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A general method to decouple multicomponent linear wave equations is presented. First, the Weyl
calculus is used to transform operator relations into relations between c-number valued matrices. Then
it is shown that the symbol representing the wave operator can be diagonalized systematically up to arbi-
trary order in an appropriate expansion parameter. After transforming the symbols back to operators,
the original problem is reduced to solving a set of linear uncoupled scalar wave equations. The pro-
cedure is exemplified for a particle with a Born-Oppenheimer-type Hamiltonian valid through second or-
der in 7. The resulting effective scalar Hamiltonians are seen to contain an additional velocity-
dependent potential. This contribution has not been reported in recent studies investigating the adiabat-
ic motion of a neutral particle moving in an inhomogeneous magnetic field. Finally, the relation of the
general method to standard quantum-mechanical perturbation theory is discussed.

PACS number(s): 03.65.Sq, 03.40.Kf

I. INTRODUCTION

The spatiotemporal evolution of many physical sys-
tems is governed by linear multicomponent wave equa-
tions, the electromagnetic radiation field, and quantum-
mechanical spinor wave functions being familiar exam-
ples. It is common to study the approximate behavior of
solutions with short wavelengths since under this as-
sumption, typically, the problems simplify considerably
without losing their essential features. Possibly a close
relationship to an underlying, more familiar theory may
emerge; such a situation can yield valuable insight into
the original theory, as is the case for wave optics versus
geometrical optics and for quantum mechanics versus
classical mechanics. Going beyond the lowest order in
some appropriate expansion parameter is more or less
straightforward in problems involving scalar waves
whereas in the case of multicomponent fields already the
first nontrivial order tends to become laborious. In stud-
ies of the adiabatic motion of a neutral particle subjected
to an external magnetic field the question of higher-order
terms arises naturally.

It is the purpose of this paper to present a systematic
method to diagonalize Hermitian multicomponent wave
operators up to arbitrary order in an appropriate order-
ing parameter. These results extend work done by
Littlejohn and Flynn [1,2], who showed by making use of
the Weyl calculus how to achieve the diagonalization up
to the first nontrivial order; an investigation of elec-
tromagnetic wave propagation along similar lines has
been performed up to first order by Brent and Fishman
[3]. This approach turns out to be so powerful that at
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least formally (in other words, putting aside questions of
convergence) an exact diagonalization of arbitrary Her-
mitian wave operators can be achieved.

II. THEORY

To start, an outline of the approach to diagonalize
multicomponent wave equations is given—for a more de-
tailed account of the theory the reader is referred to
Littlejohn’s and Flynn’s work, to which terminology and
notation of the present work are adapted.

Let the wave equation at stake be given by

D@ kwv=o0, (1)

where the i, are the components of the A4-dimensional
wave field or “sg\inor” WV, and the (A4 X AA) matrix D has
elements Daﬁ(a,k). The operators q and k correspond to
position and momentum, and they are assumed to fulfill
the commutation relations (G, K, 1=i€5,,,
(m,n=1,2, ... ). The quantity € denotes the ordering
parameter and coincides in quantum-mechanical prob-
lems with #. Often the position representation is particu-
larly convenient; with §—q and k— —i€d/dq the linear
operator D turns into a matrix of (pseudo) differential
operators [4] coupling the components of W(q).

By means of the Weyl calculus [5] a one-to-one
correspondence between operators and symbols can be
set up which in the position representation reads

A(q,p)=fds(q—s/2|f/flq+s/2>exp[is-k/e] , )

where |q) are the elements of the position basis and A is
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any operator. The operators q, k, and D(a,f(), in partic-
ular, are mapped into uniquely defined phase-space func-
tions q, k, and D(q,k). Effectively, symbols are c-number
representations of operators with modified rules for form-
ing products and, a fortiori, commutators. These rules
keep track of the noncommutativity of the basic opera-
tors G and k.

The Weyl correspondence has a number of appealing
properties. For example, the Hermiticity of the wave
operator, Daﬂ=ﬁ B> 1 reflected in the Hermiticity of its
symbol matrix, also called “dispersion tensor”

D os=Dp,. In addition (quantum-mechanical) expecta-
tion values of operators 4 turn into averages of phase-
space functions A4(q,k) with respect to appropriate den-
sities in phase space.

Basic to the following development is the Moyal for-
mula [6] which relates the symbol of a product of
operators AB to the symbols of the operators 4 and B.
Explicitly, one has

A(4,K)BG,%)— 4(q,k)eLB(q,k) , 3)

where the operator exp[eZ] is defined via its Taylor ex-
pansion

i
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and the arrows indicate that the partial derivatives
94=9/0q, ... act on the factors on_the left or on the
right of it, respectively; the operator Z is a useful short-
hand for the ordinary Poisson bracket {, }, and the fac-
tor i /2 has been included for convenience.

The strategy used to diagonalize the operator-valued
matrix cons1sts in introducing an operator-valued uni-
tary matrix U such that

0'p 0=A (5)

holds, where A is required to have nonzero elements on
the diagonal only. Having decoupled the individual “p
larlzatlons one can proceed to determine the solutlons
®=0 "W of the transformed wave operator A by stan-
dard methods. Finally, one obtains the sought-after wave
fields W of the operator D by writing

=00 . 6)

The hard part of this program, clearly, consists of finding
the operator U which diagonalizes the wave operator D.
By making use of the Weyl correspondence rules the
problem becomes tractable: having transcribed the
operator relation Eq. (5) into a relation between fields of
matrices defined all over phase space, one can resort to
methods of linear algebra. This approach is based on the
assumption that the symbols of the operators U and A
can be expanded into power series of the ordering param-
eter €, that is,
U0-Uqk)= 3 €U, , (7)
u=0

and, correspondingly,
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S €A, . (8)

A=0

K—»A(q,k)=

In general, such expansions will hold in large parts of
phase space; the ordering in €, however, breaks down in
regions of “mode conversion” or ‘“Landau-Zener cou-
pling” [7] (cf. below). From now on it is assumed that ei-
ther there are no such regions in phase space or that-one
stays away from them.

The requirement that U be a unitary operator imposes
the following condition on the symbol matrices U, :

Lytrw, ., o)

=vtedu=3 & 3 -
M=0 n

Lu,v
(u+l+v=M)
with u,l,v 20, using Egs. (4) and (7); the Mth power of €
is multiplied by a sum of (M +1)(M +2)/2 terms. Com-
paring the various powers of € on the left and right of Eq.
(9) one finds

I=UlU, ,

ov¥o 1 (10)
o= 3 T;UJL’UU, M=1,2,

(T4 o=

As a result, the lowest-order symbol U, has to be a uni-
tary matrix. Decompose the symbol matrices U, into
two parts ( 4, and B, are Hermitian matrices)

U,=Uy(A,—iB,), u=12,..., (11

where for later convenience the matrix U, has been fac-
tored out. In other words, the matrices —zUOU have
been decomposed into their Hermitian and anti-
Hermitian parts. For a given u =M one finds that the

matrix A4,, is determined by all matrices Uy, ..., Uy _;,
since each of Egs. (10) can be written as
u=HULU+UlU)= S FUT,L v, ,
Lu,
(u +H‘—luv=M)

M=12,..., (12)

where the prime on the sum indicates that the terms with
u =M or v =M have to be left out. For M =1 this result
reproduces correctly the first-order calculation [2]

< 1
A1=—§U§)£UO=E{U:§,UO} . (13)

No condition whatsoever on the matrices B, follows
from Egs. (9); it will be shown momentarily that this free-
dom is (more than) sufficient in order to diagonalize the
symbol D.

Instead of transcribing Eq. (5) directly into symbols (as
Littlejohn and Flynn did) here the equivalent equation

DO=0URA (14)

is chosen as a more convenient starting point: no triple
products of operators occur which would require the
twofold application of the Moyal formula (3). The sym-
bol equivalent of Eq. (14) is given by
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D(q,k)eLU(q,k)=U(q,k)eLA(q,k) , (15)

or, using Egs. (4), (7), and (8),

(=] 1 -
1 I
> M3 7 DL, S UL M
M=0 Lu Lu,A
(u+1=M) (utl+A=M)
=0 y
(16)

with in total (M +1)(M +4)/2 terms in the sum multi-
plying the Mth power of €. The lowest-order term im-
plies

UlD Uy=A,, 17

thus, the matrix Uy is fixed by the condition that it diago-
nalize D. Consequently, the columns of the matrix U,
that is, 7= Uo,qu» are eigenvectors of the dispersion
tensor D,

DrW=Afr W (18)

with eigenvalues Aé)“)EAo’ .(@,k) which are functions on
phase space. There are A eigenstates of the matrix D
each of which is labeled by an index (u) in parentheses in
order to distinguish it from other labels which refer to
the components of the vectors 7*). The unitarity of the
matrix U, guarantees the normalization of the states 7 *.
In these terms, regions of mode conversion are character-
ized by eigenvalues AY" and AY"’ separated by a “dis-
tance” € or less, or by rapldly (over a length scale €) vary-
ing eigenvectors 7*) and 7 #

Solving the Mth of Egs. (16) for A,; (which occurs ex-
actly once) one finds

— ot Vi, 1 1
Ay=U, > FDL U, > T U 7 Ay
u,l Lu,A
(u+I1=M) (u+I1+A1=M)
(u#M) (A, u#=M)
+[Ag Ay —iBy ], (19)

where Eq. (17) has been used, and the bracket [, ] stands
for the matrix commutator. Since the commutator of any
matrix with a diagonal matrix is equal to a matrix with
zero diagonal elements one realizes that the nonvanishing
diagonal terms of A, are completely determined
by lower-order quantities U o »yUpy—1, and
Agy .. .3Ap—1, and by D= UvoUo The requirement
that A um be diagonal, in fact, is a condition on the as yet
undetermined off-diagonal elements of the matrix B,,:
one can solve for these matrix elements by setting the
off-diagonal elements of the left-hand side of Eq. (19)
equal to zero,

) [[AM’AO UgP}aBa aiﬁ s (20)

BM,aB: A A(B

where the matrix in curly brackets of Eq. (19) is denoted
by P, and the matrix A, is assumed to have no degenerate
eigenvalues. As a result, all the elements of the matrices

Ay and B, are determined by the condition that U be a
unitary matrix which diagonalize the dispersion tensor D
up to the Mth order—all elements except those on the di-
agonal of B,,. It has been remarked by Littlejohn and
Flynn [2] that the diagonal elements of the matrix [8] B,
effect a phase transformation of the states 7 * only and,
therefore, are physically not relevant. Their argument,
however, is correct only through terms of first order in €
and, thus, cannot be applied here. For the time being,
the ambiguity of the diagonal elements of B,,, thus, has
no physical explanation; to achieve the diagonalization of
D, it is sufficient and convenient [9] to choose By, ,,=0
for all values of M.

Having diagonalized the symbol D of the wave opera-
tor D up to the desired order one can determine, at least
in principle, the operators associated with the symbols on
the diagonal of A by inverting the Weyl correspondence,
Eq. (2). Then, one has to find an exact or approximate
solution of the resulting scalar wave equations, and from
the knowledge of the symbol U-—which fixes the di-
agonalizing operator U—one eventually will find the
solutions of the original set of Eq. (1), using Eq. (6).

III. A BORN-OPPENHEIMER-TYPE EXAMPLE

A quantum system with a wave operator D =H —ET i is
considered as an example. The Hamiltonian operator A
reads

/\2

(A,f)>———I+V( ), 1)

and the A X A unit matrix is denoted by I. The com-
ponents of ¥ are coupled by the matrix V(q) which de-
pends on the operators q only. Such Hamiltonians arise,
for example, in the Born-Oppenheimer treatment of mol-
ecules [10] (with A corresponding to the number of
effectively coupled electronic states), or in the study of
neutral particles with nonzero magnetic moment in exter-
nal magnetic fields [11,12] (with A4 =2s5+1 being the
number of spin states). In the following, the Hamiltonian
H(q,p) will be diagonalized up to second order in €
which is to be identified with Planck’s constant #. It is
assumed that either there are no mode conversion regions
in the problem at hand, or that one stays away from such
regions in phase space.

The nontrivial part of the Weyl transform of the wave
operator Dis given by that of the Hamiltonian

2
=_L
H(q,p) 2mI+V(q) . (22)

To lowest order in €, one has to determine the matrix U,
which diagonalizes D, Eq. (17). Since the kinetic energy
term is already diagonal, the eigenvectors of D are identi-
cal to those of the potential matrix V(q),
VrW=yWr®W u=12,...,4, (23)
which will be assumed to be nondegenerate: V3" '# V")
for u#u'. Note that the eigenvectors 7 W =7(q) de-

pend on q only [13]. Consequently, the terms on the di-
agonal of A, read
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2
AE”)EAQW:—B;-{-VB”(q)—E , (24)

2
and the dispersion surfaces (representing the physically
relevant parts of phase space) are defined by the condi-
tion AYY=0.

In the following the second and third terms in the ex-
pansion of the symbol

A=Ayt €A, +EA,+0(€) (25)

are calculated explicitly by evaluating Eq. (19) for M =1
and 2. The result is displayed in Eq. (44).

It is straightforward to calculate the first-order correc-
tions to the diagonal terms of A, by writing down Eq.
(19) for M =1,

A =USDLU,~ULA)+[Ag A, —iB;].  (26)

Since U is composed of the eigenvectors 7% it depends
on q only, and one finds in agreement with previous re-
sults [7]

1 .
—”’;(UT{pzl’UO})MM+[AO’A1—1BI];L;¢

=—p- AW, 27

where A W= A, denotes the elements on the diagonal
of

A p=it'*.VrP=i(a|V|B) ; (28)

here the Dirac notation |a) for the states 7@ has been
introduced.

In order to proceed to second order one has to deter-
mine the matrix U; =Uy( A4, —iB). Since Uy=U,(q) it
follows from Eq. (13) that 4, =0. The off-diagonal ele-
ments of the matrix B, are given by

i o AaB
B1,a/3=;w, aFp, (29)
and the diagonal elements of this matrix had been chosen
to be zero: B, ,, =0.

The second-order correction A, is obtained from Eq.

(19) for M =2,

Ay =U {UDZ *Uy— UL *Ay)
+(DLU,~U, LAy~ Uy LA)—U,A,}
+[Ag A, —iB,] . (30)

Using the explicit form of the Hamiltonian, Eq. (22), and
Eq. (24) one obtains

1 = “~x
Ay=U} [Z’;(pzll 2U,— UL *p2)

+5iz(pZIZU1 —~ULp )~ U LA +VLU,
— ULV, {+iB,A+[Ag A, —iB,], 31)
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where V), is obtained from diagonalizing the potential
matrix ¥, and U, = —iUyB, has been used. -

First of all, the terms containing the square of .L, as a
matter of fact, do not contribute since they exactly cancel
each other,

(p ZI,L ZUO )aB:(appapap 28(17 )(aqpaqa UO,'VB)
=@, 8, Uoay)(3, 3, P’8,p)
=(UoL P ) - (32)

Here and in the following summation over indices occur-
ring twice is assumed implicitly; bracketed indices (),
however, are excluded from the summation convention.
Next, a similar argument shows that the remaining
terms with a factor p 2 give identical contributions. Us-

ing U, ,, = —iU, ,,B, ,, one obtains
i 1 3 5, 9OUiu
—{p“I,U =—=—(pBy,)—
2{p l}aﬁ 2 ap}» (p ay) aqk

= _Bl,aﬁp'VUO,aa - UO,aap'VBl,aB . (33)
Multiplication by U I, from the left yields

Lot 2 _—1 4 (pr Ay )p-Ayg)

—(U I,U ) pp=—

5 (Uolp 1D ag= 25 AY—AP
+mp-VB 5|, (34)

so that the contribution to the diagonal of A, is given by

ﬁ[U(g({pzl’Ul}—{Ul’p21})]uy

2
'_1 4 ]p'Ay‘u|

—— . (35)
m? G AT =AY

Then, the fifth term in Eq. (31) follows from multiplying
I i
-E{UO)AI}a/J’:_?;A(B)’VTSxﬂ) (36)

from the left with U g leading to

1
(Ug{UOyA1})aB=—2—';;A(B)~AaB s (37)

_ i

2
with diagonal elements

_ Lyt — 1 A A
2(U0{U0,A1})W—— 2mA“ AH (38)
Only one of the remaining two terms linear in p gives a
nonzero contribution. The second one, stemming from
. (B)
—i, .t _ —1 9B, .5 9Vp
—(Up{U,, ¥V, =, 39
b} (Us{U1:Vp})agp 2 ap 3q (39)
is equal to zero since B, ,,=0. The other term can be
written as

iyt -1 @ Vyo B1pp
2(UO{V’ Ul})aB_ ZTYa*UO,ap aq ap

Using Eq. (23) one finds

(40)
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(@)% (p) — ()% (p)y (p)
TSR TEVY e =7 [V o) =V, VT L]

=8, VV' +(V —vih(alVIp) , @)

so that
. V(‘y)_V(a)
ot -1 7p D .
S UV, Ui} o= ~ vy A, Ay
1 aBlaﬁ
+ VY, (42)
2P 3p
and thus for a=B=pu
i'(UI){V,UI;)MfL é lA,l7. (43)
2 2m v (Fu)

The eighth term of the right-hand side of Eq. (31) does
not contribute since it is the product of the diagonal ma-
trix A, with B, which was assumed to be zero on the di-
agonal, and the last term of Eq. (31) vanishes on the diag-
onal anyway.

The final result for the second-order dispersion tensor
is obtained by collecting all the terms of Egs. (24), (27),
(35), (38), and (43),

AW =AY+ eA +EAY+0(E)

1 62 A
=——(p—eAWP+V—E+—— 3 |A [
2m 2m &, L
2 A p-A,I°
"6—2 (y)iyu()'f'O(E% . (44)
m= oy (#p) Vp —VAL

In this expression first- and second-order terms combine
to formally reproduce the structure of a Hamiltonian of a
particle in fictitious electromagnetic fields with vector
and scalar potentials—apart from the last term which
can be interpreted as an additional momentum-dependent
potential. It originates from the first-order off-diagonal
terms.

The transformation of the symbol A ‘* back to an
operator A is achieved by using the following
correspondence rules [14], obtained from inverting Eq.
(2):

~

q—4, p—P,

pf(@)—3[Pf(@+f(@P], 45)

P f(Q—P2f(@+2Bf @B+, (@P°],
which come down to “‘symmetrizing” the classical ex-
pressions in q and p and subsequently replacing the
canonical variables by the operators § and p. The opera-
tors on the diagonal of the transformed wave operator

read

K(,u)z

with the abbreviation

Aw,j(a)Aw,k(a)
V@) —vyq)

It is remarkable that one obtains a formally identical
second-order contribution from a perturbational analysis
of a model where both spin and particle motion are treat-
ed completely classically [15]. Comparing this result
with calculations done for a neutral particle with magnet-
ic moment moving in an external magnetic field [11,12]
shows that the last term of Eq. (46) in this context has not
been reported earlier, although it follows necessarily in
the present systematic procedure. The actual size of the
various terms in Eq. (46) is discussed in detail for the
motion of a neutral particle with magnetic moment in an
inhomogeneous magnetic field [15].

giQ)= 48)

IV. RELATION
TO QUANTUM PERTURBATION THEORY

The structure of the first- and second-order terms in
the final expression of the diagonalized symbol, Eq. (44),
is similar to that of the familiar formula of quantum-
mechanical perturbation theory according to Rayleigh
and Schrodinger. In an M-dimensional Hilbert space the
first corrections to the nth energy eigenvalue E* of the
unperturbed Hamiltonian [16] H, read

oo

() =E\"+€eE\+EEP+0(e)

— 7=(0) 2 M 'an|2 3
=EO+eV,, + S +0(e), (49)

=(0)_ 7(0)
m(#n) By —E,

where V,,, are the matrix elements of a perturbing poten-
tial ¥ in the unperturbed basis with states |7 ).

For a comparison of the expressions stemming from
multicomponent wave equations and standard quantum-
mechanical perturbation theory it is useful to present the
latter one in terms of matrix notation [17]. In this varia-
tion of the common formulation all states are displayed
at the same time [18], and one writes down Schrddinger’s
equation with respect to the eigenfunctions of the unper-
turbed Hamiltonian A o in the compact form

HU=UE, (50)

U being a unitary matrix as before and E being a diagonal
matrix. Assuming that the Hamiltonian is given in the
form

H=S\'H, , 51

and that the expansions
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E=3\E, ,
n

U= 3 AU,
n

hold, one finds the following expressions for the correc-
tions of the eigenvalues:

EOZUSHOUO )
E,=UlH U,+[E,UlU,1, (53)
E,=UlH,Uy+UH U, ~ UJU,E, +[E,, UlU,],

etc., which should be compared to Egs. (17), (26), and
(30). One realizes that, actually, the same mechanism as
in the multicomponent problem leads to the determina-
tion of the matrices U, and E,: writing
U,=Uy(A4,—iB,) one sees that (i) all matrices 4, are
fixed by the unitarity of U, (ii) the off-diagonal elements
of the matrix B, will have factors (E\>’—E”)~!, and
that (iii) the nth-order correction E, is completely deter-
mined by matrices U, and E,, with n’ <n. Apart from
this similarity, the remaining terms multiplying the vari-
ous powers of € in Egs. (50) and (16), respectively, are
quite different—for example, the number of terms is
different, especially, if the nondiagonal part of the symbol
equation (22) depends on p, too. Furthermore, all terms
of this equation typically depend on the phase-space vari-
ables throughout. Nevertheless, it is interesting to ask
whether the established formal similarity is sufficient to
transfer results concerning the convergence of Rayleigh-
Schrodinger perturbation theory [19] to the present treat-
ment of multicomponent wave equations. To do this, one
has to write the relation (14) between symbols in the form
of Eq. (50), that is,

D(e)U(e)=Ul(e)Ale) . (54)

Unfortunately, due to the different origins of Egs. (53)
and their counterparts Egs. (17), (26), and (30), this is pos-
sible only if in the expansion

D= A"D, (55)

one would allow the terms D, to depend on the matrices
U,,(n'<n),ie.,

D, =(DLU,— U, LA)U} ,
D,=—D,U, Ul +1(DoL 2Uy—UsL *Ay)
(D LU, —U, LAy~ UyLA,) . (56)

This, however, is an artificial approach; and, as a most
serious drawback, arguments pertaining to questions of
convergence of the perturbation series cannot be settled
simply by reference to Rayleigh-Schrédinger theory in
this way, due to the explicit appearance of lower-order
corrections in the higher-order perturbation terms.
Equations (45) are more general than Egs. (53) in
another, previously mentioned sense: since the matrices
in Eq. (14) depend on the dynamical variables of phase
space, q and p, one actually deals with a family of similar

equations parametrized by points of phase space, whereas
usually the energy eigenvalues depend on a small number
of parameters only (as, for example, on the components
of the electric field E in the Stark effect). All quantities
being now phase-space functions means that convergence
properties will vary from point to point; in particular, the
perturbational approach is seen once more to break down
in regions of phase space where dispersion surfaces come
close to each other.

V. SUMMARY

A general scheme is presented which allows one to di-
agonalize linear coupled wave equations up to arbitrary
order in an appropriate expansion parameter. This pro-
cedure leads to an asymptotic series, as most perturbation
expansions do.

The decoupling of multicomponent wave equations to
first order also has been achieved by means of Feynman
path integrals [22,23]. However, it seems to us that in
this approach it is less straightforward to deal with
higher-order corrections. Furthermore, an interesting
problem which is specific to this method becomes ever
more pronounced: is the erratic nature of typical paths
(being continuous but nowhere differentiable) compatible
with the assumption of adiabaticity? A brief discussion
of this question can be found in [23].

The general results have been made explicit up to
second order for the example of a particle described by a
Hamiltonian of Born-Oppenheimer type. The systematic
incorporation of first-order off-diagonal terms implies the
existence of a velocity-dependent second-order correction
of the effective Hamiltonians. This result is of interest for
various physical systems all of which can be described by
Hamiltonians of Born-Oppenheimer type. Recently,
second-order calculations of the adiabatic motion of a
neutral particle in an inhomogeneous magnetic field have
been performed by Berry [11] and Aharonov and Stern
[12]; it turns out that in these approaches the velocity-
dependent second-order contribution has not been ob-
tained. Another application where second-order effects
turn out to be important is the calculation of hyperfine
structure constants for the hydrogen ion H,*. In partic-
ular, Babb and Dalgarno [20] have determined the

- ground-state wave function for this system to first order

by explicitly taking into account the off-diagonal ele-
ments of the matrix coupling the electron to the nuclei.
The calculation of the corresponding second-order
correction of the Hamiltonian, presumably, is equivalent
to the result obtained here. Also, in the description of
slow atomic collisions one has to go beyond the standard
formulation of the Born-Oppenheimer approximation, as
is discussed, e.g., in [21].

In conclusion, the problem of diagonalizing multicom-
ponent wave operators is seen to be mapped by means of
the Weyl calculus to the problem of diagonalizing finite-
dimensional matrices similar to quantum-mechanical per-
turbation theory but in a somewhat more general setting.
Eventually, after diagonalizing the symbol matrix up to
the desired order, it is associated via the Weyl correspon-
dence with a unique operator-valued matrix having zero
off-diagonal elements. Consequently, the original prob-
lem has been reduced to solving a set of uncoupled scalar
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wave equations; for this task, however, it is possible to
rely on well-known procedures.
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