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INTRODUCTION

The aim of this contribution is twofold. On the one hand, the ingredients of deter-
ministic randomness ubiquitous in classical mechanics are to be identified clearly and
their presence in quantum mechanics is to be shown. (n the other hand, the possibility
of actually observing deterministic randomness in quantum mechanics is to be pointed
out., To thiz end quantum-nondemolition measurements are used. The intention of the
present work is to give a nontechnical survey of the ideas relating deterministic ran-
domness and quantum-nondemolition measurements; for a2 more detailed study of this
topic the reader is referred to Lhe paper [9).

The developments given here are one particular way to look at the problems re-
lated to the field “quanturn chaos™ (see e.g. 3] and this volume). Contrary to many
other investigations the question of existence of deterministic randomness in the time-
evolution of gquantum systems is addressed—no recourse 15 made to the investigation
of level statistics or the spatial structure of wave functions, for example. The theory-
independent tool of algorithmic complexity is used in order to allow & direct comparison
between the quantum evolntion and classical dynamics. If is known that this concept
catches the relevant features of classically chaotic motion |7]. For example, the difh-
cully of making reliable long-time predictions of the behaviour of a physical system is
reflected in nonvanishing algorithmic complexity of the associzted dynamical model.

The discussion of these question is organized as follows. In the next section al-
gorithmic complexily is introduced in an absiracl way meaning that no reference is
made to either classical mechanics or quantum mechanics, Subsequently, in Section II1
this mathematical concept i# shown to coineide with deterministic randomness when
applied to classical mechanics. A brief illustration of these features with Arnold's Cat
Map follows, being one of the standard examples of chaotic motion. Section I'V deals
with another physical realization of the abstract scheme of algorithmic complexity. It

- is explained that (time-dependent) guantum systems in principle may evelve deter-
ministically random in time. From the discussion given in Section V it follows that
gquantum-nondemeolition measurements emerge naturally as a possibility to observe the
delerministic time evolution of a quantum system due to Schrodinger's equation. Per-
forming this particular type of measurements in general allows to suppress the occur-
rence of the intrinsic quantum-mechanical probabilities. In the last section a summary

of the relevant points is given.



ALGORITHMIC COMPLEXITY ...

In this section the notion of algorithmic complexity is introduced in mathematical
terms without reference to either classical or quantum mechanics. Consider a compact
manifold I' of points v € I" on which a linear map If : ' — T is defined, I7 being one-fo-
one and invertible, The automorphism 7, when repeatedly applied to the manifold T,
later on will be interpreted as the time evolution of the “state space™ I' for a physical
system. Other state spaces—having a finite or a countable number of elements—may
occur {cf. [9]) bul are not taken into account here.

Algorithmic complexity comes into play if one is interested in the amount of numer-
ical work to determine the n'® iterate 4, = U™y of (generic) points v € I, for arbitrary
lazge numbers n & V. From a numencal point of view the calculation of 4, amounts
to implement on a computer the shortest possible program T generating that number.
A fixed number N, of bits is needed to store the algorithm which effects numernically
the map [ of the manifold I'. Realistically, the determination of the image points .
is possible only up to an {arbitrarily small} uncertainty A which will depend on the
given accuracy Ay of the initial point + = =, on the map 7 and on the number n of
iterations. Storage of the starting point in order to oblain a prescribed value of A after
n steps requires Np(A, n) bits. Finally, the number of iterations n has to be stored,
corresponding to log, ne bits. Algorithmic complexity then is defined as the total length
of the shortest program in bitls divided by =

€ = Tim - (Ny + Np(A,n) + logyn) | (1]
Fr=seil arp

in the limit of arbitrarly large values of n. Since the length of the algorithm N, is
a fixed number and lim,_...({fog:n}/n — 0, only the second term Np(A, n) may effec-
tively contribute to a nonzero value of the complexity .

Complexity as defined above measures the difficulty to locate the images v, accu-
rately on the manifold I' as a function of the inevitable inaccuracy of the initial position
. According to the properties of the map U7 this inaccuracy, for example, may in-
creases algebraically or exponentially, thus possibly giving rise to positive complexity.
Consequently, this notion allows to distinguish in a computationally relevant way qual-
itatively different types of dynamical evolution.

Nonzero complexity occurs whenever the term Np( A, n) increases—for large values
of n—at least linearly as a function of =. This corresponds to an ezponential growth
of the initial inaccuracy Ay or, correspondingly, of a small volume of initial conditions
with typical size Ay, due to the application of the antomorphism IF. Since the set I' 1s
compact and is mapped to itsell under [/, the increase of inaccuracies in one direction
must be a accompanied by a decrease in another direction, leading even affer a small
number of iterations to an intricate image of the original “volume™ of initial conditions.
Initially “distant”™ points v,' on the manifold I' may be mapped by I'™ onto “neigh-
bouring” ones and vice verse. In the next section a simple example of such behaviour
in an abstract dynamical system will be presentied.

o UNDERLYING CHAOTIC MOTION IN CLASSICAL MECHANICS ...

The relevance of the concept of algorithmic complexity in classical mechanics can
 be seen by making the following identification. Consider the manifold T’ as phase space
{or as a hypersurface of fixed energy in this space) of a classical Hamiltonian system
with conserved energy H. The evolution of the system over a time interval At being
conservative and symplectic is described by a map I(Af) : T — I'. The time transla-
tion U(ﬂ.f:] of phase space densities represents a linear antomorphism of I, as required
for the general scheme described in the previous section. Consequently, algonithmic
complexity applied to classical mechanics may eniail a division of the set of Hamilto-
nian systems into two classes the elements of which are different with respect to the
possibility of predicting their long-time behaviour. Roughly speaking, this distinction



coincides with the difference between integrable and nonintegrable systems, although
there are exceptions [6].

The consequences of a lime evolution being algorithmically complex are casily ex-
plained in physical terms. The expression *deterministic randomness™ has been coined
in order to describe the seemingly irregular motion of nonintegrable systems. Although
the law governing the time evolution of a classically chaotic system is completely deter-
ministic, accurate predictions of the final state even after relatively short times become
illusionary due o the fact that small deviations in the imtial conditions are blown up
by the dynamics. It is essentially this physically relevant sensitive dependence on ini-
tial conditions which is enciphered in algorithmic complexity since the actual work to
generate quantitative predictions is taken into account.

The Armold Cal Map [1] serves as a paradigm to illostrate the features mentioned
above although 1t 15 not conservative due to the explicit time-dependence of its Hamil-
tonian, The unit square {with opposite boundaries identified} considered as the phase
space of a dynamical system is mapped onto itself according to

'=(M-z)modl, (2)

where 2 = (p,¢), p,g € [0,1) and M is a 2 x 2 matrix with all entries equal to 1, except
the upper left one which is equal to 2. In Figure 1 A the image of a phase space density
concentrated about the point -+ is shown. The process of stretching and folding which
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Figure 1:  A: Phase space distribution centered about the point v, at £ =10
{I) and after n iterations of the map IF (II})
B: Dhstribution of nonzero coefficients centered about the state
o at t = 0 (I} and after » iterations of the map I/ {1I)

imntroduces an ever finer structure of the density over the manifold I' can be discerned
casily indicating the algorithmic complexity of the motion,

In the next section the occurrence of algorithmic complexity in quantum mechanics is
investigated.



... ALSO EXISTS IN QUANTUM MECHANICS ...

In order to see algorithmic complexity evolve in a quantum-mechanical time evolu-
tion one can proceed in the following way. Let the manifold I' correspond to the values
of continuously varying labels g, (x = 1,2,... ,dim ') associated with the eigenvectors
{|g)} of operators g, (1 = 1,2,... ,dim [}, that is

gilg) =gig), V. (3]

The continuous spectrum of eigenvalues {g} necessarily is accompanied by generalized
eigenvectors {| g)} as they are known from position operators, for example. It is as-
sumed here that the operators g form a complete set of operators for the system under
consideration. Consequently, any possible quantum state |¢) of the system may be
expressed as a superposition of the eigenstates {|g}}

%) = [vig)lg) dg, (4)

with appropriate coefficients ¢(g) = (g | ¥) and defining dg = [], dg,. In other words,
the manifold I' is identified with a complete set of basis vectors in Hilbert space H—it
does not correspond to the set of all possible quantum states,

Defining the time evolution of the system by the action of a unitary operator [/
on the basis |g) in Hilbert space H, another realization of the mathematical structure
developed in Section Il is obtained. Let the operator [’ act in such a way that any
eigenstate |g) is mapped onto another eigenstate |g') of the operators g, i.e., consider
an invertible automorphism of the basis vectors |g) between themselves (cf. Figure 2 ).
In most cases, the time evolution of a quantum system does not have this property

Figure 2: Map [’ of the manifold I' parameterized by eigenvalues g of the
states |g)

because typically an eigenstate | f) of a basis {| f)} in general will be mapped onto a
superposition of vectors | f). However, the above situation also is possible and turns
out to be particularly suited to discuss the occurrence of algorithmic complexity in
quantum systems. Note that specifying the map I/ for a set of basis vectors is sufficient
to determine the image U/|y') of any state ) for all times which correspond to the
n-fold application of [V,

In fact, if the map [ is algorithmically complex as defined in the second section the
time evolution of the quantum system becomes extremely difficult to follow accurately.
Suppose an initial state to be localized about a point 4, on the manifold I', meaning
that only states in the neighbourhood' of 5, have nonzero coefficients. Afier a small
number of iterations of the map [/ this distribution of coefficients is no longer localized
in a small region of the manifold I'. One may describe this situation simply by slightly

| Note that the notion of neighbourhood here refers to the metnic of labels on the manifold ' and
pot of Hilbert space M.




changing the statement made in the preceeding section: Although the law governing
the time evolution of the guantum system with algorithmic complexity is completely
deterministic, accurate prediction of the final probability distribution on the manifold
[' even after relatively short times 1s illusionary due {o the fact that small deviations in
the initial distribution are blown up by the dynamics.

It must be emphasized that this drawback in predictability, as presented here, has a
purely dynamical origin—in exact correspondence to the source of deterministic random-
ness in classical mechanics. It is important to realize the separation of the deterministic
and the probabilistic element of the time evolution which has been effected here. The
intrinsic guantum probabilities are an additional independent feature of the theory and
do not contribute at this level.

The properties of a particular quantum system system possessing an algorithmi-
cally complex time evolution have been worked out elsewhere [8]. The Configurational
Quantum Cat Map arises from the description of a charged particle moving on a con-
figurational two-dimensional torus when restricting one’s attention to a discrete and
periodic set of times only. The system is explicitly time-dependent: free motion on the
torus is interrupted periodically by the influence of specific §-pulsed electro-magnetic
fields. They effect the time evolution operator I/ over one time interval to act on the set
of position basis vectors formally as the Arnold’s Cat Map does act on the torus-shaped
phase space.

Figure | B illustrates for this system what happens to the nonzero coefficients of a
state localized in configuration space under repeated application of the operator I (in
this case ¢ = =, and p = % correspond to the spatial coordinates on the configurational
torus). Since from a numerical point of view there is no difference to what happens in
the classical Arnold’s Cat Map, positive algorithmic complexity of the time evolution
is immediately obvious entailing deterministic randomness of the quantum motion. A
related example has been discussed by Chirikov et al. [5]; a physical realization of the
underlying Hamiltonian, however, is not available.

... AND CAN BE OBSERVED BY
QUANTUM-NONDEMOLITION MEASUREMENTS:

It has been shown above that in particular cases the separation of the deterministic
and the probabilistic element of quantum dynamics is possible. In this section it is
argued that under such circumstances the phenomenon of deterministic randomness,
if present in the dynamics under investigation, may be observed unambiguously by
making use of quantum-nondemolition measurements. These measurements, however,
are in no way related to the formation of algonthmic complexity—some maps U7 simply
allow to introduce these measurements and hence allow the direct obhservation of the
deterministically random Schrodinger dynamics.

A simple example of & quantum-nondemolition observable |2, 4] is given by the
position operator #(E) in the Heisenberg picture of a one-dimensional harmonic oscillator

with Hamiltonian H — {#* + w'$*)/2. Measuring the operator £ at lime £, forces the
oscillator into an eigenstate? |2y}, The operator #(t,) commnutes with the time evolved
position operator (i, + 7) for certain values of +

|2(tp), 2ty +7)] =0, HreT ={r|r=nww,nec L}, {5)

whereas for times ¢ in between one has
[#(to), Sty + )] £ 0, ¢ ET. {6)
The spatial spreading of the eigenstate |z} and ite subsequent “relocalization™ at the

point i, is llustrated in Figure 3. Since commuting operators possess a common set of
eigenstates [cf. Eq. 5), the time evolution from &, up to & + 7 turns out to be a map IF

*For Eimp]iq.;_ty it 15 assumed thal ideal measurements exist.
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Figure 3:  Schematic representation of the state of the harmome osdllator at
times &y + v where 7 € T (1) and al times &, + T where 7 ¢ T (I}

of the eigenstates {|2}} onto themselves. However, in the case of a harmenic oscillator,
this map coincides with the identity map I7 = 1 but this need not to be case in general.
Consequently, having performed a position measurement at £, with the result z,, one is
able to predict with certainiy the outcome of a position measurement at time £,++. This
statement subsequently may be checked by a measurement at £+ 7, in principle without
disturbing the quantum state. Consequently, the same system may be used again for
other measurements at a second , third, ... time ¢4+ 64+ +", ... [, 7",... € T). This
results from the fact that the observation of a system prepared in an eigenstate of the
measured quantity does not lead to a change in the state of the system. For this reason
operators fulfilling Eq. 5 are called guantum-nondemolition.

The generalization to a complete set of commuting operators § is straightforward.
A complete set of commuting cbeervables consisting of quantum-nondemolition observ-
ables i3 defined by the conditions

lFlthgt+7) =0 ¥reTandi,j=1,2,...,diml, (T}

implying again that there is a map [/ of the basis vectors {|g}} at time ¢ onto the same
set {|g)} at times #+7 with v £ T, possibly labelled in a different way. In this situation
it 1s possible to predict exactly from the measurement of the quantum state at an initial
time { the result of measurement of the same complete set of commuting observables
at any later time ¢t + v (v € T) and to actually observe this evolution by repeated
measurements on one single system. Clearly, this situation formally parallels classical
mechanics: no probabilistic statements do enter and as a consequence, deterministic
randomness, if present, may be observed unambiguously.

- SUMMARY AND CONCLUSIONS

Algorithmic complexity underlying chactic motion in classical mechanics also exists
in quantum mechanics and can be observed via quantum-nondemolition measurements,

Starting from the theory-independent notion of algorithmic complexity it 1= pos-
sible to understand under which circumstances “true quantum chaos” [3] may occur.
Juantum systems in which a continuous manifold is mapped repeatedly onto itself by
the time evolution are candidates to exhibit deterministic randomness. The manifold
I', however, does not necessarily coincide with the Hilbert space of the system but



may consists of a continuously labelled complete set of (generalized) basisvectors of
this space. Due to this property one is lead in a natural way to the consideration of
quantum-nondemolition measurements. It turns out that they indeed present an the
appropriate framework for the discussion of the existence and observation of determin-
1stic randomness in quantum mechanics, although they are not related to the formation
of this phenomenon.

The deterministic rearrangement of the set of eigenstates associated with a com-
plete set of commuting operators by the type of time-evolution considered here allows
one to make exact predictions aboul the outcomes of measurements at later times, and
to actually check experimentally these statements unambiguously. As a consequence,
the occurrence of deterministic randomness of the quantum motion, if present, can be
detected unambiguously in such a situation.

In addition, a somewhat surprising feature emerges: only one single quantum system
15 needed in order to follow the actual time evolution—no ensemble of equally prepared
systems 15 necessary.

The conditions for quantum systems to exhibit deterministic randomness are quite
specific. Nevertheless, from & fundamental point of view to know about the exis-
tence of strongly irregular motion in the innocently looking, linear and determinis-
tic Schrodinger equation may help to better understand the properties of the generic
quantum-mechanical dynamics.
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