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A charged particle moving in a bounded region of the
plane (with periodic boundary conditions) is subject to
external periodic electromagnetic fields. Classically, they
effect a hyperbolic mapping of the particle configuration
space to itself which leads to highly chaotic motion. It
is shown that the guantum-mechanical time-evolution
operator has an absolurely continuous spectrum of quasi-
energies, indicating a strong irregularity in the motion
of the quantum system. The quantum time evolution
turns out to have nonvanishing algorithmic complexity.

In this paper, a quantum system is presented which in
its time evolution clearly exhibits chaotic features and
algorithmic complexity.

Linear hyperbolic maps of a bounded region to itself
contain all the features which are characteristic for the
chaotic behaviour of classical systems. Assuming the unit
square to represent the (toroidal) phase space of a ficti-
tious physical system with one degree of freedom, repeat-
ed application of e.g. “Arnold’s cat map” generates dis-
crete orbits into which a Bernoulli shift can be embed-
ded, corresponding to the highest degree of irregularity
possible in dynamical systems [1]. Quantized versions
of such maps have been introduced [2, 3] in order to
understand the relevance of the concept of chaos in
quantum mechanics, and to clarify the relation between
classically chaotic systems and their quantum-mechani-
cal counterparts. The formation of ever finer structures,
being a sine qua non in classical chaotic systems, is in
these systems, however, prevented by the discrete spec-
trum of the operators of both, momentum and position.
The present paper demonstrates that this is not a funda-
mental limitation.

Consider the vnit square as configuration space of
a classical physical system with two degrees of freedom.
Then the application of a hyperbolic map will yield “con-
figurational chaos”: the irregular behaviour of “paths”
in configuration space is sufficient to render the time
evolution of phase-space orbits chaotic. Subsequent

quantization of such systems does not impose a coarse-
grained structure on the configuration space because the
position operators commute. Chirikov et al. [4] analyzed
an abstract autonomous model with at least three de-
grees of freedom, and showed that there are features
of configurational chaos which indeed survive quantiza-
tion.

The Hamiltonian

H(x,p,t)=3p-p+3(-A(x, 1) +A(x, 1)-p) (1)

describes a charged particle constrained to move in a
unit square of the x y-plane with periodic boundary con-
ditions (period 1) under the influence of time-dependent
electromagnetic fields. The electric field E(x, 1) associated
with (1) has components in the x y-plane only, whereas
the magnetic field B(x,¢) is directed along the z-axis.

A linear and time-periodic vector field

A(x, )=V x A7 (1) 2

yields linear equations of motion, allowing throughout
for analytic treatment [8]. Here, 44 ,(¢) is a sequence
of smooth kicks of period T, duration oc ¢ and height
ocl/e with ¢<T, and V is a 2x2 matrix such that
C=exp[V] is hyperbolic and has integer entries only,
e.g. Arnold’s cat map. Stroboscopic observation of a par-
ticle with vanishing momentum p, initially placed at x,
already reveals fully chaotic orbits with positive algo-
rithmic complexity [5]. In the limit e—»0 Arnold’s cat

map of the unit square
x{(nT)")=(C"-xo,) mod 1 (3)

describes exactly the particle positions at times t=(nT)~
just before the kicks. Nonvanishing initial momenta p,
always lead to an increase of energy exponential in time.

The time-evolution operator over one period T or
Floquet operator U(T) is the appropriate tool for inves-
tigating the long-time behaviour of time-periodic quan-
tum systems [6]. In the limit ¢ >0 it becomes

(1) =exp| 5 50| xp| & VoV 0] (@)
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where it has been assumed that the kick operator Uy
acts before the free time-evolution operator Ux(T). The
transformation of the states of the position and momen-
tum basis under the kick is remarkably simple

Uglx) =(C-x)mod 1),  Uglp>=IC""-p> Q)

where x, ye[0,1) and p,/h, p,/heZ. The labels of the
quantum states are mapped according to the classical
canonical kick transformation.

The operator Uy partitions the 2-dimensional grid
of momentum eigenstates into “discrete hyperbolas”
with label P: each of the countably infinite number of
sets S(P)={|C*-P), seZ} is invariant under the applica-
tion of the operator Uy. Superpositions of states on one
hyperbola with appropriate phases turn out to be eigen-
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fu(p)= S;f (7
[ p-C5.C°p  n<0

where « is any real number in the interval [0, 2m).
Straightforward calculation shows that {|P, «)} is a com-
plete set of (generalized) orthonormal states. From

UM P, aoy=explia] |P, a), (8)

it follows that the quasi-energy spectrum is absolutely
continuous and that every value is countably infinite
degenerate. Level statistics is not applicable. The expec-
tation value of the energy is not bounded but grows
at an exponential rate.

For certain values of T quantum resonances [ 7] oc-
cur: the operator Up(T) becomes the identity. In this

case, the time evolution of an initial state |x,) exactly
parallels the classical time evolution: U(nT)7)|xq»
=(U)" Ixo> =|x((nT)7)). Thus there exist “quantum or-
bits” of positive algorithmic complexity. The highly ir-
regular quantum time-evolution shows up in various re-
spects [8]. In particular, a wave packet, initially concen-
trated in a small region of configuration space gets ex-
ponentially stretched and folded such that it is quickly
distributed over the coordinate basis.

In summary, quantization of the time-dependent
classically chaotic system presented here yields a quan-
tum system with an absolutely continuous quasi-energy
spectrum. Consequently, many concepts known from the
description of classical chaotic dynamics can be applied
to the quantum time evolution.
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