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The notion of integrability in guantum mechanics is investigated in order to prepare rigorous grounds for the study of
repudar and irregular behaviour of guantum systems. s common-sense definition furns out to have deficiencies which arc
itustrated by various explicit examples. Part of the ambiguities are shown to have their origin in the difficulty of fransferring
the concept of independent constants of motion into guanium mechanics, due t0 a fundamental theorem on sets of
commuiing operators by von Neumann. Taking into account the classical fimit with coherent states does not resolve the
problems. As 2 result, it is peinted out why the appesling phenomenclogical dislinetion between regular and chaolic
quanium systems cannot be traced back to the present notion of “quanitm integrability” ip a mathematically rigorous way.

1. Introduction

The intention of this paper is {o clarify the
relation between the phenomenological separa-
tion of quanium systems into regular and chaotic
ones, and the present notion of infegrability in
quantum mechanics. In particular, the possibility
to connect this notion in a mathematically rigor-

e s way to the observed physical phenomena will

be investigated,

First, the theoretical motivation for the in-
troduction of the concept of integrability into
gquantum mechanics, and some phenomenological
evidence for the necessity of such a concept are
presented.

Quantum mechanics — taken as the fundamen-
tal theory for the description of physical phenom-
ena - should contain at icast principally the basic
features of classical mechanics. For this reason
one would like fo undersfand the phenomenon of
chaotic behaviour encountered in classical me-
chanics on quantum mechanical grounds. Acty-

ally, various approaches to this problem are cur-
rently  investigated constituting the field of
“guantum chaos” {1, 21 Inter alia, three aspects
of this problem are to be distinguished.

On the one hand, one asks for “precursors”
of classically irregular behaviour in quantum
systems. This amounts to determine - mostly by
numerical means — the properties of typical quan-
fum-mechanical guantities {(energy spectra [3},
eigenfunctions [4, 5}, etc.) for systems which have
a classically chaotic counterpart. Compared to
systems with classically integrable counterparts,
considerable differences have been found indicat-
ing the reasonableness of a classification of quan-
tum systems in analogy with classical mechanics,
The second approach which is intimately interwo-
ven with the first one consists of studying the
semi-classical regime characterized roughly by as-
suming # 10 be a small quantity [6L. To this end
WKB-methods have been refined considerably,
and in fact they have been extended to classically
non-integrable systems [7, 81 In the semiclassical
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himit, the correspondence between classical and
and quantum-mechanical behaviour becomes even
more pronounced. Thirdly, one may address di-
rectly the problem of the occurrence of “de-
terministic randomness” in the quantum time
evolution [9, 10].

Another approach is to carry over the standard
definition of integrability to guantum mechanics,
thereby defining “guantum integrability” or “in-
tegrable guantum systems.” This would define
the complement of the set of those guantum
systems which are expected to exhibit manifesta-
tions of irregular behaviour.

This approach —te be studied in the fol-
lowing — seems promising because of its generality
and its formal equivalence to classical mechanics.
Although a successful transfer of the notion of
integrability into quantum mechanics would not
lead directly to statements about “non-integrable”
quantum systems, it is expected to reveal charac-
teristic properties which such systems certainly
should not possess, In addition, the class of sys-
tems which are worthwhile studying in the con-
text of “guantum chaos” would be well-defined
and then, possibly, all three aspects mentioned
above could be understood coherently in the Hght
of one concept. In spite of these appealing prop-
erties not much study has been devoted to the
concept of integrability in guantum mechanics, In
the following the common-sense definition of
quanfum integrability is studied in this respect.

The paper is crganized as follows. In section 2
the ingredients of various definitions of integra-
bility in quanium mechanics — leaning heavily on
the classical notion — are presented. This defini-
tion is then shown 10 possess some deficiencies
due fo the fact that the structure of guantum
mechanics is not iaken into account with suffi-
cient rigour. Explicit examples illustrate the dif-
ficulty of giving quantum integrability, as if stands,
an mdisputable, physical meaning, Subsequently,
the impact of the classical limit on the problem of
integrability is discussed briefly. In section 3, the
ambiguitics encountered in section 2 are shown
to be partially related to 2 fundamental theorem

by von Neumann. Section 4 contains a summary
and discusses the problems in defining guantum
integrability from a general point of view.

2. Integrability in gquantum mechanics
2.1, The definition of integrability

In classical mechanics the concept of integra-
bifity is of importance because it entails a phy-
sically reasonable partition of all Hamiltonian w
systems into two classes.

In integrable systems {11}, the solutions of the
equations of motion globally foliate the phase
space into smooth manifolds which have the
topology of N-dimensional tori. As a conse-
quence, the Fourier spectrum of trajectories is
discrete, and only small regions of phase space
are visited cven after infinite times.

In non-integrable systems [12] there is no such
giobal phase-space structure. Usually, the time
evolution of neighbouring trajectories is totally
different int the long run. The associated Fourier
spectrum contains genericaliy a continuous com-
poncat, and reliable forecasts of the time evolu-
tion are a delicate matter because of the (al-
gorithmic) complexity of possibie motions,

A classical Hamiltonian system with Hamilto-
nian H{p, q) is called integrable if

(@) there exist N single-valued constants of
motion §={I, [, ... I,) defined smoothly over
all phase space I'. Thus, onc has

£H, I} =0, (1)

where { , } denotes the Poisson bracket.

{8} The constants of motion I are functionally
independent of each other.

(v} All N constants [ are in involution:

{(I,1,}=0, ¥Yn,n. (2)

nr*otn

LN
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The second condition ensures that oan cach
hypersurface - defined by values 1,~the direc-
tions of the phase-space flow d/7, n=1,2,.... N,
generated by the constants /) are linearly inde-
pendent {except on separatrices).

This definition of integrability is sufficient for
the purpose intended here — mathematically more
elaborate defimtions can be found e.g., in refs.
£11, 13, 14).

It seems natural to apply 1o the definition of
classical integrability Dirac’s prescription of re-
placing Poisson brackets by commutators of cor-
responding quantum operators

{1301 N £

in order to introaduce the notion of quantum
integrability. This has been done by a number of
authors, see, e.g., refs, [15-19] Their definitions
will not be discussed separately, because, essen-
tially, they all agree in calling a quantum system
with Hamiltonian operator H quantum integrable
if

(o'} there are N guantum constants of the mo-
tion = (EI, fz, . fN), ie.,

[A.1]=0. (4
- {g) Al N constants I commute with cach
other:

0] =0, va,n. ()

The following discussion will take this “working
definition™ (abbreviated QI) as a starting poini.
Important features of the classical definition have
been carried over into guantum mechanics: the
definition of constants of motion in guantum me-
chanics is unambiguous as it is in classical me-
chanics and the condition of involution (which
classically is necessary in order to derive the
phase-space foliation into tori (sec, e.g. ref, [201)
is transferred casily into gquantam mechanics,

too®!. However, the notion of functional inde-
pendence, crucial for the classical concept of
integrability, has been dropped.

Does this definition imply a partition of the set
of all quantum systems into two classes with
physically different properties? This being so,
quantum integrable systems should be endowed
with particular properties to be derived from this
definition. However, a number of problems arises
when attempting to define guaniwm integrability
in this way. The next section points out that the
difficulties are due to the very structure of guan-
tum mechanics,

2.2, Loopholes

In this subsection it is argued that the present
notion of quantum integrability is not & well-de-
fincd concept. For simplicity, the discussion is
restricted to systems which can be guantized un-
ambiguously: the Hamiltonian is supposed not to
contain products of noen-commuting operators,
Two results are established.

{A) The class of gquantum systems representing
counterparts of classically non-integrable systems
is expected to confain guantum non-integrable
systems only. However, cach member of this class
can be shown to possess constants of motion
sufficient in number to fulfill the requirements of
the definition QI, hence, to render the sysiem
quantum integrable,

{B) The class of quantum systems representing
counterparts of classically integrable systems ig
expected to contain quanium integrable systems
oniv. However, it is possible to show that ali
commuting guanium constants of motion — neces-

#1t should be noted. however, that its meaning has
changed: the vanishing commutators express the simultaneous
measurability of the involved constants of motion which is a
purely quantum-mechanical statement and does not reflect a
classical concepl in an obvious way, Considering the constants
of metion as generators of fransformations in phase space and
Hithert space, respectively, it is possible to obtain a somewhat
closer connection.
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sary {0 render the sysiem quanfum integrable —
can be encoded into one single conserved quan-
tity without loss of mformation. This leads to
formal non-integrability of systems which one
would expect 10 be guantum integrable,

1t will be sufficient {o discuss specific examples in
order 0 realize the general validity of these state-
menis. The investigation of the set of constants of
motion in simple oscillator systems is particularly
advantageous since explicit constructions can be
performed. The laws of guantum mechanics are
applied rigorously and, as far as possible, no
reference is made fo classical mechanics,

{A} In order to construct fwe constants of motion
in a gquantum system with a classically non-inte-
grable counterpart a one-dimensional harmonic
oscillator is considered first. It is described by the
Hamiltonian operator

h=ho{ata + 1) =hold+ 1), {6)

« being the frequency of the oscillator. The cre-
ation and annihilation operators ¢ fulfill the
commutation relation

a7 a*]=1, (7}

and A is the number operator. There is a count-
able set of eigenstates of A and, simultancously,
of the Hamiltonian £,

Alny=nind, n=01,2... (8)

constituting an orthonormal basis of the Hilbert
space of the oscillator. The operator projecting
on the energy cigenstate m) is denoted by

Pimy= Im)(mi . (9)

~
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FFig. 1. Arranging the positive integers n =Ry in a “iwo-
dimensional”™ grid-or labeling two copies of My by one
integer a1,

other:

[ P(n), P(m)] =0. (10)
The construction of two constanés of motion
proceeds as follows, The label n=8,1,2.... of
the basis {|n)} of the oscillator, eq. (6), can be
replaced by fwo indices n, and n,, both taking
on all non-negative infeger valucs. To this end
the discrete set of integers M, simply has to be
arranged in a “two-dimensional” grid with axes
n, and #, as depicted in fig. 1. The associated
transformation can be given explicitly

o= n(n!,nz} E=n, -+ %(HI + n?,)(”‘i + Ha + i}.

(11)

Every pair {n,,n,)} determines exactly one num-
ber r and vice versa, as is obvious from fig. 1.
Conscquently, one may label the eigenstate of the
Hamiltonian by », and n,:

n, Ry, Ry & RN,

(12)

iy = inlng, ny)d = 1ny, my0,
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The completeness relation reads

oo

Z Z 1”;;”2><n],n21 = Z 1ﬂ><ﬁ| =

ayp={ oy =0 ==}

(13)
and the orthonormality becomes
<J"L| * ”;z;”’z * nf2> = 5:1 ,n'ianzn"z‘ (i4)

The eigenvalues of the energy can be written as

< i

2y, M3

B

h,
= w{n,+-§—(n,+n2)(ni+n2+l)+%],

(15)

where n,, n, & N, Considering the labels n; and
n, as quantum numbers i is natural to ask for
corresponding operators A, A, and their pro-
perties. Observing that the sequence of states
{keiN,)

105,153, 133,165, [bk(k+ 1)), . (16)
belongs to the value n, = { and that

125, 143, 170,410, . [h+ (K + Dk + 2),...
(17)

and

15y, 18Y, 1120, 117D, . 12+ 2k + 2k +3)), ..
(18)

gtc,, are related to n, =1 and n, =2, respec-
tively, one finds

iy =0 % P(bk(k+ 1))
ke )
+1 3 P(1+ 3k + 1){k+2))
koo 4}
+ 2 iﬁ(2+§(k-+-2)(k+3))+

=Y T+ Hk+D(k+I+ D). (19
Py k=03

The operator 4, is defined analogously:

Ay = i f KP(I+ L(k+ Dk +1+1)).  (20)
=8 k=4

Clearly, being linear combinations of commuting
operators, the quantities 4, and A, commute:

[A,4,] =0. (21)

Finally, one can write the Hamiltonian itseif as a
function of the Hermitian operators 4, and A,:

h=holh, + 3, +a)(A +A,+ 1)+ 1], (22)

indicating that (trivially) A, and A, are both con-
stants of the motion,

14, 8] =[4,,h] =0. (23)

Note that one can choose the labels »n, and n,
completely independently of cach other in order
to specify energy cigenstates, All eigenvalues n,
of the eigenvalue problem Ay ) = A ¢ ), for ex-
ample, are countably infinitely degencrate and
the second label, m,, is necessary in order to
determine uniquely one particular state,

Considcr now a system with two degrees of
freedom possessing a classically non-integrable
counterpart and Hamiltonian

H= Y E &, (24)
P

This structure is typical —but not necessary - for
systems represemting candidates for non-integra-
bility. It is possible to apply the above procedure
to the sequence of eigenvalues E, (#0), n=
€,1,2,... after performing an appropriate scaling
of the energy axis.

Define an equidistant sequence of eigenvalues
&, by introducing the function g7 (2}, defined on
the energy spectrum of the Hamiltonian B such
that

E,=n+% n=012....
(25)

sn :g-_i(En)’
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The sequence &, is associated with the well-

defined operator

rn

F=g WA H=g"'(H) L E, %,

# owef)
= Vg (EYEF = L e,9, (26)
s t G

The operators

o

A=Y i [P(1+ Ak + Dk +1+ 1)),
f=0t k=0

A= 3o U kP + e+ Dk T+ D), (27
{=0 k=0

commute with the original Hamiltonian  since
they are linear combinations of the projection
operators &2, on energy subspaces:

{7, 2] = A B =4, B =0 (28)
Making use of eq. (22) one can write

ﬁmg(}?)[/ff; + A ) (A Ay 1)+ %]
(29)

reproducing correctly the eigenvalues £, when
applied to an eigenstate of the Hamiltonian H.
Since eq. (28) demonstrates that the require-
ments of the definition of quantum integrability
are fulfilled, the present definition of guanfum
integrabitity does nor single ont a particular sub-
set of all guantum systems.

By arranging the numbers n=0,1,2,... In an
appropriate “‘d-dimensional”™ grid one can analo-
gously construct 4 commuting constanis of mo-
tion. Consequently, withowt further requirements
on the operators to be counted in the definition
Q1 the number of constants of motion in guan-
tum systems is not uniguely given. This proves the
general validity of statement (A).

{B) Similar argumenis can be used in order to
decrease the number of constants of motion. Con-
sider, for definiteness, a two-dimensional har-
monic isofropic oscillator with frequencies w, =
= @l

A= hoafar +ata; +1) = ho{ N+ Ny 1),
(30)

For reasons of correspondence, this simple quan-
ftum system unambiguousty should fall into the
class of guantum integrable systems.

Fig. 1 now shows a natural arrangement of the
cigenstates (or their labels) {{n,, n,); n,, 75 € N}
of this system in a two-dimensional grid. How-
ever, ong is not forced to use two labeis #, and
1, one single index n is sufficient to mark ail
states uniquely. Clearly, reversing the procedure
from (A) s the simplest way to achieve this. The
operator

F = N+ 4N+ N (N + Ny + 1) (31)
has positive integer eigenvalues only:
Flhy=ktky, keN,, (32)

and ifs eigenstates are given as direct products of
eigenstates of N, and N,:

Note that the spectrum of .% is not degenerate:
to every eigenvalue & belongs one and only one
state k),

Introduce the “quadratic Gaussian bracket”
{1z with
[x}(z)n%n(n+ i)? HGN{}!xER+> (34)

where n is the maximal integer such that

x—in{n+1) 20, (35)
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Then, any real number x is decomposed into two
parts:

x=[xhnt+ Adx, Axel0,nl (36)

Fffectively, this equation is the inversion of eq.
(11). The bracket [}, aflows to express the “nat-
ural” constants of motion, N, and N,, as func-
tions of the operator # ina simple form. The
Hamiltonian becomes

1= $ho {1+ 85 o + 1), (37)

and the (n + 1)-fold degeneracy of the nth encrgy
fevel of the original Hamiltonian I?I_ is repro-
duced correctly in eq. {37) due fo the structure of
the bracket [#1,y: all 7+ 1 values Axe[0,n)
belong to one ejgcnvaiue of [, The con-
served quantity N, reads explicitly

N: = - {ﬁ%]{z), (38)

and for N, one derives a similar expression.

Consequently, all information related to the
original constants of motion, N, and N,, is con-
tained in the operator 7. However, taking into
account only this operator, the two-dimensional
oscillator would net fall into the class of quantum
integrable systems, Hence, the ambiguity in the
number of constants of motion in a guanfum
system demonstrates statemeni (B).

In section 3 it is pointed out that the possibility
to combine various commuting operators info a
single one is a general feature of guantum me-
chanics, having its origin in a theorem by von
Neumann.

In the next scction it is investigated whether
taking the classical limit of operators into account
gives a hint for the selection of relevant quantum
constants of motion.

2.3. The classical fimit as a rescue?
What can one learn from these formal argu-

ments which indicate the ambiguity of the present
notion of guantum integrability? The examples

presented in the previous section allow to pin-
point the problem: which constants of motion in g
quamum system are “relevant” or “essential”
and which are “irrclevant”? In order o exclude
manipulations with labels of cigenstates such as
presented in the previous section, precise condi-
tions on allowed constants of motion must be
given. They, in turn, might entail a classification
of quantum systems into physically different sets
bearing on the observed phenomenological dis-
tinction.

One might suspect that studying the behaviour
of guantum constants of motion in the fransition
from guantum mechanics to classical mechanics
will reveal their “essential’” or “irrclevant” char-
acter in a rigorous way, Reguesting relevant con-
stants of motion o possess an associated {smooth
and globally defined) clagsical counterpart seems
to be a natural requirement. In appendix A the
effectiveness of this principle of sorting
quantum-mechanical operators is investigated for
the examples given in the previous section.

The analysis shows that not all additional con-
stanis are ruled out by the requirement of a
smooth classical limit according to Yafle's pre-
scription [22]. The attempted definition of “re-
levant” constants of motion turns out 1o be
insufficient for two reasons. First, since
guantum-mechanically ineguivalent constants of
motion — that is, constants of mation which do not
only differ by quantities of the order A*-can
have the same classical limit, the induced distine-
tion between gquantum operatoy is not particu-
farly efficient, Secondly, I spite of the artificial
constriction, operators used to reduce the num-
ber of guantum-mechanical constants of motion
are not necessarily excluded. In particular, the
operator % defined in eq. (31) has a smooth
classical limit,

3, ven Neumann’s comment

A theorem by von Neumann [23] states that
for any number of commuting hermitian opera-
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tors {23, { & ), there exists one hermitian opera-
tor &, such that all others can be conceived as
functions f; of this particular operator

Q.=f(@), i€l (39)

1 being a (finite) set of labels. The operators {Q,-}
may have discrete or continuous spectra and are
assumed fo be continuous: the expectation valies
of al {Q,-} are bounded,

10,00 < Cllol’, C <oandViy)er, (40)
where |} | denotes the norm m Hithert space #.
The case of operators {(:)!-} with pure point spec-
tra is discussed in von Neumann’s book (ref, [24],
section 1110} and is of particular interest here,

When discussing the notion of “complete scts
of commuting observables” Kembie {251 explains
how o visualize the content of this theorem: “To
this end H is only necessary fo pass a single hlne
through all allowed points of o' space (the space
of quamntum numbers, StW.) and to correlate
points on this line with distance from ifs starting
point” {ref. [25], p. 287). In principle, this is
exactly what has been done in section 2.2 in order
to combine the oscillator Hamzhomam N, and
N? inio one single operatm - the labels #, and
n, (see fig. 1) span “a’ space”, and the Iabcl k
measures the “distance” from the starting point,
k=10 If the specira of the operatoss under con-
sideration have continuous components the “line
through ail allowed points in ¢ space”™ becomes
complicated. In the discussion of a simple exam-
ple von Neumann points out that a finite area has
to be mapped onfo a line and this is effected by a
Peano curve.

One can casily explain von Neumann's theo-
rem in physical terms. Let a particular quanfum
system be given and consider the measurements
of various conserved quantities Qi,Qz,‘.. such
as energy, angular momentum, ete, with eigenval-
ues {O7, 02, 1 As a result one obtains a set
of numbers O = F,, Q" =1, etc. If all observ-
ables under consideration correspond to commut-

ing operators, it is principally possible to measure
them simultancously. By an appropriate way of
encoding, one can report the outcome of all mea-
surements in one single number

@ = (0N, 0%,..). {41)

The collection of all individual measuring devices
in combination with the prescription® how to
generate the number & from the outcome of the
distinct measurements can be conceived as an
apparatus measuring the all-embracing operator

@, Clearly, as a result of the measurement, the

physical system is left in an eigenstate of this
operator, and the outcome of the individual mea-
suremoents can be retrieved from the number &.
1t is tempting to actually consider the operator &'
as an observable,

An explicit, general construction of the opera-
tor & is not difficult in case the sclf-adjoint
operators QE,Q2 are bounded and have a
pure poini bpectrum (cf ref. {26}, p. 304). The
commuting observables Q POSSESS A common set
of eigenvectors [ »} constituting a basis of

.

Hilbert space % w:th e:genvalues QR

O, . > =0"W,, >, Vi (42)

All operators Q{- can be obtaincd as functions of
the operator

@ =Y l,a,,l (43)

{where o~ (o0, ...)), with real numbers @, #
&,, and the seif-adjoint operator & can always be
chosen to bounded by the requirement

im @, <z, |zi<om, (44}

P ]
To this end one has {o define functions f, ie 1,

#*Tpor example, by a computer plus an appropriate pro-
2ram.
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such that
fi{&,y=0%, forifixed and Vo,. {45)

The functions {f;} have prescribed values on the
discrete set of points &, only and one may extend
their definition appropriately on the line R. The
boundedness of the functions {f} automatically
follows from the boundedness of the cigenvalues
of the operators {(,).

Many familiar operators such as encrgy and
angutar momentum, for example, are not
bounded. Nevertheless, it is plausible that this
construction stifl works since the essential point
of the prescribed method is the existence of a
Hilbert-space basis spanned by simubtancous
eigenvectors of the bounded operators .{Qi}. Such
a basig still exists for self-adjoint operators (con-
taining the physically relevant class of closed op-
erators) which are nof necessarily bounded. One
defines the operator @ as in eq. (43), The func-
tions {f) cannot be bounded any longer. The
possibility of this construction, furthermore, is
supported by the physical picture relating & to
actual measurements ~the boundedness of the
measured observables does not enter here ~and
by the explicit procedure presented for the oscil-
{ator example given in section I, case. (B}, The
operator # of eq. (32) is unbounded but intro-
ducing instead of % the operator

£ A e

G ¥ (k) k= ,
k{:(} X0 im0 (k+1)°

one deals with 2 bounded operator and N,. Then,
the operators N, can be expressed as a function
aof #'. Defining, for cxample,

= Ly
fn =g =] (47)

-

one can write N, as

Ny=f (2", (48)

with the square toot of the positive operator 77
(PlF W) >0, Vig)ew (49)

being well-defined,

To sum up: the relevant feature of von Neu-
mann’s theorem in this context is the impossibil-
ity to fix unambiguously the number of elements
constituting a commuting set of operators.

4. Cenclusions

In summary, the common-sense definition of
guantum integrabifity does not provide a basis {or
a rigorous separation of the set of guanfum sys-
tems into two classcs, On the one hand, if has
been shown that quantum systems which one
would cxpect to be quantum non-integrable al-
ways possess 2 sufficient aumber of {counterintui-
tive) constants of motion to render the system
formally quantum integrable. Since, on the other
hand, any set of commuting constants of motion
can be cast equivalently into one single well
defined invariant, quantum systems which are ex-
pected to be quantum integrable, formally should
be called non-integrabie.

The impact of this result is obvious: the present
concept of guantum integrability cannot serve as
a starting point for the derivation of properties,
specific solely to a subset of all guantum systems,
This, however, should be the very idea bhehind
any definition of guantum integrability: to decom-
pose the set of all quantum systems into subsets
with distinct physical properties. Classical inte-
prability is a uwseful concept just for this reason.
Having recognized a system to be integrable by
finding sufficiently many appropriate constants of
motion, one knows — without performing any ex-
plicit caleuiation ~ that the phase space of the
system Is endowed with a particular structure. As
a consequence, non-trivial predictions, concern-
ing, ¢.g., the outcome of Poincaré sections or the
Fourier spectrum of trajectorics can be made.
What are unambiguous manifestations of quan-
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tum integrability to be compared to-but not
necessarity equivalent to - the phase-space folia-
tion of ciassically integrable systems into tori or, a
fortiori, “insensitivity to initial conditions™? In
other words, neither unambiguous predictions
pertaining to guantum integrable systems can be
made at present nor the phenomena observed in
systems {obtained from guantizing classically inte-
grable systems) can be explained by the existing
notion of quantum integrability 3. Consequentiy,
a mathematically more refined coneept of guan-
tum integability seems to be necessary in order {0
arrive at an indisputable classification of gquantum
sysfems.

Clearly, the difficulties exhibited in section 2.2
are due to the fact that the operators occurring in
the definition of quantum integrability are nof
required to possess particular properties; a prior,
any operator is allowed. Some features, indis-
pensable in the definition of classical integrabil-
ity, have been dropped in defining its quantum
counterpart. For example, single-valuedness and
smoothness represent necessary conditions on the
allowed phase-space functions but the cor-
responding properties for operators are not self-
evident. In addition, the concept of “functional
independence” is not mentioned in the definition
of quantum integrability®*, If, in the classical
definition of guantum integrability, the functional
independence of the constants of motion were
dropped, one easily could devise sufficiently many
constants of motion to render (truly) non-integra-
ble systems integrable.

The attempt to restrict the set of allowed oper-
ators by the requirement of a smooth classical

*IH is true thal there are semiclassical results periaining 10
“reguiar’” or “integrable™ quanfum systems. Berry and Tabor
213, for example, derive the encrgy-level statistics of such
systems. But such derivations usually are based on the classi-
cal definition of integrable systems which are then quantized
semiclassically. Hence, the guantum version of integrability
does not at all come into play.

*Hietarinta in fact requires the comstants of motion o
represent “independent, well defined, global operators™ (ref.
f1a], p. 1833), however, without specifving the meaning of
these notions.

Hmit has not led to conclusive results, In addition,
a detour via classical mechanics in order to de-
cide on the relevance of quantum-mechanical
constants of motion secems unsatisfactory. It is
indispensable to distinguish between essential and
irrefevant constants of motion without reference
to classical mechanics. Finally, it is a formal pro-
cedure only to impose the condition that relevant
guantum constants must posess a smooth classical
immit - it remains to demonstrate that observable
facts actuaily follow from this property. From a
mere general point of view the difficulty in defin-
ing “essential” constan{s of motion amounts to _
giving some additional structure {0 the set of
operators in Hitbert space.

H should be emphasized that in order to con-
ceive “quantum integrabiity” or, in turn, “'quan-
tum chaos” as a distinguished phenomenon on its
own, the classification of guantum systems inio
“integrable” and “non-integrable” ones should
not refer to the properties of their classical coun-
terparts: an intrinsic quantum-mechanical defini-
tion is required.

In conclusion, it has been demonstrated that
the present notion of guantum integrability, as it
stands, is a formal concept only which does not
email a rigorous separation of quantum systems
into distinct classes. The refinement of taking the
classical limit of operators inte account does not
resolve the difficulties. The connection of the
problem of guantum integrability with the basic
problem of defining “intrinsically” physically rele-
vant observabies indicates that the ambiguity of
the notion “quantum integrability” in bounded
time-independent systems, strictly speaking,
touches upon a fundamental probiem.
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Appendix A

In this appendix an explicit preseription o
obtain the classical fimit of an arbitrary operator
by means of coherent states is discussed. The
requirement that any operator occurring in the
context of guanfum integrability must have a
smooth classical limit does not eliminate all ex-
amples of counterintuitive constants of motion
presented in section 2.2

In order to deal with a definite concept of the
“classical limit” the prescription presented by
Yaffe {221 is used. It is shown there that in
general one formally recovers the structure of
classical mechanics from quantum theory by the
following procedure. First, coherent states are
defined with respect to the commutation rela-
tions of the basic operators, €.g., position and
momentum. Then, expectation values of quan-
tum-mechanical operators (and identities be-
tween operators like Heisenberg equations} in
these states are considered, which usually depend
on Planck’s constant . Performing subseguently
the limit # -0 one obtains a classical theory
associated with the original quanium theory.

The coherent states {1z)} of the one-dimen-
sional harmonic osciliator are defined as eigen-
functions of the annthilation operator a~

1
Z 7 e

a’{z)=zlz), T

(wg+ipyeC. (50)

In the epnergy basis {in)} they read

bz =exp( o H{z‘gf) } Z ‘/—En), (S'l}
where
H(p.q) = H{ 0" + w'g?) = hiwlz® (52)

is the classical Hamiltonian function (m = 1)
Consequently, one has

Knl2)?=2res, (53)

abbreviating H{p, 9)/hw =x,

The following remarks apply to case {A). The
guantity 7, of eq. (19), renamed ﬂ?, can be
written as

Z-'S)
Hi

f M, P(n), (54)

with eigenvalues M, given by
{M,}=(0,0,1,0,1,2,0,1,2,3,0,1,...), (55)

depicted in fig, 2. Note that the shape of the
“envelope” of the maximal values M, for large
values of # is roughly given by v2n : the eigenval-
wes of M increase as the sqguare yoot of Zn for
growing m.

The classical limit of the operator M foliows
from its expectation value taken in a coherent

Fig. 2. Eigenvalues of the operator M.
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state [z},

(56}

A lengthy calculation shows that for large values
of x = H{p,q)/hw corresponding to smatl # one
obtaing

2“(;9 q}

{zIMiz> = a{h”/ 2L e 1],

(57)

where al#) is a function which for £ - § takes on
the values 1 aad & infinitely often; hence eq, (37)
expresses the fact that lim,,_, he (zIM|z) does
not exist.

This result can be understood without going
through the explicit calculation. First, the sum in
eqg. (54) is transformed into an integral which is
gvaluated by the method of stationary phase. For
each value of # only 3 small region of the inte-
grand (depending on the actual value of #) con-
tributes to (zIMlz). Due to the fact that the
eigenvalues M, drop to O again and again the
dominant term of {z[Mlz) is suppressed again
and again. Therefore, the expression Vhw
x {zIM|z) never settles down to any fixed value
in the kmit # — 0%, It is interesting to note that
nevertheless in eq. {(22) the operators A, = M and
i, appear in such a combination that the classical
limit of the Hamiltonian H is approached cor-
rectly.

This result looks promising: the operators 7#,
and A, can indeed be excluded because they do
not possess an appropriate classical counterpart.

Nevertheless, the requitement of a smooth
classical limit of constants of motion involved stif
does not define “relevant” constants of motion
uniquely. In the one-dimensional harmonic oscil-

#*ISeating the axes in fig. 2 appropriately one observes that
in the Hmit & — 8 (or An - 0} the area under the c:wclopc
gets filed densely indicating that the expression vhw (zlMiz)
does not have a limiting value.

tator, eq. (6}, for example, the operators

= B Z (on +1+ 5P+ 14, (58)

also represent constants of motion, and they have
smooth classical Hmits. Surprisingly, they become
funciions of the classical Hamltontan

2flm}}<z}h L2y =H{p,q}. (593
.

Intuitively, the three operators RY and the
Hamiltonian h are not eguivalent quantum-
mechanically — the criterion specified above, how-
ever, does in no way distinguish between the
Hamiltonian 4 and the other two Qperators.

In case (B} two “natural” constants of motion
have been represented by a single one, Investigat-
ing the classical limit of the operator .%, eq. (31),
atong the same lines one finds its classical limit to
be a simple function of the 24 oscillator Hamilio-
nian

lim (h0)’(21712) = 1H(p.a)" (60)

ent oscillator states associated with the systems 1
and 2, respectively,

] .
iz) = ‘/—2}‘?— 111 wg +ip) =tz ®lzy). (61)

Eq. (61} is consistent with the classical Hmit of
the Hamiltonian H in eq. (37) which is required
10 be the classical Hamiltonian, H{p, q). Conse-
quently, the operator % cannot be rejected ac-
cording 1o the given ¢riterion.
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