hamiltonian. Although they form a perfectly valid
basis for the corresponding Hilbert space, these
states are poorly suited for the description of laser
fields which contain a large and intrinsically un-
certain number of photons. In this case the reac-
tion of the field on the radiating atoms can be ap-
proximated by a mean field, as in classical radi-
ation problems. The field states generated from
vacuum by classical currents are well known,! and
happen to be eigenstates of the annihilation opera-
tor. The coordinate representation is the mini-
mum-uncertainty packet of harmonic oscillators.?
These so-called coherent states, whose usage in
atom-field interaction problems was introduced by
Senitzky,® have now been extensively studied and
applied to quantum-optical problems,* and will be
called here Glauber states.

The coherent states of the radiation field have
attractive properties. They are obtained from
the vacuum state by a unitary shift operator, and
are minimum-uncertainty states, i.e., products
of mean-square deviations of conjugated variables
are minimum in these states, e.g., (Ap®)(Ag?)
=172, Though not orthogonal, they obey a com-
pleteness relation, and hence form a good set of
basis states. In fact, the overcompleteness of
coherent states allows the expansion of many im-
portant field operators as a single integral over
projectors on these states. Finally, these states
correspond to the field radiated by classical cur-
rents, i.e., currents produced by moving charges
for which the field reaction is neglected. In this
sense these states provide a quantum description
of classical fields.

One purpose of the present paper is to show that
states with completely analogous properties can be
defined for the free-atom assembly. In fact, to
each property of the atomic coherent states there
exists a corresponding property of the field co-
herent states. This duality, far from being ac-
cidental, will be shown to be deeply rooted and
related to the contraction of the rotation group de-
scribing motions on a sphere, onto a translation
group describing motions in the harmonic-oscilla-
tor phase space.

For a single two-level system, that of atom #,
the ground-state ket will be labeled [33) and the
upper-state ket |]). Any operator acting on this
system can be expanded in the set of Pauli ma-
trices o,", 0,", 0", plus the identity matrix I3,
associated with this particular atom. The two-
level system is thus identical to a spin-3 system
for which spin-up and spin-down operators are
defined by

(1.1)

For recollection, the commutation rules of these

0."=3(0," + i0,") .
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|o»

operators are

[Uz,o.t]:izo-i, [(7+:0'-]=0'g . (1.2)

The states |¢7) and |y} ) are eigenstates of ¢,".
Such a choice of basis is convenient but by no
means unique. Any other linear combination
2

i =oyly)  G=1,2) (1.3)
may be chosen which preserves orthogonality and
normalization. The most general transformations
U,; with these properties are the collection of 2
X 2 unitary matrices which form the group U(2).%8
The subgroup of transformations with determinant
+1 forms the group SU(2), familiar from angular
momentum analysis. U(2) and SU(2) differ by a
trivial phase factor.

Turning to the assembly of N atoms, the cor-
responding Hilbert space is spanned by the set of
2% product states

N
[Gugn =L IW) G=1,2). (1.4)
Collective angular momentum operators are de-
fined by

Ju=%2,,ou" (u=x,9,2), (1.5a)

J=240., (1. 5b)

JE=J2+d 2 +d2 . (1.5¢)
For the moment the effect of the different spatial
positions of atoms 1, 2, ..., N is ignored. This

effect is important for the atom-field interaction
and will be discussed in Sec. VI where more ap-
propriate collective angular momentum operators
are defined.

Following the historical development of quantum
mechanics one could choose as another suitable
basis, in place of (1.4), the set of eigenstates of
the energy operator J,. In this case, symmetry
requirements actually indicate an appropriate
complete set of commuting observables to which
dJ, belongs and whose simultaneous eigenstates
form the basis. In analogy to angular momentum
eigenstates these orthonormal states will be labeled

HEF (1.6)
where J(J+1) and M are the eigenvalues of J2 and
J,, respectively. The quantum numbers X and [
are those additional eigenvalues which are re-
quired to provide a complete set of labels. They
are related to the permutation properties of the
free-atom Hamiltonian and will be explained in
Sec. V. The energy eigenstates (1.6) have been
used in the study of superradiance’ and will be
called Dicke states. They will be shown to have a
close relationship to the Fock states of the free-
field problem.
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Another natural way to describe the N atoms is
through the overcomplete set of product states

N
|¢(as, bys +- .5 ay, by))=I (a, |91+, ]03)),
n=1 (1 . 7)
with |4,12+1b,12=1. These states display no cor-
relations between different atoms.® For any nor-
malized state |3 ) of the N-atom assembly, a de-
gree of correlation can be defined in the follcwing
manner: One forms the overlap integral
1(pld(ay, by;...;ay, by))|? and maximizes the re-
sult with respect to the set (a;, ;), i=1to N. The
complement to one of this maximized overlap in-
tegral is defined as the degree of atomic correla-
tion of the state |y ). It can easily be seen that all
states of the form (1.7) have zero correlation,
whereas the Dicke states (1.6) of maximum J
(J=1N) and small M (M ~0) have a correlation
which approaches unity for large-N values. '
Another set of overcomplete states can be ob-

tained by rotating the Dicke states |7;; }) through
an angle (9, ¢) in angular momentum space. These
states, which can be labeled

PP (1.8)

are the atomic coherent states. They will be
named Bloch states in view of their resemblance
to the spin states common in nuclear-induction
problems.8 The profound difference between states
of type (1.6) and those of type (1.7) has already
been discussed by Senitzky.® The Bloch states

(1. 8) should not be mistaken for uncorrelated co-
herent states of type (1.7). Only for J=3N are the
Bloch states a subset of (1.7).

The remainder of the paper is subdivided as fol-
lows: Sections II and III give a parallel treatment
of the field and atomic states, respectively. For
simplicity, Sec. II deals with a single-field mode,
and Sec. III with a single member of the set (X, i).
The notation in Sec. III is therefore simplified,
|J, M) or |M) replacing (1.6), and |J, 6¢ ) or
|8, @ ) replacing (1.8). Section IV explains the
group-contraction procedure which allows deriva-
tion of all the properties of the field states in
Sec. II from the corresponding properties of the
atomic states in Sec. III. Section V describes the
symmetry properties of the atomic states and, in
particular, explains the full notation (1.6) and
(1.8). In Secs. VI and VII some aspects of the
atom-field interaction are considered. In Sec.

V1 the spatial dependence of atomic states is in-
troduced. In the case of a single-field mode, op-
erators replacing the set (1.5) can be defined such
that the interaction preserves the symmetry prop-
erties of the states. Various approximations are
presented and radiation rates calculated. Some
aspects of the interaction with a classical field
are discussed in Sec. VII. Section VIII shows how

the disentangling and contraction procedures can
be applied to the calculation of thermal averages.
Appendix A gives a disentangling theorem for ex-
ponential angular momentum operators, and some
resulting properties, such as formulas for the
coupling of rotations. The disentangling proper-
ties should find great use in many other fields of
physics where rotations are considered and ex-
pectation values have to be calculated. Appendix
B shows an example of the application of the dis-
entangling theorem to the calculation of generating
functions for expectation values of any product of
angular momentum operators in Bloch states. Ap-
pendix C shows that the contraction of the rotation
group onto the oscillator group can also be used
to derive the Hermite polynomials and their prop-
erties from the spherical harmonics and their
properties. Appendix D gives some useful formu-
las relating Bloch states, spherical harmonics, and
irreducible representations of the full rotation
group.

II. DESCRIPTION OF THE FREE FIELD

A. Harmonic-Oscillator States

In order to point out with maximum clarity the
analogies between the free-field description and
the free-atom description, we start by listing
here, in simple terms, the properties of the single
harmonic oscillator. The equation numbering here
and in Sec. III is done in parallel.

The single harmonic oscillator is described by
its canonically conjugated coordinates (g, p) with
the commutation relation

lg,p]=in . (2.1)

One forms the usual lowering and raising opera-
tors

el

a=2mom wmq+ip) , (2.2a)

a' = QCrwm) 2 (wmg - ip) , (2. 2b)

where wm >0 is characteristic of the oscillator.
These operators satisfy

[a,a']=1 (2.3a)
from which one obtains

[a,a'al=a, (2.3b)

[d', d'a]l=-a' . (2.3c)

The harmonic-oscillator states, or Fock states,
are the eigenstates of

N=d'a (2.4)
and are given by®

|n)=m!)Y3a"y|0) (2=0,1,2...) (2.5)
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with eigenvalue ». The vacuum state |0) is the
harmonic-oscillator ground state definea by

al0)=0.
B. Coherent States of the Field

(2.8)

Let us consider the translation operator which
produces a shift £ in g and 9 in p:
Ta__:e(-i/h)(tl’-'lq):edat- a¥*a , (2.7a)
where
(2.7p)

A coherent state |a) is obtained by translation of
the ground state

lay=7,]0). (2.8)

We shall name these states Glauber states, since
they have been used extensively by Glauber in
quantum optics.! Since

a=2hwm)? (wmé +in) .

(2.9)
the state | o) satisfies the eigenvalue equation
(a-a)la)=0. (2.10)

Using a Baker-Campbell~Hausdorff formula!®

or Feynman’s disentangling techniques, 12 the trans-
lation operator T, can be written in the following
forms:

1
TwaTy=a~a,

2 - aX AP t ook
Ta=e'°" /Ze a¥a aa’ =, lal /Zeua e~ ¥a, (2.11)

The second of these forms, which is known as the
normally ordered form, immediately gives the
expansion of |« ) in terms of Fock states,

lay=17,]0)=e"e1?/250" | 0y | (2.12)

whence, expanding the exponential and using (2. 5),
(n|ay=e*1*/ 207/ (a1 /2 (2.13)

The scalar product of Glauber states can be ob-
tained either from (2.12), using the disentangling
theorem (2.11), or from (2.13), using the com-
pleteness property of Fock states Jln)(nl|=1.
One gets

<a|B>=e-[la'lz-Za*B*-lBlz]/Z’ (2.14a)
whence,
|(alg)|2=e ta-s1® (2.14b)

The coherent states are minimum-uncertainty
packets. For three observables A, B, C, which
obey a commutation relation [A, B]=iC, it is easy
to show® that (A%)(B?)>1(C)2 In particular,
with A=g—-&, B=p -7, and C=7, one has

((g=eP)((p-n)ly24n® (2.15)

for any state. It is easy to show that the equality
sign holds for the coherent state | a), where « is

related to £ and by (2.7b). This establishes the
minimum-uncertainty property.

C. Coherent States as Basis

We now consider the completeness properties
of the coherent states. Using (2.13), and the com-
pleteness of Fock states J, In){n| =1, one obtains
straightforwardly

fg;gla)(ahl .

The expansion of an arbitrary state in Glauber
states follows:

!c)EEc,,|n)=J %‘1 Ec,,|a>(a|n)

f q‘?‘ e 2p(ax) )

(2.16)

(2.17a)

where
Fla*) =23, c,(a* )/ (n!) 2= elet? (aley. (2.170)
Using (2.5), it is seen that |¢) can also be written
as

ley=Fla"l0), (2.18)

where f(a") is defined by its expansion (2.17b).
The scalar product of any two states | ¢’ ) and |¢)
is obtained from (2. 16) and (2. 17b):

(C’|0>=fdz—g- ('|a)(alc)

&
=f—ﬁﬁ ML @) . (2.19)
In view of the completeness relations, operators
F acting on this Hilbert space can be expanded as

F=20 |\ m)(m|F|n)(n] (2.20a)

or
2
F=ffj%i—éiﬁ><ﬁll’la)<al . (2. 20b)

Owing to the overcompleteness of the | ) states,
the expansion (2. 20b) is in general not unique.
This expansion is especially useful if it can be
written in the diagonal form

F=[@afla)a)al . (2.20c)

This will be discussed further for the case of the
density matrix.

D. Statistical Operator for the Field

Up to here we have considered pure quantum
states. Since a field in thermal equilibrium with
matter at ordinary temperatures is essentially in
the ground state (7w > kT), this is an adequate de-
scription for any field obtained from the thermal
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equilibrium in response to a classical current.
However, the field radiated by an incoherently
pumped medium is a statistical mixture described
by a statistical operator p, which we assume nor-

malized to unity,
Trp=1. (2.21)

With the help of this operator, the statistical
average of any observable F(a, a') is obtained as

(F)=TrpF . (2.22)

Of particular interest are statistical ensembles
described by a statistical operator which is diag-
onal in the Glauber representation,*

p=[Pla)| a){a|da, (2.23)
where the normalization (2. 21) requires
[Pla)da=1. (2.24)

The statistical average of an observable F is then
given by an average over the diagonal elements
(al|Fla):

(F)=[P(a){a|F|a)da . (2. 25)

The weight function P(a) has thus the properties
of a distribution function in « space, except that
it is not necessarily positive.

Let us define a set of operators X(\) such that
their expectation values for coherent states

b*(\)=(a|X0)| a) (2. 26)

form a basis in the function space of functions of
a. If the statistical ensemble has a diagonal rep-
resentation (2. 23), then the statistical averages of
the operators X(1) form a kind of characteristic
function of P(a):

X0)=(X0))= [ @aP(a)b*() . (2.27)

The weight function P(a) can be expressed in
terms of X(1) with the help of the reciprocal basis
Ba),

Pla)= [ X0\ (a) . (2.28)
A convenient basis is the Fourier basis
b*() = ¥t (2.29a)
- 1 * %
A - -Aa +N A
™) W e s (2.29b)

which is generated by the normally ordered opera-
tors

X,00) =M, (2.29¢c)

The question of the existence of the P representa-
tion is a complicated one.*!® Using the Fourier
basis (2. 29) it can be shown, however, that the
mere existence of the inverse transformation

(2. 28) guarantees that the resulting function P(a)

can be used to calculate the statistical average of
any product ¢'™q" as if P(a) were the weight func-
tion defined in (2.23). This is due to the fact that
the characteristic function X,(2) plays the role of
a generating function for {a™d"):

(= (&) (~52) %0

) axx) “N

whence, by derivation of (2.27), one obtains
(a"d'y= [daP(a)(ala™a"|a),

which is a particular case of (2. 25) and proves
the above statement. One could, moreover, in-
troduce, in addition to (2.29c), symmetrically or-
dered Xs(x) and antinormally ordered X’A ) ex-
ponential operators.*!® The Fourier transform

of their statistical averages are the Wigner dis-
tribution and the matrix element (1/7){alpla),
respectively. We shall not develop these aspects
further as the corresponding expressions for
atomic coherent states are rather involved, and of
no clear use as yet.

=0

III. DESCRIPTION OF FREE ATOMS
A. Angular Momentum States

As shown in the Introduction, angular momen-
tum operators can be defined which act on the N-
atom Hilbert space. In particular we can consider
a subspace of degenerate eigenstates of J % with
eigenvalues J(J+1). Since J2 commutes with J, ,
dJ,, J,, these operators only connect states within
the same subspace. In general J2 and J, do not
form a complete set of commuting observables.

As explained in Sec. V, such a complete set is
formed by adding to J2 and J, some operators of
the permutation group of N objects P,. These op-
erators play, with respect to P,, the same role

as J2 and J, with respect to the three-dimensional
rotation group. We shall assume that the subspace
considered here has also been made invariant un-
der these permutation operations, but for simplic-
ity we shall omit, for the time being, to indicate
this in the labeling of the states. The subspace we
are dealing with is identical to a constant angular
momentum Hilbert space. The Dicke states, which
are the analog of the Fock states (2.5), and the
Bloch states, which correspond to the Glauber
states (2.8), are most easily defined within such

a subspace. The equation numbering is in parallel
with that of Sec. II. From the angular momentum
operators J, and J,, which satisfy the commuta-
tion relation

[J,, I]=id, , (3.1)
the lowering and raising operators are formed,
J.=Jd, - iy, (3. 2a)

J,=d, +id, 3. 2b)
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which obey
., d,]=-2d,, (3.3a)
[, JL]=d_, (3.3b)

(3.3c)

The Dicke states, which are simply the usual angu-
lar momentum states,” are defined as the eigen-
states of

Jz=%(J+J--J-J¢) . (3‘4)
They are given by®

1 27 Y2 .
‘M>=(M+J)! (M+J> I3 J‘_J>

M=-d,-J+1,...,d), (38.5)

[Jng]:_Jq- .

with eigenvalue M. They span the space of angular
momentum quantum number J. The ground state
| - J) is defined by

J|-Jy=0. (3.6)
B. Coherent Atomic States

Let us consider the rotation operator which pro-
duces a rotation through an angle 6 about an axis
n=(sing, - cosg, 0) as shown in Fig. 1:

~i07y _ =160 Sin0 =Ty cos0) = g8 - et
>

Rgo=e
(3.7a)
where
g=30¢t" . (3.70)

A coherent atomic state, or Bloch state, |6, ¢)
is obtained by rotation of the ground state |- J):

16,0)=Ry,|=J) . (3.8)
Referring to Fig. 1, it is seen that

Ry B3y =, ,

Ry, J,R;!, =J,c086 +J,8in6

Ry, J.R;l, = = J, cosf +J,sing ,
where

J,=J.sing - J cosg , J,=J, cos¢ +dJ,8ing ,
which gives

J=,—id,) e, J.=(+id,)e 0 .

Using these relations one obtains
Rg, J.R;l, =e ' [J_e**cos?(36)
—-J,e" ' sin®($6) +J,sing] , (3.9a)
and similar relations for J, and J,:
Rg, J R, =e**[J, e cos®(36)

—J_ et sin®(36) +J,sinf],  (3.9b)
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Ry, J, Ry, =J, 080 - J_e' sinf cos36
(3.9¢)

From (3.9a) and the definition (3. 8), one obtains

the eigenvalue equation

[J.€'% cos?(%6) - J, e” ¢ sin®(30) +J, sinb] | 6, ¢ }=0 .
(3.10a)

- J, e sinf cosio .

This equation, together with
J2le, @)=d+1)|6,0),

specifies uniquely the Bloch state 6, ¢ ). Note that
the harmonic-oscillator analog of (3. 10b) would
have been the trivial relation (a' - a*) (@ - a)la)
=0. Other forms of the eigenvalue equation can be
obtained using the relation

Re,w JzR_éw‘e:(P):"'Jle,(p)

and (3.9¢). The resulting equation can be com-
bined with (3.10a) to eliminate one of the opera-
tors J,, J,, or J_, giving

(3.10b)

[J_e'° cos?(38) +d, e ' sin®(30)]| 6, @) = Jsinb| 6, @) |

v (3.10¢c)
[J.e'° cosif+J,sink6]|6, ¢ )=JIsints|6, @),
(3.10d)
[, e ' sink6 — J, cosib] |6, ¢ )= Jcosia|g, @) .
(3.10e)

These additional relations are not independent of
(3.10a) and (3.10b). It is noted that these eigen-
value equations are more complicated than their
counterpart (2.10). In particular they involve at
least two of the three operators J_, J,, J,. This
feature is required by the more complicated com-
mutation relation (3.1) which applies here.

Using the disentangling theorem for angular mo-
mentum operators (Appendix A), the rotation Rg o
given by (3.7a) becomes

Ry, = o THV- pln@e I7l 2y, o™

J

FIG. 1. Definition of the rotation Ry , in angular
momentum space.
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2
= ,Ts eln(l#l‘rl W, e-'r*.l_

s (3.11a)
where

(3.11b)

" Let us point out that these expressions are singu-
lar for =7, i.e., for the uppermost state. We
may have to exclude from some of the following
consideration the states contained within an in-
finitesimally small circle around 6 =7. The valid-
ity of expressions such as (3.13) for =7 is usual-
ly not affected and can be checked directly. The
last form of (3.11a), which we call the normally
ordered form, immediately gives the expansion of
18, ¢ ) in terms of Dicke states:

T=¢"! tanzé .

J
!9,<P)=Re,w|—J)=(‘1"1—‘z) e =), (3.12)

+ 71

whence, expanding the exponential and using (3. 5),

2J 1/2 TM+J
o, or=(,7 ) FEaEaL

1/2
___( 2J ) sin"*”(%e)cosJ'M(%G)e'“”*mw.

M+dJ

(3.13)
Since the Dicke states form a basis for a well-
known irreducible representation of the rotation
group, these results could have been derived using
the appropriate Wigner DY’ matrix.!* The same
remark applies to Egs. (2.12) and (2.13): These
could have been obtained without using a Baker—
Campbell-Hausdorff formula, from the transfor-
mation properties of an irreducible representa-
tion of the group of operations T,."*~7

The overlap of two Bloch states is obtained either

from (3. 12), using the disentangling theorem for
exponential angular momentum operators, or from
]

(2J+1)f£3!0,¢><9,¢|

4n M+ M+

1/2 1/2
=(2J+1)f‘_lg > ( 2JJ> ( 2JJ> el I0 (ogLg)RT - MM (gindgy2d vis !
'y
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(3.13), using the completeness property of Dicke
states 3, | M) (M| =1. One obtains
(1+7*7')? )"
’ N\
<9!¢|9 @ >_((1+ lT I2)(1+ ’T’ |2)

=709 ) [cosd(9 - 6") cost (@ — @)

- icos(6+6')sink (¢ - ¢")P7,
(3.14a)
whence

|¢6, 0|6, 0" )|2=cos* Lo, (3.14b)

where 7 is given by (3.11b), 7’ is given by the same
equation written with the primed quantities, and

O is the angle between the (6, ¢) and (¢', ¢') di-
rections, as given by )

cosO =cosf cosd’ +sinfsind’ cos(p —¢’) .

The Bloch states form minimum-uncertainty pack-
ets. The uncertainty relation can be defined in
terms of the set of rotated operators (J,, J,, J;)
=Rg,(J;,J,, J,)R;},. These three observables
obey a commutation relation of the type [A, B]

={C with A=J,, B=J,, C=J,, whence they have
the uncertainty property

(I2Y (T2 24T )P 3.15)

for any states. It is easy to show that the equality
sign holds for the Bloch state |6, ¢ ), which is
therefore a minimum-uncertainty state.

C. Bloch States as Basis

Let us now consider the completeness proper-
ties of the Bloch states. Using (3. 13) and the com-
pleteness of Dicke states Y, | M) (M| =1, one ob-
tains

M)y (M|

=(2J+1)f é—(sinede)%)(AfiQ (cos36)27-2¥ (sink6)?7 *2¥ | My (M | =%} |My(m|=1. (3.16)

0

The expansion of an arbitrary state in Bloch stétes
follows:

Ic)=ZcM|M)=(2J+1)j B T eulo, )6, 0| M)
M T M

=(2J+1)f%[—mz)]—;|9,¢’>,

1317 (3.17a)

where

r

1/2
D) ar el ol

(3.17b)
Using (3. 5) it is seen that |¢) can also be written
as

o= (7= 7) 1= -

The amplitude function f(r*) is, by its definition

(3.18)
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(3.17b), a polynomial of degree 2J. However any
function which has a Maclaurin expansion can be
taken as a suitable amplitude function in (3.17a)
or (3.18). Indeed the powers of T* higher than 2J .
give zero contribution in (3.17a) and (3.18). The
coefficients ¢, are then obtained from the first
(27 +1) terms of the Maclaurin series, using
(3.17D).

The scalar product of two states characterized
by their amplitude function is, from (3.16) and
(3.17p),

(¢'|e)= (2J+1)f——<c|9,<p><9,<p|c>

as x* )]k X*
-(2J+1)J’ ————-2—52—1+'ﬂ [FG*)*fFE*) .
(3.19)
Since (3.17b) was used to derive this equation, its

validity is restricted to amplitude functions which
are polynomials of degree 2J.

In view of the completeness relations, operators
G acting on this Hilbert space can be expanded as

G=21 |My(Mm|G| My (| (3.20a)
M, M
or

(2J+1) Hdndsz’le,q))w olcle, o) (e, ¢'|-

(3.20b)
However, G is completely defined by the (27+1)
matrix elements (M|G|M'), with the result that,
except for pathological cases, an operator can al-
ways be written in the diagonal form

G=[agg(,9)|6,0)(6, 0|, (3. 20¢)
where g(6, ¢) is given by a series expansion

206, 9)=21 G, Y;,.(0,9) . (3.20d)
I,m

In accordance with the property (D21) only the
(2J+1)? first terms of this sum contribute to
(3.20c). These are the terms for which 0<7<2J.
The corresponding coefficients G,,, are expressed
as a function of the matrix elements (MI|GIM')
by Eq. (D26).

D. Statistical Operators for Atoms

In order to describe an incoherently pumped
system of atoms we introduce a statistical opera-
tor p with the properties

Trp=1,
(G)=TrpG .

(3.21)
(3.22)

As before, the considerations are restricted to
states belonging to a single constant-angular-mo-~
mentum subspace and, therefore, the statistical
operator described here does not allow for the
most general mixing of atomic states. Of particu-
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lar interest is the expression of p in a diagonal
Bloch representation

p=J P(6,9)|6, ¢)(6,0| aa, (3.23)
with the normalization
[P, ¢)dn=1. (3.24)

The statistical average of an observable G is then
given by

(GY=[P(6,9)(8,9|G|0,9)an . 3. 25)

The weight function P(6, ¢) has thus the properties
of a distribution function on the unit sphere, ex-
cept that it is not necessarily positive.

Let us define a set of operators 5{,t such that
their expectation values for Bloch states

b® 0 =(6,¢]X,]6,0) (3. 26)

form a basis in the space of functions on the unit
sphere. Since in this space a discrete basis can be
chosen, the parameter ) can be restricted to dis-
crete values x=1, 2, .. For a statistical en-
semble described by (3.23), the statistical aver-
ages of the operators X’x form a set of character-
istic coefficients of P(6, ¢):

X,=Tr(pX,)= [ P, ¢)5%* aq . 3.27)

The weight function can be expressed as a series
with the help of the reciprocal basis 5*(9, ¢),

P8, ¢)=21, X, 26, ¢) . (3.28)

A convenient basis is given by the spherical har-
monics

B# =T (6,9), A=(t,m) 3.202)

6, 0)=Y;™ (6, @), (3. 29b)

which are generated by the spherical harmonic
operators'®

X =yrd). (3. 29¢)

The fact already mentioned that a diagonal repre-
sentation always exists in the atomic case also
corresponds to the fact that for a given J only the
(2J +1)? operators Y ' with 1< 2J are different from
zero. The finite dimensionality of the basis is re-
quired, since p is completely determined by its
(27 +1)* matrix elements (MIplM’) in the Dicke
representation. An illustration is given in Appen-
dix D, where the statistical operator corresponding
to a pure Bloch state is derived [Eq. (D29)].

Other differences with the field case should also
be noted. Firstly, the spherical harmonic opera-
tors are usually written in a fully symmetrized
form, whereas the operators (2.29c) are normally
ordered. This is only a formal difficulty as it
should be possible to write normally ordered and
antinormally ordered multipole operators!® with
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properties similar to the Y(J). A second, and
more fundamental difference, is that the expecta-
tion values X, are not generating functions for
products of the type (J,"J,"J?), in view of the dis-
creteness of the set. This does not cause much
difficulty, as generating functions can be defined
from exponential operators (Appendix B) whose
expectation values can be calculated with the help
of the disentangling theorem (Appendix A). It is
tempting to use for the X,’s of Eq. (3.29c) these
exponential operators themselves. Though the
parallel with the field case then seems more trans-
parent, the use of the discrete set X’A may be of
more fundamental significance as it takes into ac-
count symmetry properties of the states.

A final comment should be made about the diffi-
culty of dealing with creation and annihilation op-
erations in a finite Hilbert space. The existence
of two terminal states, |J) and |-J), requires
the presence of a third operator with the proper-
ties of J,, and prevents the writing of an eigen-
value equation in terms of one compound operator
alone. For instance, comparison of (3.18) and
(2.18) suggests that J_(J+1 = J,)™ could be a “good”
annihilation operator. Using (3.13) one finds im-
mediately
J. Jtﬁy |6,0)=7]6,0)~7sin* (30)e 27 |J),
which for small § and large J is “almost” an eigen-
value equation, i.e., the application of the opera-
tor reproduces |6, ¢ ) except for the uppermost
Dicke state. There is no doubt that a theory could
be developed in terms of more complicated an-
nihilation and creation operators of such type, but
the advantage is not clear.

IV. CONTRACTION, OR THE RELATION BETWEEN
“ATOMIC STATES AND FIELD STATES

The extreme similarity between the treatments
of Secs. III and II suggests a close connection be-
tween atomic and field states. This connection is
made here through a process known as group con-
traction,20-2

The time evolution of a single two-level atom is
governed by a 2X2 unitary transformation matrix.
The commutation relation for the generators of
the group U(2) are rewritten here:

[, )=+d,, [4,d]=2d,, [3,J]=0, @.1)

where J; in the third relation is essentially the
identity. An arbitrary 2X2 unitary transforma-
tion matrix is given by

U(2)=exp(i2i, \,J,) , @.2)

where the summation is over all four indices and
the 2,’s are c-number parameters which charac-
terize the group operation.

If another set of generators h,, k., h,, hyis
related to J,, J_., J,, Jp by a nonsingular trans-
formation 4, ,

=20, And, 4.3)

then the group operation (4. 2) may be written

exp(i2i, \,J,)=exp(i2ia,h,) , 4.4)
with
=24, . 4.3

We select the following transformation A, which
depends on a real parameter c:

h, c 0 O 0 J,
h. 0 c 0 O J.
| o o 1 1/22 J, - @.5)
7o 000 1 Jo

It is easily verified that the p,’s satisfy the commu-
tation relations

(7 h]=%h, ,
[K, h0]=0 N

In the limit ¢~ 0 the transformation A becomes
singular, and A fails to exist. Nevertheless, the
commutation relations (4. 6) are well defined and,
in fact, identical to the commutation relations

(2. 3) under the identification

[, h)=2cPh, = hyg
(4.8)

limh,=n=d'a, limh,=qa', limh =a. (4.7)

c-0 c-0 c-0
Although the inverse A-! (4. 3b) does not exist as
¢~ 0, the parameter @, may approach a well-de-
fined limit if we demand all the parameters A, to
shrink (“contract”) to zero in the limit ¢~ 0, in
such a way that the following ratios are well de-
fined:

: -10
lim 2, =1im & sa,
c-0 C c-0 2c
BN . tog
llmzc—'=11m—ezc =—a*, 4.8)
c-0 c-0

LA . A
lim—<=limc¢%=0.
¢c+0C ¢.0

* Within any (2J+1)-dimensional representation of

the group U(2) the eigenvalue of the diagonal opera-
tor 7, is

held, My =(J,+1/2¢%) | J, M) = |J, M) (M+1/2¢%) .

(4.9)
We demand that this have a definite limit as ¢~ 0.
Physically, for both Fock and Dicke states we
progress upwards from the ground or vacuum
state. It is convenient to demand that the (energy)
eigenvalue in (4.9) be zero for the ground state
M=-=dJ,
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lim (- J+1/2¢%)=0 . (4.10)

c-0
In the limit ¢~ 0, 2J¢%=1, the unitary irreducible
representations ©7 [U(2)] go over into unitary irre-
ducible representations for the contracted group
with generators (4.6). In simple words, the con-
traction procedure amounts to letting the radius
of the Bloch sphere tend to infinity as 1/¢?, while
considering smaller and smaller rotations on the
sphere. The motion on the sphere then becomes
identical to the motion on the bottom tangent plane
which goes over into the phase plane of the har-
monic oscillator.

This procedure for contracting groups, commu-
tation relations, and representations will now be
used to show the similarity between Dicke and
Fock states. We define

|o, n)=lim|J, M) (J+M=n, fixed). (4.11)
c-0

Then
a'a| o, n)=1im (J,+1/c%)|J, M)
c-0

=lim |J, M) [(J+M) + (= J+1/2¢2)]

c-0

=n|w,n) . (4.12a)

The computations for a' and ¢ are handled in an en-
tirely analogous way:

a'| o, n)=limh,|J, M)=(n+1)"2|e, n+1), (4.12b)
c-0

a|°°,n)=1imh_|J,M)=n1/2|°°,n—1). (4.12¢)
c-0 :
These equations provide a straightforward connec-
tion between Dicke and Fock states. The operators
h., h., and h, contract to a', ¢, and a'a with the
proper commutation relations (2.3), and with the
proper matrix elements between contracted Dicke
states as shown in (4.12). The contracted Dicke
states (4.11) can thus be identified with the Fock
states, and we conclude that every property of
Dicke and Bloch states listed in Sec. III must con-
tract to a corresponding property of Fock and
Glauber states listed in Sec. II. The contraction
procedure is summarized in Table I.

o

We demonstrate this correspondence in three
particular cases.

Example 1. Just as the angular momentum ei-
genstates |J, M) are obtained from the ground state
|J, =J) by (J+M) successive applications of the
shift-up operator J,, the Fock state |n) is ob-
tained by n successive applications of a'. By con-
traction of (3.5) we get

- L (J,)"'Jy'-J>
| ,n>—‘£1’ng [@d1/(2d —n)! ! ] @

iy (LN =) (@), 0)
aao LIt M2 nt/?

which is nothing but (2.5).
Example 2. Let us now contract Bloch states to
Glauber states, using Eq. (3.12) and Table I:

, (4.13)

1 J
:1' :l. —— Tl —
[a)=1im|6, ) 61§(1+,T‘2) | =)

=lim (1 - 2¢% ag*)!/ %° e°“’T|
c-0

0)

= g-aa*/2pud’| gy 4.14)
which is nothing but (2.12).

We leave it to the reader to verify that every
equation of Sec. III goes over to the corresponding
equation of Sec. II under contraction. This is
true in particular of the disentangling theorem
(8.11) whose contracted limit is the Baker—Camp-
bell-Hausdorff formula (2.11) as shown in (A5) and
(A6). In general, all properties related to angular
momentum have a harmonic-oscillator property as
counterpart. Thus, the total momentum contracts
to the harmonic-oscillator Hamiltonian, while the
spherical harmonics (and their properties) con-
tract to the harmonic-oscillator eigenfunction (and
corresponding properties) (Appendix C).

Example 3. As a final case of special interest
we contract the uncertainty relations (3.15).
Multiplying (3.15) by ¢ on both sides, and using
(3.9), we obtain the limits

d+a o*+a
2 2

limed, = (wm/2R) 2 (g~ £),

c-0

TABLE I. Rules for the contraction of the angular momentum algebra to the harmonic-oscillator algebra. [The limit
of the angular momentum quantities (first line) for ¢—0 are the corresponding harmonic-oscillator quantities (second

line).]
Coherent
Operators Coordinates Eigenvalues Eigenstates states
0 Angular momentum
ed,, cJ., Jy+1/2c? 2 2¢%, J+M 1d,M) (Dicke) 16, @) (Bloch)
‘ Harmonic oscillator
af, a, afa o |, n) (Fock) la) (Glauber)




6
) d-a a*-a_ /2
il‘r;ch,,— % " 2 =~ 27wm) (p=-m,
limc®J, =% . 4.15)
c-0

Introducing these relations in (3.15) we reproduce
(2.15), and since the equality sign in (3.15) holds
for the coherent state |6, ¢ ) corresponding to the
rotation R, , , it follows that the equality sign in
(2.15) holds for the coherent state o corresponding
to the translation (£, 7). This proves the minimum-
uncertainty property of Glauber states, being given
the minimum uncertainty of Bloch states.

V. SYMMETRY PROPERTIES OF ATOMIC STATES
A. Problem

We have seen in Sec. III that the symmetrized
states arising in the description of N identical two-
level atoms can be labeled by the quantum number
J, M. These are the so-called Dicke states. The
quantum numbers J, M are familiar from the study
of the angular momentum group SU(2).

The group SU(2) arises in the description of sym-
metrized atomic states in the following way: The
time evolution of each single two-level atom is
governed by a 2X2 unitary transformation matrix.
The evolution of N identical two-level atoms is
described by a direct product of N such matrices
when all atoms evolve in time in the same way.

All transformation matrices are identical and in
fact are a direct product representation of the
group SU(2).

The quantum numbers J, M do not provide a
large enough set of quantum numbers for a com-
plete labeling of symmetrized atomic states. That
is, many distinct symmetrized atomic states may
be labeled by the same quantum number J, M. Since
the study of symmetries leads to a generation of
quantum numbers, we are led to a study of an ad-
ditional symmetry group P, —the permutation
group on N atoms.®

The group P, arises in the description of sym-
metrized atomic states in the following way: The
time evolution for N indistinguishable atoms is
governed by a Hamiltonian which is left unchanged
under any permutation of the atomic labels

1, ..., 400,400, N)

=43, vty dyeneydyees s N) o (B.1)
This is exactly what it means for particles to be
identical.

The quantum numbers of P, , which are in exact
analogy with the quantum numbers J, M of SU(2),
then provide additional labels for symmetrized
atomic states. With these additional quantum
numbers, all symmetrized atomic states are
uniquely labeled.
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B. Subspaces Invariant under Rotation Operations

The properties of such spaces are well known
from the study of angular momentum in quantum
theory.?® The total angular momentum operator
J% commutes with the operators J,, J, and there-
fore has the same eigenvalue J(J+1) on all bases
for an irreducible representation 7.

The number of distinct basis vectors within any
irreducible representation is equal to

dim®D’ =2J+1 . (5.2a)

These bases are conveniently labeled by the eigen-
values M of the diagonal operator J,,

M==d,-Jd+1,..., +J. (5.3a)

Bases are therefore labeled |j; a'). Here o
is the set of all other quantum numbers necessary
to distinguish different copies of the space with
the same J label. An arbitrary element R of the
group SU(2) maps a state in any J, o’ subspace in-
to a linear combination of states within the same
subspace;

R|};ay=2
M'

w5 Y RID =215 o YDl 4(R) .
e (5.4a)
Referring to Fig. 2, we say that the group SU(2)

“acts vertically.”
C. Subspace Invariant under Permutation Operations

Operators which commute with all elements of
P, have the same eigenvalues on all bases within
an irreducible representation. These eigenvalues
can then be used as labels for the irreducible rep-
resentations. The operators in P, analogous to
J? in SU(2) are the class sums®; their eigenvalues
are the non-negative integers 1, >\, which obey
A +2Ag=N.

The number of distinct basis vectors within any
irreducible representation is equal to’

dimI*r % =("1 * "2> - ( Mt 7‘2>

\ 1 (5. 2b)

These bases can be labeled by eigenvalues of op-
erators analogous to J,: These operators are the
3N mutually commuting adjacent interchanges P,,,
Pgy, Psg, ... . However, it is more convenient
in this case to label the bases simply by the num-
ber i,

i=1,2,..., dimI™’2 (5.3b)

Bases are therefore labeled |a; *1;*2). Here
a is the set of all other quantum numbers neces-
sary to distinguish different copies of the space
with the same 2y, 2, label. An arbitrary element
P of the group P, maps a state inany 2y, X;; o
subspace into a linear combination of states within
the same subspace,
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FIG. 2. An arbitrary state in the symmetry-adapted
basis is labeled by (i) the U(2) invariant subspace J in
which it lies, and its position M within that space, and by
(ii) the Py invariant subspace X in which it lies, and its
position ¢ within that space. Moreover, the intersection
of any Py invariant subspace with any U(2) invariant sub-
space is at most one dimensional, so the quantum num-
bers J, M and }, ¢ are sufficient for a complete labeling
of states. The intersection is exactly one dimensional
when the partitions describing the U(2) and Py invariant
subspace are identical: 2J=A;=2,. The state marked %
in the figure is labeled 15:3/%; ’;:(4'“) Under a U(2) op-
eration R, this state is mapped into a linear combination
of states within the same vertical box,

RI:M% (4!31)):2114'%2; &4;31))@%%/2 R).

Under a Pj operation p, it is mapped into a linear combi-
nation of states within the horizontal box,

PR ST 4T 0.
In other words, group operations do not affect the labels
classifying the invariant subspace (upper line); they only
affect the appropriate internal state labels (lower line).

Note that states belonging to the same M but different 3
values are not necessarily degenerated.

PI“H) Zla’?><jlplh> Zlar; ;t(P)'
(5.4b)
Referring to Fig. 2, we say that the group P,
“acts horizontally.”

D. Classification of Atomic States
It can easily be shown that

2 (@imd7)@im1r2)=2" (5.5)
27=21-2220

This is a manifestation of a very deep and beauti-
ful theorem.?*

Theorem. The intersection of any SU(2) invari-
ant subspace with any P, invariant subspace is at
most one dimensional. It is exactly one dimen-
sional only when

2J=X1 =X, N=X;+X5. (5.6)

This theorem is sufficient to tell us what the
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|o»

sets «, o of “all other quantum numbers” con-
sist of. In short, a symmetrized state is speci-
fied uniquely by

s 5. (.7)

This spemflcatlon is, in fact, even redundant. The
labels J, X are not independent but related by
(5.6). This intersection theorem is illustrated in
Fig. 2.

Under an arbitrary Hamiltonian (5.1), only
states with the same X, J, M values are necessari-
ly degenerate. But if the Hamiltonian consists of
a sum of single-particle terms, all states with
the same M value are, in general, degenerated.
The introduction of particle-particle interactions
lifts the high-M degeneracy (such as in the case
of pressure broadening in a gas).

It is a simple matter to transform between the
symmetrized bases (5.7) and the direct product
bases (1. 4) For simplicity we label the states
(1.4) by IN), where N is the N-component vector
(i1, B3y ... ,dy). We let ny_ and #, be the total num-
ber of one’s and two’s in N, respectively. Then

ny+ny=N, ny—=ny=2M . (5.8)

The states IN) and |7; ,) are connected by a
unitary transformation which is, in fact, also real
and therefore orthogonal,

lish= 2 [N@|L = 2

IN)CX - (5.9)
(ﬂl.’lg) ("1’"2)

Here E(m.nz) indicates a summation over all dis-
tinct permutations of one s and two’s with fixed

M. The coefficients CX i vanish unless 2M =n,
-np. Thus, the structure of C is that of a block
diagonal matrix. The block-connecting states with
2M =ny - n, is a square matrix of order

(a0) o)

We illustrate what we have in mind in Fig. 3. This
transformation will be used in discussing leakage
from symmetrized states (Sec. VIID).

In the same manner as (5.7), Bloch states pro-
duced by rotation Ry , of an M= —J state are de-
noted

gw;”:Raw'-JJ;?)- (5.10)

VI. RADIATIVE PROPERTIES OF BLOCH STATES
A. Position of Problein

The description of the atomic states given above
is now completed by considering a problem central
to quantum optics, namely, the interaction of the
assembly of two-level systems with the radiation
field. This interaction introduces a spatial depen-
dence, which we have so far neglected, and which
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FIG. 3. Symmetrized states are linear combinations

of product states. The transformation matrix partition
into a direct sum of block diagonal submatrices. Each
submatrix connects the direct product states with a given
M= @, —n.) value, with symmetrized states with exactly
the same M value.

modifies somewhdt the appropriate description of
the atomic states.

In the Schrdédinger picture the electric field op-
erator is written

E()=i20% (w,/2¢V)" % @rak e " T~ &Faz ™ 7)

where w,=ck is the frequency of the kth mode(?nl)
a box of volume V. The creation and annihilation
operators satisfy the commutation rules (2.3) if
they belong to the same mode, and otherwise com-
mute. The polarization vector of the Ath mode is
€;. The total Hamiltonian consists of a field part
3, an atomic part 3¢,, and an atom-field interac-
tion 3¢,y . The field Hamiltonian, neglecting the
zero-point energy, is simply

JCF=h’ng,,a;-ag . (6.2)
The atomic Hamiltonian, taking the energy refer-
ence halfway between ground and excited states,
is

W, = 3020, 0,0, = Fwd, , (6.3)

the second equality being obtained by assuming that
all two-level systems are degenerated (w,=w, for
all #). The atom-field interaction is assumed to be
of electric dipole type. We write

ar =200, B (F,) , (6.4)

where the dipole operator &", which is Hermitian
and has zero expectation value in both ground and
excited states, is of the form

d, =0 "D+0"P* . (6.5)
Here D is a complex ¢ number which is assumed
independent of the label ». Using (6.1) and (6.5),

the interaction Hamiltonian (6. 4) takes the familiar
form
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Har =N % (gyag JE +gtat J5) (6. 62)
where
gp=ilw,/2eiV)"/2p - &F | (6. 6b)
JE=2) o et (6.6¢)
n
J_E=E 0'_" e'ii'in . (6. Gd)

n

In deriving (6.6a) we have assumed that - &;
=p*.&¥=0. If this selection rule does not apply,
(6. 6a) is obtained by neglecting energy nonconserv-
ing terms such as ¢;0." and a}o,”; their contribu-
tion to transition probabilities being very small

as long as |g,| <w.

No exact solution is known to the dynamical prob-
lem associated with the Hamiltonian 3¢=3C, +3C,
+3Csp. The difficulty is caused by the spat1a1 de-
pendence in the commutatlon relation of J and
JE:

[JF, g8 =2 0" &t KD B0 (6.7)

This is seen by working out, in the Helsenberg
picture, the equations of motion of a;, ak, JX, and
JE. One obtains

ag=—iwyay — igkd X, (6.8a)
JE= gk 2} gpapo, e ®-B % (g.8b)

n,k

The problem can be simplified by restricting the
analysis either to a single mode, or to a small

volume. With a single mode % one obtains
JF=—iwd *+ 2ig,a.d, , (6.92)
J, = —iguapJ.t +igtald k. (6.9b)

With many modes, but a pointlike medium (r, ~0),
one has ¢'¥'*~1 so that J,¥~J, as defined in Eq.
(1.5). The equations of motion then take the form

J.= = iwd +2i( Qg ), , (6.10a)

Jo= =i gua) I+ i 2 grabd. . (6. 10b)

In either case Bloch states are very useful. This
is obvious for the point-laser case, and will be
shown presently for the single-mode case.

B. E)-Dependent Atomic States

The Dicke and Bloch states of the previous sec-
tions can be made K dependent by introducing phase
factors in the definition of the single two-level sys-
tem eigenstates |y7). One defines

|[9f )=/ 2R gty
|¢§,n>=e- (t/zn:-f,,w;)

These states are such that

(6.11a)

(6.11b)
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(e Fno M| ukm) = |yimy (6.12a)
(e“‘z'f"o_")‘zpfi’">= |¢i2.n> . (6.12b)

The new step-up and step-down operators within
the parentheses are precisely those which enter
in the definition of J,f in Eqs. (6.6c)-(6.6d). In
terms of these new states and operators all the
formulas of Sec. III remain valid provided one de-
fines new operators J, £ and J £ as required by Eq.
(3.2). In particular, Dicke states can be defined
as the simultaneous eigenstates. of J, and (J £y
=d2+5(J, E784g%7%) and Bloch states are ob-
tained from the lowest Dicke states by application
of the operator exp(cJ.F — ¢*J k).

These states are ideally suited for the treatment
of the single-mode problem.?® Indeed the angular
momentum operator (J¥)* commutes with the
single-mode interaction Hamiltonian of same K.
This means that the corresponding Dicke and _
Bloch states move in subspaces of constant (J ky2
eigenvalue. This symmetry is not preserved in the
many-mode problem (6.8), as a consequence of
the commutation relation (6.7). Leakage into other
symmetry types results, as shown in detail for the
case of the interaction with a classical field in
Sec. VII.

C. Interaction with Classical Field

In certain cases, when field statistics and spon-
taneous emission are not important, one is allowed
to treat the field classically, defining

E(, )=Re[E[, )e'“], (6.13)

the time dependence of E(F, t) being slow compared
to w. In this case the interaction Hamiltonian
(6.4) becomes

JCAF == %Zn [0+"5' _E.*(Fn’ t)e-‘we
t)et ],

where we have assumed that p+ E=p* - EX=0. If
this selection rule does not apply, (6.14) implies
the so~called rotating wave approximation which
consists in neglecting terms in ¢, ¢'** and ¢ "¢ **
on the grounds that these contribute only to small
double-frequency terms in the final result. The
total Hamiltonian now being 3¢(¢) =3¢, +3¢, p(¢), the
equations of motion of the expectation values take
the form

+0TP* . E(Fn, (6.14)

<Uzﬂ >e- iwt ,
(6.15a)

{(o")Y=—jwlc "

- (i/2m)p - B, t)
(oY= (i/R)D - B*F,, t) (o) e et re.c.
(6 15b)
which are just the ordinary Bloch eglxatlons
For a pointlike medium E( ,1)=E(¢#) for all
n’s, and Eqgs. (6.15) can be summed over n, giving

(J)==iw(J.) = (/)P - EX@)(J,) e *** , (6.16a)
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(J,)=G/2m)p - E*(t)(J,Ye “t+c.c. . (6.16b)
These equations could have been derived directly

from (6.10) by making a self-consistent-field ap-
proximation (J,a)=(J, )(a), and writing

'E’etwt - 22,; iéi(ﬁwk/ze()V)l/z (a;{z) .

For an extended medium, assuming that the spatial
dependence of Eis strictly of the form o ik ? the
summation of (6.15) over # gives equations s1m11ar
to (6.16) but where J, is replaced by J,*. These
equations could also be derived from (6.9) by a
self-consistent field approximation.

(6.17)

D. Emission Rates

Returning to the pointlike medium, it is inter-
esting to calculate, using first-order perturbation
theory, the emission probability of single photons
for systems which are initially either in a Dicke
state or in a Bloch state. The interaction Hamil-
tonian is, from (6.6a), 3¢,p=233C with

3 = Migyag J, + Mgk ak J.
The transition probability from an initial atomic

state 7 to a final atomic state f, with emission of
one photon in mode K, is simply

Wi = (21/7) 6w = 1tw,) | (£, mg + 1136 ] 4, mg)|?
(6.19)
where the second symbol in the state labeling in-
dicates the photon number in the field. For a
single atom initially in the upper state !y,), and in
the vacuum of photons (=0 for all k), the usual
spontaneous emission intensity in the solid angle
d$y around K is obtained by summing over K in
this solid angle,

(6.18)

Id2=Tw 2 WE-M a .

(6.20)
kinde 87 €oc

For many atoms initially in the Dicke state | M)
and making transition to the state | -1), one ob-
tains, using (M -11JI1M)=[(J+M) T -M+1)]'/?,
the spontaneous emission intensity

IL=J+M)J-M+1)I, . (6.21a)

This is the familiar result of Dicke” indicating
superradiance for M=~0. On the other hand, the
stimulated intensity in a certain mode K, which
is proportional to

(M =1]a|m)| 2= |(m+1]a,|m)|2=2m ,

is the normal stimulated rate, simply proportional
to the population inversion.

If the initial state isthe Bloch state 16, ¢ ), the
spontaneous emission intensity is

(6.22a)

Ly=2a | (M|J_|6,0) |2,=(6, 9| 7,76, 0) 1

=[J%sin?9 + 2Jsin*(£6)]1, , (6. 21b)
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TABLE II. Comparison of emission rates and dipole
moments of Dicke and Bloch states of the same energy
expectation value.

Dicke state Bloch state

|M==J cosf) 16, 9>
Spontaneous ;2 o oog . o5 sin®30]1, [J? sin®6+2J sin’}6]l,
emission
St1m1}1a§ed —2J cosf ~2J cosé
emission
Dipole i eiwt + i
B 0 J sing ( +c.c.)
Classical 0 [ sin0]I,
emission

the last equality being obtained from Egs. (A2a)
and (B6). This is also superradiant for 6 =~37.

The intensity can be compared to that obtained
from the Dicke state having the same energy expec-
tation value. This fact was already noted by Sen-
itzky.® With M= —Jcosé one obtains from (6. 21a)
Ip=[J%sin%0 +2J sin®(36)]I,. This is practically
identical to (6.21b) for J> 1. Similarly, the
stimulated intensity is now proportional to

Ziy ([(m| .10, 0)]2 = [(M]7,]6,0)|%)=~ 27 cos6 .

(6.22b)
This is identical to the stimulated intensity ob-
tained from the Dicke state having the same mean
energy.

Though their radiation rates are very similar,
there is a considerable difference between Dicke
and Bloch states of the same mean energy. This
is seen by calculating the expectation value of the
total dipole moment D. In the Heisenberg picture,
using the unperturbed Hamiltonian 3¢=3C, +3Cp
(which amounts to neglecting the field reaction,
and is equivalent to first-order perturbation theo-
ry), this dipole moment is

- -
D= i%t/n Z;ndn g ixt/n

-

=P eltg, +p* et g, (6.23)

where d, is given by (6.5). For the Dicke state
|M) one has

(M|D|Mm)=0, (6. 24a)

whereas for the Bloch state |6, ¢ ),

{8, (piﬁl 6, 0) =Jsin9('§eiwt+w +§*e-lwt-{w) .
(6.24b)

This last result is easily obtained using the tech-
nique of Appendix B, or the relation (6, ¢ 1J,16,¢)
= — Jcos@ together with the eigenvalue equations
(83.10d) and (3.10e). While the Dicke state has
zero. expectation value for the dipole moment, the
Bloch state is characterized by a macroscopic di-
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pole which is able to radiate classically. In the
wave zone, the classical radiation intensity of this
dipole turns out to be

I, =(J%sin%0) I, . (6.21c)

This is practically identical to (6.21b), except for
0 close to 7. For the totally inverted state there
is no classical emission, whereas first-order per-
turbation theory gives a finite intensity 2/JI,.

These results are summarized in Table II. An
inspection of this table suggests that Bloch states
are the closest quantum analogs to “classical”
atomic states, in the same manner as Glauber
states are the quantum analogs of classical fields.

VII. SEMICLASSICAL LIMIT
A. Semiclassical Theorem

A known property of field coherent states is that
they can be produced by classical currents acting
on the vacuum of photons.>* A similar property
exists for Bloch states.

An atomic system of small dimension which is
initially in a Bloch state, or in particular in ils
ground state, and which is acted upon by classical
fields, rvemains in a Bloch state. By a classical
field is meant that the interaction Hamiltonian is
of the form (6. 14) or, for a point system,

Koap= =40+ BX()J, et =4 P% - B et

(7.1a)
In the interaction picture this Hamiltonian becomes

Hap=—35- E*()J, -45% - E@)J. . (7. 1b)

As the field E is turned on, the state vector
I(¢)), which was previously fixed in this picture
and equal to |6, ¢ ), changes according to

81()

in Y

=:}CAF‘(t)> . (7.2)
Writing p* - E=41p* - Ele'*’, this equation gives,

for a small time increment Af,
| ¢+ a8))=[1-i(at|p* - E|/7)

X(J, sing’ - J, cos@’)] |6, ¢0) . (7.3)

The operator within the bracket on the right-hand
side produc_gs an infinitesimal rotation by an angle
6’ = At|p* - E|/F around an axis (sing’, - cosg’, 0).
Using Eq. (A9), one has from (7.3)

| (t+A8))=Ry ,iRg o | =JT)=Re se %92 = J)
=e%e,0). (7.4)

The new state is therefore a Bloch state, and the
statement is proved. In the spirit of Sec. VIB,
this als_g applies to an extended medium excited by
a field E(t) ¢!“*-** ¥, In this case however the re-
action of the medium on the field will not allow,

in general, the preparation of a strictly space-in-
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dependent field E(#). This is related to the con-
cepts of maximum cooperation number and cooper -
ation time whjch have been exposed elsewhere.?®
Itleads to the leakage into Bloch states of other sym-
metry types, tobe treated at the end of this section.
The results concerning the correspondence be-
tween Bloch states and classical dipoles, Glauber
.states and classical fields, and the production of
coherent states of one kind by classical excitation
of the other kind have been condensed in Table III.
B. Evolution of Any Pure State

From (7.2) and (7.3) it is clear that the evolu-
tion operator, which is an infinite product of in-

e-ialz COS%,Be'”Iz - e-ia/"zsinéﬁewlz

eialasinéﬁe-ﬂ'/z eidlzcos_é_ﬁeir/z

cos3t —ingsingt  —iln

- z(n1 + an) Sinég

where

T=e¢'®tanio . (7. 5¢)

These equalities lead to the appropriate relations,
between the various variables.

If we study the evolution from the ground state
which is the product state |¢,,...;, ) with 4,=2 in
(1.4), we note that under the rotation operation
(7. 5a) the state remains a product of single-atom
wave functions

lo(@))= @) w1y + 8 (@) v3) (7.6)

where the coefficients a"(¢), 8"(¢) are all equal (for
a point system) and determined directly from the
transformation matrix (7.5b). The global atomic
state is then

()= 2 [a@[pO]=|N), (7.7)

ann ¥
where N=(i,, 4, ..., iy) is a short-hand rotation
equivalent to (1.4). It is convenient to collect to-

gether all states IN) with #, one’s and n, two’s as

follows: / ( )1/2}

1/2
)2 ( > Dl
11,np) | 71 (n4,m3)

where Z'(,,.mz) describes a summation over all dlS-
tinct permutations of », one’s and n, two’s. The
state within the curly bracket on the right-hand
side of (7. 8) is fully symmetric under the permu-
tation group and normalized to unity. Therefore,
it is the Dicke state

llsN/Z . N,o)
M= (ny-np) /27 1

COURTENS, GILMORE, AND THOMAS

1 — ing) Sing £

coS3E +ingSing £

|o»

finitesimal rotations, is itself a rotation. This
rotation R can be represented by its three Euler
angles (a, B, v), by a rotation £ about an arbitrary
axis (ny, n,, n3), by the product of a rotation
around z by ¥ with a rotation Re 4, or in any other
convenient manner. These various ways of ex-
pressing the evolution operator are easily related
using the techniques of Appendixes A and D. For
example one simply writes

R=g 1¥V2g 18Ty pmir iy pmitGi- 3’=Re,°e'“”' ,

(7.5a)
which leads, using Eqs. (Al) and (A12), to

-tw/2 iv/2
=(1+|T|?1/? ¢ Tett! ’
- THg1¥/2 Liv/2

(7.5Db)

I
introduced in Sec. V. Therefore, (7.7) becomes

1/2
=5 (4 )" angeltrs; 10

M=-J

Z} DM ,(R) le’ N,o>

M=-J

=B/ 181" |¥2san ot 180y, ars 670y 17°) -
(7.9)
The second equality follows by definition!* of the
irreducible representation D j w (R) for a rotation
applied to the M’ = - J state, and the third equality
follows from the last form of (7.5a) and the defini-
tion of the Bloch state (3. 8).
If the initial state is an arbitrary Dicke state

I35 }) one has similarly,

‘(f R‘M’{> E:D

5, (7.10)

TABLE III. Classical excitation and coherent states.
(The single arrows indicate the direction of production of
coherent states starting from classical states. The
double arrows indicate states connected by the correspon-
dence principle.)

Atomic Field

states states
Classical Classical Classical
states current field
Quantum Coherent Coherent
states atomic state field state
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which, for large J, is a rather complicated rela-
tion in view of Eq. (D6).

C. Evolution of Statistical Mixture of States

A real physical system will exist, in general,
not in a given state, but rather in a statistical
mixture of states. Upon application of a classical
field it would then be necessary to deal with a sum-
mation over states of the type (7.10), which are
rather unwieldy to handle except for those arising
from the ground state M =-J, or the most excited
state M=+J.

Fortunately, it can easily be seen, using (5. 2b),
that

r2.1
2o dimI¥-%* < dimTV- 222 | (7.11a)
x=0
as long as
N <<5(N+1) . (7.11b)

The total number of states with fixed-M value ly-
ing to the left (Fig. 2) of the states with J=|M] is
given by the left-hand side of (7.11a). The right-
hand side gives the total number of states with
J=|M|. Therefore in a statistical mixture in
which only those states with A, <N are signifi-
cantly populated, it is possible to neglect all states
of the form (7.10), except for those with M= ~J.
In short, for fixed negative M value such that

IM| <4 N it is sufficient to study those states

II%I;NIZHMI{N/Z-lMI), (7.12)

since there are far fewer states with the same M
value in all other invariant subspaces combined.
The evolution of the states (7.12) is given by (7.9).

D. Evolution of Extended Systems

An extended system, initially in a product state,
and acted upon by a classical field, remains in a
product state. This is easy to see from the inter-
action Hamiltonian (6.14). The infinitesimal evolu-
tion operator, in the interaction picture, can be
written

iat

U(t, t+at)=1- - Je it (z)
P iAt )
- (-5
N
=I1 U,(t, t+a2), (7.13a)
n=1
where
3,=-401p B*F,, ) -to"p* - EF,, ). (7.13b)

U is therefore a product of infinitesimal rotations
U, applied to each single system. Hence the state
remains a product state.

Let us take, for example, the evolution from
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the ground state |¢y...25). The coefficients of
the single-atom wave functions in (7.6) depend now
on the index n. The total atomic state cannot be
written as simply as (7.7). We write

|0)= 2 {o, 8", N} V), (7.14)
a1 i

where the notation {a@, B, _1\3} means the product

y'9%+ -+ 9", where " stands for o" or 8" depending

on whether the nth vector component of Nis 1 or

2. We collect together all states |N) with n, one’s

and n, two’s. These correspond to a fixed M val-

ue. Any of these product states can be expanded in

terms of the states |j; }) with fixed M value, in

the spirit of (5.9). One obtains

|(t)>=2 _E I{H ?> E, (Cg;iM)-l{an’ B"’ ﬁ} ’

M i (ny,my) (7. 15)

where 2, »,) has the same meaning as in (5.9).
In the case of the point system, {a", 8", N} de-
pends on 5, and », but not on which particular per-
mutation of #; one’s and n, two’s is selected. As
a result, the last sum on the right-hand side of
(7.15) is zero in that case except for the totally
symmetric state = (N,0); i=1. Inthepresent case
all values of X and i are, in general, obtained, in
spite of the fact that we started from a state with
X=(N,0); i=1. We speak of a leakage from sym-
metrized states. It is due to the fact that the
atoms have different space dependences, which al-
low them to be distinguished, and violate (5.1). A
similar difficulty will, of course, occur in a fully
quantum treatment. The situation can be saved
with a single mode by defining K-dependent Bloch
states (Sec. VIB). Similarly, the situation can be
saved for classical fields if the spatial dependence
is strictly of the form ¢”**'*, Inthese cases, how-
ever, leakage will also occur in the presence of

atomic motion.

VIII. CALCULATION OF THERMAL AVERAGES

In this last section we show how the disentangling
theorem, the contraction procedure, and other
group theoretical methods presented in the Appen-
dixes, can be used to obtain statistical results be-
yond those considerations presented in Secs. IID,
IIID, and VIIC. It frequently happens that ther-
mal expectation values must be taken for opera-
tors which can be written as exponentials of other
operators. Under these circumstances the Baker-—
Campbell-Hausdorff formulas may be used to com-
pute these thermal averages explicitly.

To begin we consider a single column of Fig. 2.
The 2J+1 energy levels are assumed to be equally
spaced by E=/w. The partition function is

Z=Tre ®%': B=1/kT. 8.1)

Let us compute the thermal average of the expo-
nential operator ' ®+J«*a-J-)
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BEJ, ei (o W+ a J))

Tre
xe . (8.2)

<ei (@, J, +a_J_)>J=

Tre

This is most easily done by considering, in the
spirit of Appendix A, the J=%, 2X2 matrix repre-
sentation of the associated group. Then the 2X2
matrix whose trace is to be taken in the numerator
of (8.2)is

-BE/2 -BE/2

cosye a,(siny/v)e

, (8.3)
ia_(siny/y)e*E/? cosy &F/?

where y?= q,o.. This results directly from the
use of (Al). In order to simplify the calculation
for higher-J values, it is useful to transform (8.3)
by a unitary transformation. The matrix being

non-Hermitian it cannot be diagonalized. However,

it can be transformed to upper triangular form.
Both the trace and the determinant being preserved
by this transformation, the diagonal elements 2,
M. of this upper triangular matrix are simply given
by

X, +A_=cosy(e PB/2 1 B8/2)  xa=1. (8.4)
We write
X,=1/2_=x=}{cosy(e PE/% + LE/2)

BE/2 | ,=BE/2)2 _

+e 4]/} . (8.5)

The trace in the numerator of (8. 2) is written

+[cos?y(e

1/2 2_y-2
Ae== 2 ()™ ———_1— . (8.6)
m=-1/2 A=A

The denominator is obtained by setting a,=a_=0.

To evaluate the trace for arbitrary J we merely
observe that once (8.3) has been transformed to an
upper triangular form all diagonal elements in the
representation D’ are simply powers of A. The
trace is immediately obtained by extending the
summation in (8. 6) from M=~Jto M=+J. The
result is

<ei (a+J++a_J_)>J

_ [ y) = 2B ) )/ [Ay) = 2 y)]
T E0) - 27 10)])/[(0) - 21 0)] ¢

8.7)

Now we consider the entire tableau of Fig. 2.
The traces are simply obtained by summing over
columns

Ty dimI™M 2 Tr g™ BBz gh (et r et

(eHlasdira )y, = oA
%, dlmI"‘l"‘2 Tr, e'B

H

o . (8.8)
where (A, },) are related to N and J by (5.8), and
dimI™™*2 is given by (5.2b), which can also be
written

N N
diml""l"‘2=( > - ( ) . 8.9)
IN-J IN-J-1

The summation over J in (8. 8) starts from 0 or 3,
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o

and proceeds in integer steps up to 3N. Using
(8.7) one can write, for the numerator of (8. 8),

2{(o2a) - (oo 2,07

U:é:/a“z)u JNZ.?;. {(éNAiJ> B <§N—NJ—1>} :

(8.10)
The last sum in (8.10) is equal to (,,¥ ,). The
entire expression reduces then to (A +x1Y, Using
(8.4) this gives

<e¢ (@, J +a_J) >N= <M)N _ (COS'}’)N

2(0) +x-1(0) ®.11)

which is temperature independent. This result de-
pends on the fact that the diagonal elements, in
the 2X 2 representation, of the operator whose
trace is to be taken are equal. This causes the
temperature dependence to factor in the trace
(8.4).

Returning to (8.7), we note that this formula
can be contracted using the procedure outlined in
Table I, and writing a, =cy,. After some simple
manipulations one obtains

Tre-Bgi ®at+ra)
Tre #%

=exp[-1v,y.coth(Grwp)] . (8.12)
This is a familiar result.?™-2° Equations such as
(8.7) and (8.12) are encountered in many physical
applications. One example is the calculation of
the intensity of a beam scattered by atoms in
thermal motion in a lattice.?%%° Using the tech-
niques which have been exposed here all averages
of the type (8.7), (8.11), and (8.12) can be ob-
tained very simply. In order to disentangle ex-
ponentials containing harmonic-oscillator opera-
tors, it is often more practical to disentangle first
similar expressions with spin operators, and to
follow this by a contraction. Examples are given
in Appendix A.

IX. CONCLUSION

Starting from the direct-product representation
of N two-level atoms, we have introduced two rep-
resentations which have been called the Dicke and
the Bloch representations. The first one is very
suitable to describe problems of cooperative
spontaneous emission of a radiation field, insofar
as it displays strong atom-atom correlations.” 2% 28
The second one is suitable to describe the reso-
nant interaction of a classical field and of a set
of atoms. A qualitative statement on the differ-
ence between these two representations has al-
ready been given by Senitzky,® but this difference
has seldom been taken into account in the solution
of quantum-electrical problems. In the previous
sections we have shown the formal properties of
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the two representations, and their relevance to
radiation and statistical problems. The properties
of the Dicke and Bloch representations are similar,
respectively, to those of two well-known repre-
sentations of the harmonic-oscillator Hilbert
space, namely, the Fock (or energy eigenstates)
and the Glauber (or annihilation-operator eigen-
states) representations. Besides displaying a
series of similarities, the two atomic representa-
tions contract into the corresponding harmonic-
oscillator representations in the limit N— «,

In view of their paramount importance in many
quantum-electrical problems, we briefly sum-
marize here the main results concerning Bloch
states. The atomic coherent states, and the oper-
ators involved in their description, obey a number
of properties: (i) The states are defined by a
unitary transformation operator acting on the
ground state; (ii) the states obey simple eigenvalue
equations; (iii) these states are nonorthogonal and
overcomplete; (iv) the angular momentum opera-
tors obey a large number of Baker—Campbell -
Hausdorff formulas; (v) within a fixed Bloch sub-
space the statistical operators have a diagonal
representation in the coherent-state representa-
tion; (vi) generating functions for normal, anti-
normal, and fully symmetrized orderings of powers
of the operators J,, J,, and J_ can be constructed;
(vii) minimum-uncertainty relations for noncom-
muting operators can be constructed within the
atomic coherent states.

The relationship between the atomic and field
coherent states has been effected using a group-
contraction procedure. Specifically, the Lie
algebra of the group U(2) is contracted to the “har-
monic-oscillator algebra.” In this limit the com-
mutation properties of the four operators J,, J,,
J_, and J, go over to the commutation relations of
the operators a'a, ', a, and I, respectively. Inthe
limit ¢— 0 the Bloch sphere surface contracts to
the phase plane of the harmonic oscillator. The
matrix elements of the shift operators J,, J_ con-
tract to the matrix elements of the creation and an-

|

ey eI 10,0, coshK + 3w, (sinhK)/K
w._ (sinhK)/K

and similarly,

w, (sinhK)/K
coshK - sw, (sinhK)/K
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nihilation operators a', a. All properties of the
atomic coherent states (listed above) contract im-
mediately to the corresponding well-known proper-
ties of the field coherent states. We have also
shown how, in this limit, the spherical harmonics,
as well as their orthogonality and completeness
relations, contract to the harmonic-oscillator ei-
genfunctions and their orthogonality and complete-
ness relations. Finally, we have shown how the
Baker-Campbell-Hausdorff (BCH) formulas for
SU(2) contract to the BCH relations useful and
familiar for the field coherent states.

As this work was being completed we became
aware that Radcliffe has defined coherent spin
states analogous to the atomic coherent states pre-
sented here, and that he derived their overlap and
completeness properties.’! On the other hand,
Barut et al. have defined coherent states for a
group different from ours, but contracted these
states to harmonic-oscillator coherent states.® It
should also be noted that the angular momentum
coherent states defined by Arkins et al.3® are based
on a Hilbert space different from ours, and there-
fore are not appropriate to the description of N
two-level atoms.

APPENDIX A: DISENTANGLING THEOREM FOR ANGULAR
MOMENTUM OPERATORS

In dealing with noncommuting exponential opera'-'
tors it is very useful to be able to change a sym-
metrized exponential operator into an ordered
product of exponential operators. The well-known
BCH formula (2. 11) is of this type. Similar ex-
pressions can be obtained for angular momentum
operators. We proceed to the derivation of these
expressions by first considering the 2X2 matrix
representation of the rotation group’s algebra,

{01 _§o> (00
J*‘(o o)’ Jf(o -3 » 4=\t o) >

which is the faithful representation of smallest
dimension.
By Maclaurin series expansion one finds

>, K=@,w +5ud)V? . (A1)

)24, /()2 x,/(x,)!2
ex+J+ e(lnxz)Jz e*- Jo- J £ * z
%/ (x, /2 Ve | o (a2)
(9,072 . (312
ey_.l’_ e(lnyg).rz ey+.r+= . (A3)
9. (9% 1/ (9 24y, ()M 2
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Equating these three matrices element by element
gives expressions for each set of coefficients in
terms of the others. This procedure gives four
equations for three variables, but since the J
matrices are traceless, the determinant of each
group operation (A1)-(A3) is unity; therefore only
three of these equations are independent. The
applicability of the resulting operator equation

ew.,.J,, +w J_+w,.fz=ex+-f+e(1nxg)lz ex_J_

= g¥- Y- g ; v, d, (A4)

is not restricted to the 2x2 matrix representation.
The algebra of infinitesimal rotation operators
maps onto the rotation group, which is represented
by the exponential operators. Any relation between
exponential operators, i.e., between group opera-
tions, which is valid for one particular faithful
representation of the group remains valid for all
others. Therefore the equalities (A4) are general.

In general the parameters w, x, y appearing in
(A1)-(A3) are arbitrary complex numbers. The
2X 2 matrices given explicitly are then complex
2X2 matrices with determinant +1: i.e., mem-
bers of the special linear group SI(2, ¢). Reality
restrictions on w, x, y lead to different subgroups
of S1(2, ¢). The condition that the parameters be
real restricts consideration to the subgroup
S1(2, 7) of S1(2, ¢). The condition w, real, w*
=-w_, and similar conditions for x, y is equiva-
lent to the restriction to the subgroup SU(2) of
S1(2, ¢). The BCH formula (A4) is valid for the
group S1(2, ¢). It is also valid for its real forms
(subgroups) provided the given set of parameters
(say w) is selected in such a way that the solution
of Egs. (A1)-(A4) for the other sets of parameters
(say x and y) satisfies the same restrictive condi-
tions (for instance, reality) obeyed by the given set
(say w).

Using the disentangling relations, expressions
for the rotation operator (3.7) are obtained:

- Xz 2 -k
wazetl* S R L LA

Ze

AP LY YL Y

2 eTJ+ s

(A5)

where ¢ and 7 are given in (3.7b) and (3.11b). If
we let £ =ca, t*=ca*, a'=c¢d,, a=cJ., and J,
=a'a-1/2¢% following the contraction procedure
of Sec. IV, Eq. (A5) gives, in the limit ¢— 0,

to X A S 2 ok
Ta:eaa a¥a - padl , lal /zeaa

2
=e—n:*a elal /zeaa'f (AG)

which is the BCH formula (2. 11).
A more general expression can be obtainecd by

contraction of Eq. (A4). If we let w,=ca, w.
= - ¢p*, and w,=0, we obtain

. 8% T - aB¥ - gX g% % 1
e¥a’-B*a - yaal -aB /Zeﬁazeﬂaeaﬂ /zeaa . (A7)
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Using this relation, together with (A6), one ob-
~ tains, after some manipulations,

TmTB=e‘°‘B*'°‘*B”2T (A8)

@ +B

which describes the composition of translations
T,. The use of this equation allows derivation of
Eq. (2.14a) very simply. Of course, Eq. (A8) can
also be obtained by contraction of a similar equa-~
tion for the composition of rotations:

(A9)

where ©, &, and ¥ are to be determined. We note
that the RM,’S do not form a group, since we have
restricted ourselves to rotations around an axis in
the (x, y) plane. It is therefore necessary to allow
for a rotation around the z axis on the right-hand
side of (A9). This rotation simply amounts to
changing the phase factor of the single-atom eigen-
states |y]). The angles ©, ®, and ¥ could be ob-
tained by manipulating (A4) and (A5). A simpler
procedure is to use the 2 X2 matrix representation
as in (A1)-(A3). By application of (A1) one has

= -0y
RgiyiRy, o =Ro 00" "%,

_ 1 1 7
Ro o=@ Te1® (_T* 1) ) (A10)
) e-i‘l’/a 0
e v, _ ( 0 e“"/‘g) (All)

With 7/ =¢ ' tan}¢’ and T=e¢ *®tanie, Eq. (A9)
becomes
T+7! )
1-77'*

Tei‘l{/Z
vz ) (A12)

— X!
(@ lrlaelr e (1577,

1 e-iv/2
T+ T|2)172 <_ Tro-1¥/2

which determines ¥ and 7 in term of 7 and 7. The
contraction of (A9) proceeds straightforwardly,
and gives (A8). Equation (A9) can also be used to
derive (3. 14a) in a simple manner.

As a final case of interest let us show how to
reentangle the expression

ratq v af +¥_a)

e’ e (A13)

The quantity is obtained from the contraction of

Me pla dira )

= exp(Z coshé sinhiAJ, + o, 2311_@ 3,

sinhg ./, ) Fil)
ra. e J. Sinhiq (A14a)
where 62=q, a_,
cosh3Q =coshé coshin . (A14p)

Making a contraction with a, = cy, and following the
rules of Table I one obtains

ekafae(v atero)
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= M7-/4[1 +(2/2) cothi) — coth®12]

xexp[ra'a+ (3)/sinhin) (v, &/2%a' +v_e* 2a)] ,
(A15)
which is the desired result. A similar expression
has been derived in a more involved way by Weiss
and Maradudin®® in order to calculate some thermal
averages which have been obtained differently in
Sec. VIIL

APPENDIX B: GENERATING FUNCTIONS FOR
EXPECTATION VALUES WITHIN BLOCH STATES

Using the disentangling theorem of Appendix A,
together with the definition of Bloch states as rota-
tion (3.8), or equivalently (3.12), it is easy to con-
struct generating functions for normally ordered,
antinormally ordered, and symmetrized expecta-
tion values of products of powers of the operators
J., J,, J_ within Bloch states.

We define the following expectation values:

Xyla, B,7)=(6, |e*+ef%e’-6,0),  (Bla)
X,(a, B, 7)=(6, 9| e"-e%e%%+| 6, 0) , (B1b)
Xs(a, B,7)=(0, ¢|e*™*#2 7|9, 0y,  (Ble)

and will show that these functions can easily be
calculated. These functions are generating func-
tions since one has

[ Ga) ) ..

=<97 ¢lJ~anbJ-c|6’¢> ) (Bza)

}

which immediately gives

X —(e'B/2+e"’2(‘r+a)(T*+7)
A~ 1+1712

From this expression it immediately follows that

XNz(e‘”zIr 12+ 78/ 3(qr* +1)('YT+1)>2" [
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[Ga) o) ).

=(8,¢[J52726,0), (B2b)
(G G G =)......

=(6, ¢|8{7.2027°}|6,0), (B2c)

where S { } means the fully symmetrized sum of
products, which is equal to the sum of all dis-

tinct permutations of the factors within the brackets
divided by the number (a+b+c¢)!/a!blc! of these
permutations.

It is sufficient to compute one of the generating
functions, as the other two are then given by using
the disentangling theorem of Appendix A. It is
simplest to do this for X,. Using (3.12) one has

Xy = (/[ +]7[2P) (=g ™ML Pl gl i _ gy

(B3)
This expression is then put in normally ordered
form (A2), in which case only the term ¢®™z%
contributes to the expectation value in the ground
state (- J1e"™z| -~ J)=1/x,”. One obtains

(xj =G;!)1T§ +9,9.(y,)"/?

=e B2y (r+a)T*+y)d/?, (B4)

27
) =[e®/2cos?(36) +e?/2(sink6 e ** + a cosih) (sinkf &' +y cosie)P’ . (B5)

=[¢*/?sin®(36) + e "#/%(ae'® sin6 +cosif) (ye* * sinid +cos 1)’

1+1712
(B6)
X = ((1 +1712) coshK - (1 - | 7I2):B(sinhK)/K + (aT* +y7) (sinhK)/K))a"
s 1+17%
i i 2r
=[coshK—-%B§-l-;—hI—{— cosf +(ae'’ +ye t?) sn;{hK sink6 cosée] , (B7a)
where

K=(ay+38%)"2 . (B7b)

APPENDIX C: CONTRACTION OF SPHERICAL
HARMONICS TO HERMITE POLYNOMIALS

This appendix indicates additional consequences
of the contraction of the angular momentum algebra

r

(3. 3) to the harmonic-oscillator algebra (2. 3).
The mathematical properties derived here are not
directly connected to the contraction of Sec. III

to Sec. II, but are of independent interest. One
should note that the symbols 6 and ¢ used here are
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the angular coordinates of a Schrddinger represen-
tation, and are not related to Bloch-state labels,
as elsewhere in this article. The notation |7, m )
is used for Dicke states, in order to conform with
the usual spherical harmonic notation.

We first note that the eigenvalue equations

T3 L m)y=10+1)|1, m), (Cla)
I\, my=m|1,m) (C1b)
contract to
(C2a)
(C2b)

respectively, where #,, on the left-hand side of
(C2a) is the number operator. These contractions
are easily performed using the rules of Table I.
Equation (C2a) can be written in a slightly differ-
ent form,

[= 21y, + (@'a+aa')] |, n)=|w,n),

atalw, n)=n|w3 n> ’

$(aa+ad)|o,n)y=(n,,+%)|=,n), (C2¢)

where the left-hand side is now a Hamiltonian for
a model physical system, while the right-hand side
describes the eigenvalue spectrum for states
which diagonalize #,,.

In the Schridinger representation Eqs. (Cla) and
(C1b) lead to wave functions (gll, m)=Y; ,(6, @)
which are the spherical harmonics, whereas (C2b)
leads to wave functions (gl«, n)=9,((wm/%)*/%q)
which are related to the Hermite polynomials
H,(x), where x=(wm/%)"2q. 1t is therefore clear
that the spherical harmonics Y, (6, ¢) can be con-
tracted to the Hermite polynomials H,(x), but it
remains to show how the coordinates 6, ¢ should
be contracted to x. To this effect we consider how
the operators J,, J,, J,, written in the coordinate
representation, should be contracted according to
the rules of Table I. One has

lim(cd,)=1lim [zc(sm(p 2, cotané cos¢ %)]

c-0 c-0
+
_d'ta_x
=73 > (C3a)
lim(cd,)=1im [ic <— cosq D cotans sing —a—)]
-0 > c-0 v 86 1
_a*-—a P R
5 @hem) 2 VT ax o (C3P)
lim(2c2J,) = llm( 2ic? —a-)=— (C3c)
c-0 c-0 890

Introducing the last equation in the previous two,
one sees that cotanf must approach zero as fast
as ¢ for the contraction to give a finite result.
With 6 =37 - cX one then obtains

; csing 2 1 X
1:}';1( ising — +2Xcos<p) 75 (C4a)
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lim (z cos@ — (C4b)

+iXsino) = &
lim +3X s1n<p) 73 ox
Though ¢ could be kept arbitrary, the simplest
contraction procedure is clearly to take ¢ =0, in
which case X=v2x. The correct limiting technique

is then

limg=0, limf=%ir—cV2x, (C5a)

c-0 c-0

together with

l+m=n (fixed) .

(C5b)
The angular momentum eigenfunctions are,9 with
u=cosé ,

lim(2ic?)=1, limm=-,
c-0 c-0

Yz,m(97 ¢)=Pt,m(u) eime (C6a)
where
(o qyem L zz+1>“2 (l—mﬂ)"2
Py ()= (~1) 2‘1!( 2 T+m)!
2ym/2 dl+ 2
x(1 = u?) T (1-u®) (Cé6b)

are the associated Legendre polynomials, nor-
malized such that

[P pdu=1. (Céc)
The harmonic-oscillator eigenfunctions are®
b, = (=1 272 A" .2
@l Vo) 72 ¢ ge©
- 1 -x2/2
@V )z e H,(x), (C7a)
which are normalized such that
[T ax=1 . (Cb)

With ¢ =0, we just have to contract P, , (), withu
=xcV2 = l”zx as ¢~ 0. Introducing this in (Céc),
we see that the normalization will only be preserved
if §, is the limit of 7-'/*P, . Indeed, we find

o a1/4
lim-'*p,
¢-0

(21)1zl/a>l/z( 1 )”2
=lim(- l)n(——é-ll'l' 2" (2162 )

c-0

x[1 - 2622 “/?czﬂa( )[1 PRI

1/2 n
=(=1pqi/t (2,,1 l) 2 (g;) e =y, (%),

(c8)
where Stirling’s approximation has been used to
contract the first quantity within large parentheses.

The orthogonality of the ,(x)’s results from an
orthogonality relation satisfied by the associated



6 ATOMIC COHERENT STATES IN QUANTUM OPTICS

Legendre polynomials

[} Py Py pr(0) =8 e (C9a)

which immediately gives

[ lUmrV4p,  UmIY4P, . dx=6,,  (COb)

-0

or

[' :“’ d)n (x)wn' (x) = érm’ .

As another example of the derivation of a proper-
ty of the 3,’s from a property of the associated
Legendre polynomials, we show how the complete-
ness relation can be obtained from the addition
theorem

1/2 1
(2l2+1) 2 P, ,(cos6)P, ,(cosé’)

ma-1

=Py o(cos(6-6')) . (C10a)

One has, in the limit,

22 UimI"Y*p, ,(cos§)limI-'/* P, , (cos6’)

n=0 1+ 1+
=limP, q(cos[(x’ - x)/VT]) (C10b)
1+
or

L (e, () =60 ~ ) . (C10¢)
n=0

In conclusion let us mention that all other prop-
erties of associated Legendre polynomials con-
tract to corresponding properties of oscillator
eigenfunctions. In this way, one can construct ad-

ta/2

R(" a, —B, _7)':9"’3“2{"”#6""7 = [e 0

x./ (%) 2

By definition one has
R0, =8, - M)=2D}., (apy)|M') . (D2)
Ml
The occurrence of the minus signs in the left-hand

side has been explained above. Using (D1) and
(D2) one obtains

:‘D‘Arl' M(a: B; 7)=<MI‘R(_'Q) —B’ "'}’)lM)
(M| e g iy, (D3)

the last equality resulting from (A2). From (D1)
one has

x,=taniBe’* , x_=-tanipe'’,

2233

- ditional generating functions, recursion relations,
addition theorems, etc., for the oscillator eigen-
functions from those of the associated Legendre
polynomials.

APPENDIX D: RELATIONS BETWEEN BLOCH STATES,
SPHERICAL HARMONICS, AND IRREDUCIBLE
REPRESENTATIONS OF FULL ROTATION GROUP

In this appendix additional uses of the disen-
tangling theorem are discussed. In particular it
is shown how to derive in a simple manner the
well-known (2J+1)% (2J+1) irreducible representa-
tions of the full rotation group. Properties of
these representations are then related to proper-
ties of the Jacobi polynomials, of the spherical
harmonics, and of the associated Legendre poly-
nomials. This allows to derive orthogonality rela-
tions in a very simple manner. The relation be-
tween spherical harmonics and the Bloch ampli-
tudes of Eq. (3.13) is also shown. These proper-
ties are useful to compute integrals on the sphere
of Bloch-state projectors with spherical-harmonics
weight functions. These integrals are then used to
construct the diagonal expansion of operators into
Bloch states, as in Eqs. (3.20c) and (3.20d). As
a case of special interest the statistical operator
of a pure Bloch state is finally derived.

1. Derivation of Irreducible Representations of Full Rotation
Group

Let us consider the rotation of an object defined
by the three Euler angles (- a, -8, —y). The re-
sult is identical to a coordinate rotation (a, B, ¥)
and will therefore agree with the usual group the-
oretical expressions.!* In the 2x2 irreducible
representation one has, in the spirit of Appendix A,

0 cos3f sinjg | [e'/? 0]
~ta/2 | |-siniB cosip 0 e ir/e

_ ,:(x,)”z +x, x5 /) x, /()2

s @y

xg=e' 7 /cos?(z ) .

It remains then to calculate the last matrix ele-

ment in (D3). This is done straightforwardly by
expansion of the exponential operators containing
J, and J_:

Dl ale 675 S ot P (1P G

x(M'|J}7* | My . (D4)

Finally, using the step-up and step-down proper-
ties of J, and J_ one obtains
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(= 1yt-mes

DY (a; B,‘}/)=Z} 7 7
uu o i (u+M =M (T+M - !

This expression is identical to the more usual form®*

[T+2)! (I = M) (T+M) (T =M )1]M2

(J=M +pu)! ((J+M')! (J+M)! )”2

(=M (T-M)

(sin%B)zuLM- 14 (COS%B)' M-M eiaM' e””.
(D5)

oF yla, B, ¥)=27 (= 1)

The identity is not easy to show, but this fact
should not mask the great simplicity with which
(D5) has been derived. To prove the identity,
starting from (D6), one replaces (cosip)?’*2H-2x
by (1 -sin?(B)’*¥-*. This expression is expanded
in powers of (sin8)®, and a double sum results.

. The summation indices are changed to u=M" -M
+v+k, which runs from M’ —= M +k to J+M’', and to
n=M" - M+k. The summation over 7 is carried
independently, using the relation

5 m\/m \_[n+m
E\lo (k)(zwk)'( » ) '
Equation (D5) results.

The construction of the matrix elements (D5)
]

(J—M' -k (T+M =) k! (k+M = M)

T

(sin%B)z" +M - M (COS%B)ZJ" MM -2 etau' elrM

(D6)

does not give any new information, as (D6) has
been known for a long time. But the procedure
which has been followed throws light on mecha-
nisms for computing representation matrix ele-
ments for other groups in an explicit form. It
turns out that an exactly similar technique can be
used for a large number of Lie groups. To expand
on this would fall beyond the limits of the present
work.%

2. Relations to J acol;i Polynomials, Associated Legendre
Polynomials, and Spherical Harmonics

The matrix elements Dj. ,(a, B, v) are directly
related to the Jacobi polynomials. To see this we
first write (D5) or (D6) in a different way,

(J=M) (T+M)!

Diu0,80=5 =2

(J+v)! (
veoy =M (v =)

(J-v)!

1/2
T+ M) (J—M)!) (sinzpf 4 (coszpf* ¥ . (D7)

These matrix elements are given by an elegant generating function®s %8

Dy, 40, B,0)=P}. ,(cosp) (D8)

with

-m _ / -m
an,n(z)= (" 1)’ ((l n)' (l+m)' )1 2(1 +z)-(m+n)/ 2(1 - z)-(m-n)/Z(i>l [(1 - z)l-n (1 +z)l+n] . (D9)

2L =n)t \(I+n)! I=m)!

This is just the generating function for the Jacobi
polynomials.

When J=1 is an integer the labels m, n can as-
sume all integral values ~I<m, n<+[. Setting n
=0 in the generating function above yields the gen-

" erating function for the associated Legendre poly-
nomials and the spherical harmonics:

D}, 40, 8, 0)= P}, o(cosp)

(_l)l-m (l )1 /2 o
T ((ziZ)l) (= %) mr

x (%)l-m 1-2) (D10)

and

1/2
(2‘11;1) D} ol@, 6, =)=(=1)"Y,(6,9) . (D11)

In short, the spherical harmonics are essentially

dz

[

matrix elements belonging to the =0 column of
the D! = representation of the full rotation group.
Moreover, the matrix element which occurs at the
intersection of the ». =0 row and the »=0 column
is a Legendre polynomial Pg 4(cosg). We see that
a number of special functions are associated with
®}, .. The orthogonality properties of all these
functions are simply obtained from the well-known
expression'* 37

2r T 2r
f daf Sinﬁdﬁf ayohin. (a, B, V)DL, (a, B, ¥)
0

0 0

2r T or
daJo ldcosBly dy .y
=fo jdl T T B jo Y 6’ le'nan'n . (D12)

Thus the functions

21+1

1/2
(—_) 1):""(&, B; 7)

PRV (D13a)
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form an orthonormal set on the parameter space

(a, B, v) with respect to the measure
da|dcosg|dy . (D14a)

By setting #»' =»#=0 in (D12), and carrying out the
integral over y, we find that the functions

27+ 1\/2
4rn
are orthonormal on (8, ¢) with respect to the mea-
sure

oL 0@, 8, =)=(-1)"Y.(6,9) (D13b)

de|dcosd| =dpsingds . (D14b)

Finally setting n=#"=0 and m=m'=0 in (D12), and
carrying out the integrals over both « and y, we
find that the Legendre polynomials P,(cos@),

: 1/2 1/2
(212+ 1) Dol 6, )= (21;1) P, (cos6),
(D13c)

form an orthonormal set on the interval (-1, +1)
with respect to the measure

|dcosé| =sin6d6 .

(D14c)

The completeness of the functions (D13a)-(D13c)
may be proved analogously starting from the com-
pleteness relation®” for the matrix elements D',

EZ}Z 27+1

1 ’ ’ ’ 1
z 4rx2n T oo Dy ( yﬁ’y)‘Dmn(a’Bs'y)

=6(a’ — a)6(cosp —cosB)s(y’' —y). (D15)
Equation (D15) is the dual to Eq. (D12).

3. Relations between Spherical Harmonics and Bloch
Amplitudes
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2L+1\/?
47 ) ‘Dril, 0(¢, 93 -)

Yﬁ:<e,¢)=<-1w(

and
(5, M|6,0)=2} _,(~9,6,0),

have analogous properties because they are func-
tions drawn from different columns of the D7, ,,
[SU(2)] representation of SU(2). Since the columns
(m =0 for spherical harmonics and m = - j for the
Bloch amplitudes) are separated by half the range
of the discrete variable m, it should come as no
surprise that the oscillator eigenfunctions are con-
tracted limits of the spherical harmonics for the
argument (57 - ¢ V2 x) centered around the midpoint
in the finite range of the continuous dual variable

6 [Eq. (C5a)]. This was proved there in a differ-
ent way.

4. Integrals over Bloch-State Projectors

The observations made so far can be used to
compute explicitly integrals of the form

1= [|J,8,0) Y5(60)(J, 6, 0| a2 (D16)

with dQ2=d¢ sinf df. First, the Bloch states are
expanded in terms of matrix elements

‘9’<P>=Z; 'J; m)D:,-J(_(P; 97 ¢)

=700 g, myol, _,(-9,6,9, (D17
m

where y is a dummy variable, introduced for con-

venience. Substituting (D17) and (D13b) into (D16)

one obtains

J,L, M A
= farid D
The spherical harmonics (D13b) and the Bloch I ,}:’ |2, ) il <, m' | (D18)
amplitudes (3.13), respectively, where
J
(=10 (2L +1\l/? *
Apt =5 (——47, ) Dy, - (@, 6,7)D% o(9, 6,7)D5. 1 (@, 8,7)du(@, 6,7) . (D19)

‘Here du(e, 6, v) is given by (D14a).
of Clebsch—-Gordan coefficients:

f i‘a(R):n,,.,,(R) 3 (R)dp(R) 2_]_% <jz js
1

Using this fact one finds

47(2L +1)\V/ 2
A= (_I)M((2J+1) )

The last Clebsch~Gordan coefficient is given ex-
plicitly by*!

J|L g\ _(__@r+ir@Een \V?
<-J 0 >,"<(2J+1+L)!(2J-L)z> . (D22)

In particular it results that A%L:¥ =0 for L>2J.

The integral in (D19) is well known,

38-40 and can be expressed in terms

Jz Js
c

; (D20)

X
Gowe ) o 0120

ThlS is precisely what is required to have (2J+1)?
independent coefficients in the expansion (3. 20d).

o

(D21)

5. Diagonal Expansion of Operators into Bloch States

We now proceed to solve for the coefficients
G,,, in (3.20d) in terms of the matrix elements
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(MIGIM')Y of (3.20a). Using (3.20a), (3.20c),
(3.20d), and (D18), one obtains

(M| G\ M y=20 G, Afl™ . (D23)
I,m

This relation must be inverted, using the value of
Ajl:™ from (D21). To this effect we use the rela-
tion*!

<j1 J2 |J>
Ja ma | M

1/2 :
___(_1)11-J+m2 2J+1 <J Je
' 2j1+1 M —m,

j’> (D24)

my

to transform the first Clebsch—Gordan coefficient
in (D21). One obtains

Apipm=(=1)-m(=1)"H <2J_+T>

><< Jg J |I\N/J |l J >
M -Mim/ \-J|0 =J/~
Introducing this in (D23), multiplying both sides by

g S )Y (=1 " and summing over M and M’,
one obtains

U | d y
Z, e <m et _M,> (Mlc|n')

. ’ 4” /2 J | l’ J >
(1) -m . .
=1 Crom (2J+1) <—J 0 -J

(D26)

(D25)

We made use of the relation
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L . . . . - L/ ,
» i <J j > ST
mymy M my Mg my Mg M 0 5MM
Equation (D26) gives the coefficients G, in terms

of 3 sum over the matrix elements (MIGIM' ).
These ideas can be used to generate the diagonal
representation of any well-behaved operator and,
in particular, of the density operator, as explained
in Sec. IID. To give a simple example, let us
consider the density operator of a pure Bloch

state |6y, ¢y),

P=|90’ ©g) (6, ‘Po‘ . (D27)
From (3.23) it is immediate that the weight func-
tion can be written

P9, 9)=5(0 - 09;0 — @) .

However this function is not of the form (3. 28),
since the summation in (3. 28) is limited to the first
(2J+1)? values of A=(, m). The coefficients X,
are obtained immediately from (3.27), X,

=Y7(0y, ¢y). The summation (3.28) gives then

(D28)

o

J 15

P(s, <p>=>30 2 Y705, 90)Y; ™6, ¢)
I= m=-1

1 2J
—= 27 (21+1)P,(cos®)
4m 1o

= (D29)
with cos© = cosf cosf,+sindsinfgcos(yp — @,). The
two expressions (D28) and (D29) correspond to the
same density matrix in view of the fact the inte-
gral (D16) vanishes for L>2J.
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The statistics of the sum of photocounts in partially coherent Gaussian light is investigated.
Both the case of detection at L discrete points and the case of an extended surface of detection
are considered. The combinatorial-analysis approach is applied to derive the moments and
cumulants of the distribution. They all can be expressed in terms of the second-order cor-
relation function. The results are generally valid independent of the ratio of the observation
time to the coherence time of light. A comparison between the theoretical moments and the
moments computed from experimental distributions as a function of the detector surface is
carried out with the help of a pseudothermal source.

I. INTRODUCTION

A method has been described recently® for de-
termining the degree of spatial coherence of Gauss-
ian light on the basis of photocount experiments.
The light from a pseudothermal source is simulta-
neously detected at two points of the observation
plane with a single photodetector. The probability
distribution of photoelectrons, p (), corresponds
then to the probability distribution of the sum of
the integrated intensities of light received at each
point. The moments of » play a key role in the
above method. In order to derive them the com-
binatorial-analysis approach is used. This ap-
proach turns out to be extremely fruitful also in
analyzing multifold photoelectric counting statistics
of both Gaussian? and a mixed chaotic and coherent
light.® The purpose of this paper is to extend the
results obtained for two points to a larger number
of points, and in the limit to an extended photo-
detector. The results will be generally valid, re-
gardless of the ratio of the counting time to the
coherence time of light.

In contrast to correlation and photon coincidence
counting experiments which involve a number of

distinct photodetectors and sometimes a signal
multiplying device, % only one photomultiplier is
needed. In statistical terms, we are not interested
in the joint probability distribution p @z, n,, ..., 7n1)
that 7, counts will be produced by the first detector,
n, counts by the second one, etc., but in the prob-
ability pe=n,+ny+ * + ~+ny) of recording the sum »n
of the random variables 7,7, .

Some of the results presented here were already
derived® by considering the factorial moment-gen-
erating function of p(z). In the combinatorial-anal-
ysis approach the whole involved step of calculating
the generating function is superfluous. The mo-
ments of p(r) are directly calculated from the
knowledge of the mutual coherence function across
the detector surface.

In Sec. II we define the probability distribution
of the sum of the random variables ny, n,, .
and summarize the various relations between mo-
ments and cumulants. Section III contains the
derivation of the moments of p(r) in the case of
detection at L distinct points and for counting in-
tervals much smaller than the coherence time of
light. Section IV generalizes the results of Sec.
III for the case of an arbitrary counting time in-

c Ny

.., Nyg



