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The motion of a classical or quantum-mechanical charged particle in the unit square (with periodic
boundary conditions) is investigated under the influence of periodic electromagnetic fields. It is shown
that the external fields can be chosen in such a way that the configuration space of the particle is mapped
periodically to itself according to Arnold’s cat map. The time evolution of the quantum system shows
the same degree of irregularity as does the classical time evolution which is completely dominated by the
properties of the hyperbolic map. In particular, the eigenfunctions of the Floquet operator are deter-
mined analytically, and, as an immediate consequence, the spectrum of quasienergies in this system is
seen to be absolutely continuous. Furthermore, spatial correlations decay exponentially. The observed
features are in striking similarity to properties of classically chaotic systems; for example, long-time pre-
dictions of the future behavior of the system turn out to be extremely sensitive to the specification of the
initial state. In other words, the time evolution of the quantum system is algorithmically complex.
These phenomena, based on the formation of arbitrarily fine structures in the two-dimensional
configuration space, require that the system absorb energy (provided by the external kicks) at an ex-
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ponential rate.

PACS number(s): 03.65.—w, 03.20.+1i

I. INTRODUCTION

The time evolution of a quantum-mechanical system is,
in general, governed by two mutually exclusive processes.
On the one hand, there is the deterministic transforma-
tion of a wave function at time ¢ into another wave func-
tion at time ¢’ according to Schrodinger’s equation. On
the other hand, there is the process of measurement
which introduces an unpredictable interaction of the
“classical apparatus” with the microscopic quantum sys-
tem.

One aspect of interest in the context of “quantum
chaos” (see, e.g., [1] or [2]) is the question of whether the
deterministic time evolution of simple quantum systems
may exhibit familiar features from the behavior of classi-
cally chaotic Hamiltonian systems [3]. More specifically,
one asks whether the time evolution of wave functions
generated by a ‘“natural” Hamilton operator shows truly
chaotic behavior or ‘“deterministic randomness” [4], i.e.,
phenomena such as ergodicity, mixing, or being Bernoul-
li. The occurrence of these phenomena in generic classi-
cal systems has far-reaching physical consequences: the
long-time behavior of such systems becomes effectively
inaccessible. Note that these considerations completely
focus on the deterministic time evolution of the wave
function [5]. Under the assumption that quantum
mechanics actually is the fundamental theory which con-
tains classical mechanics as a limit (see, however, [6])
answers to these questions will have some impact on the
foundations of quantum statistical mechanics.

In the present work it will be shown for a particular
model that the quantum-mechanical time evolution can
be deterministically random, despite the ‘“linearity” of
Schrodinger’s equation with respect to the wave function.
Consequently, in this quantum-mechanical model (and
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presumably a whole class of similar systems) one faces the
problem of extremely difficult long-time predictions. Be-
fore presenting the actual model system and its detailed
investigation, the motivation for its choice and the under-
lying physics will be discussed in general terms.

In classical mechanics time-dependent Hamiltonian
systems and, closely related, area-preserving maps
represent important models: observing a system at
discrete times only is sufficient to reveal those features
which are characteristic of chaotic motion. Such abstrac-
tions from the actual smooth phase-space dynamics clear-
ly have the advantage to bring into focus the important
traits. For example, the simple dynamics of the baker
transformation [3] is rich enough to generate orbits with
a high degree of irregularity while, at the same time, the
time evolution is partly amenable to analytical investiga-
tion.

To some extent, the search for irregular behavior in
quantum-mechanical systems relies on quantized versions
of one-dimensional time-dependent Hamiltonian systems,
e.g., the “quantum standard map” [7] or the “kicked
spin” [8]. The motivation for a study of such systems is
given by the fact that the discrete energy spectrum in au-
tonomous bounded quantum systems necessarily leads to
quasiperiodic (and therefore simple) time evolution of
wave functions and expectation values [9,10]. The inves-
tigation of time-dependent systems, in contrast, is princi-
pally promising because the time-evolution operator may
have a continuous spectrum of quasienergies which
would allow us to draw parallels with classically chaotic
motion. Various properties of such systems have been
determined numerically and have led to unforeseen
misfits of the classical and quantum-mechanical dynamics
[11]. The subtleties of the quasienergy spectrum, howev-
er, make analytic results highly desirable (see examples in
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[12,13]).

Linear hyperbolic maps of the unit square to itself are
among the simplest examples of chaos-generating maps,
Arnold’s cat map [14] being a prominent example. Berry
et al. [15] and Ford, Mantica, and Ristow [16] present
ways to introduce such maps as an element of the time
evolution of a quantum system. They consider the unit
square as the phase space of a classical system with one
degree of freedom. The state of the system at time
t=T,=nT =20 (n=0,1,2,...) is determined by the n-
fold application of a linear hyperbolic map on the initial
conditions (x4,py). The underlying dynamics is Hamil-
tonian so that quantization can be effected, e.g., by con-
struction of the quantum propagator U(x’',x). Hence the
implementation of a hyperbolic map into the quantum-
mechanical time evolution has been achieved. It turns
out that the inevitably coarse-grained structure of the
two-dimensional ‘“quantum phase space” does not allow
the formation of those phase-space structures which, typ-
ically, are associated with chaotic systems.

In the following it is demonstrated that this difficulty
can be by-passed by investigating physical systems with
more than one degree of freedom which classically show
“configurational chaos.” This means that the knowledge
of the motion in the configuration space alone is sufficient
to recognize the chaotic behavior of trajectories in the
full phase space.

In order to investigate consequences of classical
configurational chaos in quantum systems, a time-
periodic physical system with two degrees of freedom is
presented [17] which classically and quantum mechani-
cally can be studied extensively by analytic means. A
linear hyperbolic map is built into the Hamiltonian time
evolution in a way different from the approaches by Ber-
ry et al. and Ford, Mantica, and Ristow which does not
suppress the occurrence of irregular motion. Related
work was done by Chirikov, Izrailev, and Shepelyansky
[18], who in this context coined the notion of ‘“true quan-
tum chaos.” These authors analyzed an abstract auto-
nomous model with at least three degrees of freedom, and
they showed that there are indeed features of
configurational chaos which survive quantization (cf. also
[19)).

Consider the unit square not as phase space of a ficti-
tious physical system with one degree of freedom but as
configuration space of a system with two degrees of free-
dom. Then, a linear hyperbolic map of the unit square
onto itself can be regarded as part of a canonical point
transformation in the four-dimensional phase space, and
the transformation of the conjugate momenta is deter-
mined by the transformation of coordinates. Physically
the associated Hamiltonian describes a charged particle
which, under the influence of external electromagnetic
fields, moves in the unit square with periodic boundary
conditions. In other words, the configuration space has
the topology of a two-dimensional torus and the particle
can wind around the torus with arbitrary velocity, imply-
ing that the phase space is unbounded in momentum
direction. The Hamiltonian description of the system al-
lows one to define a quantum analog in a straightforward
way.

In comparison to the one-dimensional models men-
tioned earlier, two differences stand out. First, the mo-
menta are not bounded; second, the hyperbolic map in
this model is applied to pairs of variables the operator
counterparts of which do commute. This property will
turn out to be crucial: as a consequence the quantum
time evolution in the coordinate basis largely parallels the
classical configurational chaos. In principle, arbitrarily
fine structures may develop in configuration space, sim-
ply because the position operators commute. For in-
stance, the process of ‘stretching and folding” the
configuration space of the classical system is reflected in
an analogous transformation of the position basis of the
quantum system. A necessary prerequisite for this
phenomenon is the unboundedness of the classical phase
space. However, it is important to emphasize the follow-
ing point: in contrast to classical dynamics the
knowledge of the ‘“configurational time evolution” alone
(corresponding to the history of the position basis) al-
ready represents the maximal information one can have
about the state of the quantum system, and it is complete-
ly legitimate to restrict one’s attention to the time evolu-
tion of the configuration-space basis.

The paper is divided into four parts. In Sec. II the
model is defined, the time evolution of its classical ver-
sion is presented, and the algorithmic complexity of its
orbits is determined. Then, in Sec. III, the Floquet
operator of the associated quantum system is studied. Its
exact eigenfunctions and the quasienergy spectrum are
determined. The quantum-mechanical time evolution of
states for the case of a ““‘quantum resonance” turns out to
be particularly simple as it is shown in Sec. IV. Further-
more, the time evolution of several expectation values,
variances, and correlation functions is determined.
“Quantum orbits” turn out to be extremely irregular if,
in a natural way, the concepts ‘“Bernoulli shift,” com-
plexity,” and “‘sensitive dependence on initial conditions”
are applied to the quantum model. In Sec. V, the results
are discussed and a summary is given.

II. THE CLASSICAL SYSTEM

A. The Hamiltonian
The system to be studied is defined by the Hamiltonian
H(x,p,t)=1p-p+p F(x,1), (1)

where P denotes the transpose of p. It describes a
charged particle of mass m =1 constrained to move in a
unit square of the xy plane with periodic boundary condi-
tions (period 1). The canonically conjugate variables x
and p satisfy the Poisson-bracket relations {x,p}=1,
where 1, is the 2 X2 unit matrix and F(x,¢) is an explicit-
ly time-dependent vector field in the plane of motion [the
notations x=(x,y)=(x,x,) are used interchangeably
throughout]. The physical interpretation of the Hamil-
tonian H (x,p,t) results from writing (1) in the form

1 e ~ e
H' = |p—%A lp—< Ax,t
(x,p,1) X LA (x,8) |- |p p; (x,1)

+ed(x,t) . (2)
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As functions of the field F(x,z) the vector potential
A(x,?) and the scalar potential ¢(x,¢) read

A(x,t)=——%F(_)(x,t) ,

_ L Foen— L 3D
o(x,1) 2eF(x,t)F(x,t) - » .

The prime in Eq. (2) indicates that the rotation-free part
F'M'=(e/c)Vf(x,t) of the decomposed vector field
F=F ")+F'") has been removed from the vector poten-
tial A(x,t?) by a gauge transformation. The electric field

E(x,t)=—Vé(x,1) 4)

(3)

associated with Eq. (1) has components in the xy plane
only whereas the magnetic field

B(x,1)=V X A(x,t?) (5)

is directed along the z axis.
For the following it is sufficient to restrict one’s atten-
tion to a linear and time-periodic vector field

F(x,0)=V-xA; ()=(V+ V) xAr (6) . (6)

Here Ar (2) is a sequence of smooth kicks of period T,
duration «<e€, and height «1/€ (e<<T). Each of the
kicks is normalized

[ Apdnar=1, (7)
—€
and in the limit €—0 one recovers a periodic 6 function
lin})ATye(t)=8T(t)E > 8(t—nT). (8)
€~ n=—o

The constant 2X2 matrix V has the property that
M=exp[V] is a hyperbolic matrix with integer entries
only and its determinant is equal to unity.

In this case during a kick there acts an electric field

_ O0A T (1)
E(x,0)= |~ A} 0V V+—2—=VH) |.x ©)
and the magnetic field is given by
B(x,1)= —-SAT,G(t)( Ve —Vyy e, - (10)

A symmetric matrix V=V'*) corresponds to a sym-
metric hyperbolic map M and leads to

, _1_ 1
H'xp.0=5FP™ 7,
Formally, this is a harmonic oscillator with a time-
dependent frequency matrix Q(¢). It should be noted
that in Q(¢) the square and the derivative of the kick
function A(?) are present.

Contrary to well-known and thoroughly studied one-
dimensional kicked models, in this system the amplitude
of the kicks depends on the phase (i.e., position and
momentum) of the system, not on the configuration
alone. The consequence of the familiar spatial depen-
dence is a discontinuous behavior of the momenta as a
function of time—the p dependence in addition will lead

X-Q(t)x . (11)

to discontinuous behavior of the coordinates. (As long as
€>0, however, all quantities change continuously in
time. Only for mathematical convenience is the limit
€—0 taken later on.) Note that the amplitude of the kick
in the gauge-transformed Hamiltonian H' no longer de-
pends on the momentum p if V is chosen to be a sym-
metric matrix V1), In this case the discontinuity in the
momenta is hidden in the specific time dependence of the
kicking potential: in particular, it is due to the presence
of the derivative of the kick function A(z).

B. The time evolution

How does the classical system evolve in the course of
time, given the initial conditions x(¢y) and p(¢y)? The
equations of motion follow from the Hamiltonian H(p,x)
as

x={H,x}=p+V-xAr (1),

. (12)
p={H,p}=—V-pAr[1).

Two components of the dynamics are to be distinguished:
the free time evolution for times T, + €<t <T, ,,—€ and
the kick dynamics during the intervals T, —e <t < T, +¢,
n €Z. During the free time evolution both components
of the momentum are conserved. Hence the particle
moves with constant velocity along a straight line. Subse-
quently, the equations of motion relate the coordinates
x~ and momenta p~ immediately before the kick time T,
to the set (x*,p*) immediately after the time T,,. Here
one may pick with full generality the kick at t =T,=0
because of the periodicity of the Hamiltonian:
H(t)=H(t +nT),nE€Z. The time dependence of the
momenta for times —e <t < + ¢ follows directly from in-
tegrating Eq. (12)

p(t)=e_ve‘m-p(—e), lt| <e, (13)
where
o= [" Ay (t"ar (14)

is a smooth version of the step function with © (—¢€)=0
and ©(e)=1. The continuous evolution in (13) shows
that the momenta have finite values for all times and arbi-
trary €. In the limit of arbitrarily small € the relation be-
tween the momenta before and after the kick, p~ and p+,
becomes

lirr%)p(e)=p+=efv-p”zl\7l”1-p* , (15)
€—
where V'=InM.

Along the same lines one can derive the effect of the
kick on the coordinates in the limit e—0. Making use of
the finiteness of the momenta during the kick one finds

1ir%x(e)=x+=e"-x'zM~x* , (16)
€—>

so that the total transformation (x ,p~)—(x",p") is
manifestly canonical. In this equation it is understood
that the unit square is mapped onto itself; strictly speak-
ing, a mod1 prescription should appear on the right-hand
side. As a result, the Hamiltonian H(p,x,?) entails equa-
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tions of motion with hyperbolic maps (acting separately
on coordinates and momenta) built into the time evolu-
tion.

It is noteworthy that the canonical momenta p and the
velocity v

dx (1) _ lim x(+e)—x(—e€) _
dt €— oo 2€ e—02€

v, ()=
behave in a qualitatively different way. From the relation
v(t)=p<t)—§A(x,t) (18)

it is clear that v contains contributions of the vector po-
tential A(X,t) which, in the limit e—0, become arbitrari-
ly large.

What do typical trajectories look like in phase space?
The trajectory of a particle positioned at x(#,)=x, with
zero momentum p(ty)=p,=0 is easily visualized: there is
no motion of the particle in phase space except at times
T,, n€Z. At these times, however, it is moved instan-
taneously by the application of combined electric and
magnetic fields to a new position

x,(ty)=(M"-x5)modl, n€E€N (19)

with zero momentum again. Thus the orbit can be calcu-
lated by repeated application of the hyperbolic map M to
the coordinates and consists of a sequence of isolated
points in phase space. The phase-space trajectory of a
particle with nonvanishing initial momentum p, is com-
posed of an infinite number of disconnected straight lines
instead of points.
If the initial momenta p, fulfill the relation

poT=n, n.,n,€Z, (20)

the motion is called resonant. Starting at x, at time T,
the particle returns exactly to this point at time 7, . In
this particular case, under strobosciopical observation of
the time evolution in configuration space, there is no
difference between this trajectory and another one gen-
erated by a particle initially resting at x,.

One can write down a formal solution of the equations
of motion, Egs. (12), for arbitrary initial conditions x,
and p,. Let fy=T —t, be the time from ¢, up to the first
kick, which will be chosen to be at t =7;. Then one has
in the time interval T, <t <T, ;, n €N,

x(1)=M-( - - {[M-(x¢+pof)mod1
+M “lpoT]modl+ -} -
+M ~"-pyt)modl ,
p(t)=M ~l-p, .

2n

Although these expressions are explicit, it is extremely
complicated to predict the long-time behavior of solu-
tions. Trajectories, initially close together, will quickly
be separated by the stretching mechanism contained in
the hyperbolic maps M and M ~!, requiring a high accu-
racy of the initial conditions for valuable forecasts. This
can be seen from a calculation of the associated

Lyapunov exponents which are a measure of the diver-
gence of initially close trajectories [3]: What is the image
6z(ty+ T) of a vector

8Z(IO)E(SX(10 ),6P(t0))E(Xz(to)_xl(to),pz(to)—pl(to))
(22)

after one period 7?7 An approximate answer can be found
from a linearized version of the mapping (21)

8z(ty+T)=M-bz(¢,) , (23)
where the 4 X4 matrix J# turns out to be
M T0M+(T—t_0)h7l"] M m(to)]

M= 10 M! 0 M™!

(24)

Having determinant 1 the matrix M is “volume conserv-
ing” in configuration space. For simplicity it is assumed
to be symmetric from now on. Arnold’s cat map [14] is
effected by

21
11

’ (25)

representing a well-known example of such a matrix.
There is an orthogonal 2 X2 matrix D which brings M to
diagonal form

, AER, /{1] . (26)

_ 0
D-M-D=A= 15 1,5

The structure of the eigenvalues A and 1/A is generic for
hyperbolic maps.
Applying the matrix

_ D O
to Eq. (23) one obtains
8z'(ty+T)=D-M-DSZ' (1)) =M'8Z'(t,) , (28)

where 6z'=2-6z. Then the Lyapunov exponents of map
(21) are given by the logarithms of the eigenvalues of the
linearized map

A ﬁ'm(to)'D

M=o Al

(29)

Truly chaotic behavior, however, is associated only with
motion in a bounded volume of phase space. Conse-
quently, it is not appropriate to infer possible irregular
behavior of the system from the full matrix #M’. Instead,
a study of the configurational motion alone is reasonable
because in configuration space the motion is bounded.
Assume, for simplicity, that the initial momentum is
equal to zero. Then one finds

8x'(ty+T)=A8x(1,) , (30)

and the “configurational Lyapunov exponents” are given
by

AT==+|InA]| . (31)
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They determine the rate of ‘‘stretching and folding”
along the eigendirections of the matrix C—not in phase
space but in configuration space. Taking nonvanishing
momenta into account, one also obtains in addition some
imaginary contribution to the Lyapunov exponent due to
the regular motion along a straight line in between the
kicks.

Knowing the time evolution of the basic variables x(¢)
and p(?) the time development of any other phase-space
function can be derived. Consider, for instance, the ener-
gy H(x,p,t). Obviously, it is not a constant of motion:
its value changes at the kick times 7,. In between any
two kicks at T, and T, ;. it has a constant value which is
related to the Lyapunov exponents of the map M accord-
ing to

H(x,p,1)=1p(1)-p(1)=1p,-D-M*"-D-p,
=%(en|lnk2\p;?0+e—n11n)»2}p;’20) (32)

for T, <t <T,,; and p’=D-p. Therefore, in general the
energy grows exponentially with rate |InA?| and remains
constant for all times only if the particle initially is at
rest.

From (15), however, the existence of a time-
independent constant of motion can be inferred. The mo-
menta before and after a kick are related by

pt=Ap~. (33)

Multiplying these two equations one finds that the quan-
tity
’ = 1 —
px Py =Py Py (34)
does not change its numerical value in the course of time.
Hence, for arbitrary times ¢,z’ one has

P (Op,(1)=p, (t')p, (1) . (35)

This relation expresses the fact that all iterated momenta
are situated on a (rotated) equilateral hyperbola in
momentum space. The product of the components of the
momenta p, and p, is equal to the area 7 of the rectangle
defined by parallels to the asymptotes through any point
of a hyperbola and the asymptotes. The existence of this
constant of motion does not affect the nonintegrability of
the system under consideration since for an explicitly
time-dependent system with two degrees of freedom three
invariants are necessary.

C. Complexity of classical orbits

The concept of algorithmic complexity originates from
information theory [20-22] and can be used to measure
the irregularity of orbits of physical systems. An impor-
tant example are phase-space trajectories of a system de-
scribed by classical mechanics. Loosely speaking, the
time evolution of a physical system has nonvanishing
complexity if the initial conditions of a trajectory—
moving in a bounded volume of phase space—have to be
given with exponential accuracy in order to maintain con-
stant numerical accuracy of the predictions for increasing
time ¢. This concept is closely related to the notion of the

STEFAN WEIGERT 48

Lyapunov exponent. Typically—there are exceptions
[23]—the algorithmic complexity of trajectories in
nonintegrable systems is different from zero [4], whereas
trajectories of integrable systems in classical mechanics
have vanishing complexity.

The definition of algorithm complexity can be based on
the analysis of computer programs designed to generate
the orbits of a physical system. Effectively, one is looking
for a way to compress as much as possible the informa-
tion needed for a specification of the orbit. Such a pro-
gram will, in general, consist of three different parts. (i)
There is an algorithm of fixed length N, (measured in
bits) encoding the dynamical laws of the system under
consideration. (ii) A certain amount of data is needed in
order to specify the initial state of the system. The length
Np(A,t) of this part is not a fixed number: a prescribed
accuracy A of the output at time ¢ requests Np(A,¢) bits
as initial data. (iii) Finally one has to state the time ¢ at
which the program should stop requiring roughly log,¢
bits.

The algorithmic complexity of a classical orbit is then
defined as

Cclzzliflolc %[NA +ND(A’t)+10gzt] ’ (36)

where the actual program is assumed to be the shortest
one existing. It is important to note that in the limit of
long times only N, (A,t) will contribute to the complexi-
ty. A linear growth of the inaccuracy with time ¢ is
characteristic for integrable systems—the resulting loga-
rithmic time dependence of Ny(A,t¢) on ¢ does not yield
positive complexity. In chaotic systems with nonvanish-
ing Lyapunov exponents the exponential growth of errors
leads to a linear time dependence of N, (A,?) and there-
fore to positive complexity.

The orbits described by Egs. (21) have positive algo-
rithmic complexity —except a set of measure zero corre-
sponding to periodic orbits. The demonstration of this
statement can be divided into two steps. (i) Projecting
the trajectories of the system on the two-dimensional
configuration space one obtains a hyperbolic mapping of
the coordinates, which turns out to generate algorithmi-
cally complex orbits. (ii) From positive complexity of the
“configurational motion” it follows that the full trajec-
tories in the four-dimensional phase space have positive
complexity, too.

(i) Neglecting the momenta one can easily visualize a
typical path in configuration space. As discussed above
there are two elements which determine the time evolu-
tion: integrable motion along straight lines between the
kicks and a hyperbolic map of the configuration space at
the kick times 7,. For p=0 one can identify the time
evolution of the system with orbits associated with a hy-
perbolic map: its “orbits” are defined as the sequence of
points in the unit square which result from repeated ap-
plication of the linear map on an initial point. Hyperbol-
ic maps of the unit square onto itself are Bernoulli sys-
tems [24]: it is possible to describe their orbits by the pro-
cess of shifting the ‘“decimal point” of a real number.
One can show that almost all orbits of a Bernoulli system
have positive algorithmic complexity. Hence, in the
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model investigated here paths which correspond to p=0
indeed have positive algorithm complexity. If p70, the
free motion between the kicks produces an additional
linear growth of errors. But this contribution is negligi-
ble compared to the effect stemming from the kicks.
Consequently, almost all configurational paths in this
model have algorithmic complexity. If the full continu-
ous time evolution is considered, the integrable motion
between the kicks, however, prevents the system of being
Bernoulli.

(ii) Projecting a phase-space trajectory to a lower-
dimensional manifold can be viewed as retaining in a sys-
tematic manner information contained in the original tra-
jectory. Canceling that sequence of the algorithmic part
of the program which calculates the retained information
or adding a finite sequence to the program which explicit-
ly suppresses particular parts of the output will cause
only an irrelevant change of the value of N 4 in Eq. (36).
Of course the numerical value of the complexity C of the
output—if originally different from zero—can be
affected by the projection. Its value will increase if redun-
dant information is dropped and it will decrease if actual
information is suppressed—project, for example, all
points of an irregular trajectory into the origin. The out-
put clearly has null complexity. Starting from a phase-
space trajectory with null complexity it is evident that a
projection to configuration space cannot increase its
value to a positive value. This would amount to code an
irregular orbit in a regular trajectory of complexity zero.
Therefore, from positive complexity of a projected orbit
one may infer the positive complexity of the original or-
bit. As a result, the solutions of the equations of motion,
Eqgs. (21), generically have algorithmic complexity
different from zero.

In summary, the classical system defined by the Hamil-
tonian in Eq. (1) shows a high degree of irregularity in its
time evolution although the equations of motion
effectively are linear. Linear systems usually possess
quantum analogs, the behavior of which is closely related
to that of their classical counterparts. It will be demon-
strated in the next section that this fact allows one to deal
in detail with, for example, the question of “true chaotic
behavior” in the time evolution of the system or of the
existence of ‘“‘quantum-mechanical orbits” with positive
algorithmic complexity.

III. THE QUANTUM SYSTEM

A. The Heisenberg equations of motion
The quantum version of the Hamiltonian (1) reads

HE,p,0=1p*+1[p-F(x,0)+F(x,0)p]

=1p’+1B-VR+R-V-P)AL (1) ; 37)

from now on the tilde on vectors (vector operators) will
be suppressed. The symmetrization of the original Ham-
iltonian guarantees the Hermiticity of the Hamilton
operator. The operator analogs X and P of the canonical
variables x and p are assumed to fulfill the familiar com-
mutation relations. A mathematically rigorous formula-

tion of a charged quantum-mechanical particle moving
on a torus under the influence of electromagnetic fields is
given in [25].

The equations determining the time evolution of the
Heisenberg operators X and p are formally equivalent to
the classical equations of motion (12)

dx _ i

1 AT__A 2
7 (H,X]=p+V XA (1),

a5 . (38)
751: é[ﬁ,ﬁ]= —V-PAL (1) .

In between the kick times T, these equations simply
represent the time evolution of a free quantum-
mechanical particle dispersing on the torus.

The effect of the kicks can be determined as in the clas-
sical model; one obtains a linear relation between the
operators (X ,p ) directly before and (X*,p™) directly
after a kick. It is the linearity of the quantum-
mechanical equations of motion which allows one to take
over all the steps of the calculation performed in the clas-
sical case. The time evolution of the coordinate operator
X(¢) under the influence of the smooth version of a kick
A7 [(t) reads

ve (1)
XA)=e %

(—e),

Consequently, the kick transformation resulting in the
limit of arbitrarily small € turns out to be

gt=eVR =M3 ",

pr=eVp =M "1p.

| <e. (39)

(40)

The structure of these equations guarantees that the
transformed operators fulfill the canonical commutation
relations

2704 =3 MuM R Py 1=ih 3 M, M, ! =i#s, ,
ILm m

k=12. @1

The effect of the kicks on states |¢) in the Schrédinger
picture equivalent to the transformations (40) of the
operators is not immediately obvious. A physical inter-
pretation of the action of the kicks on wave functions is
given after the introduction of the Floquet operator
U (T), which is the subject of the next subsection.

B. The Floquet operator U (T)

For any quantum system, the knowledge of the unitary
time-evolution operator U(t,¢,) is sufficient in order to
propagate an arbitrary state |¢) from time ¢, up to time
t. Yet the evaluation of the formal expression (¥ is the
time-ordering operator)

Ul(t,ty)=T exp ——%f:dtﬁ(t)] (42)
0

generally is complicated. However, for the system de-
scribed by the Hamiltonian Eq. (37) the explicit evalua-
tion of the time-ordered product Eq. (42) is possible due
to the particular 8-type time dependence. The Floquet
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operator U(T), defined as the time-evolution operator
over one period T (see, e.g., [26]), is determined explicitly
in Appendix A,

UD=U(T, ., T, )=Up(TUy . (43)

The discrete time-translational invariance of the Hamil-
ton operator (37) results in an operator U(T), which is
independent of the choice of a particular interval. In ad-
dition, it turns out to be a product of two operators.
First the kick operator acts

— L @VP+p-VR)

Ug =exp by

duringAan infinitesimally short-time interval including T,.
Here D(V) is a “generalized dilation operator,” and the
operator Uy represents the integrated form of the opera-
tor transformations (38). Subsequently the operator

iT .
——=p?

Y (45)

Up(T)=exp

effects the free-particle propagation during the time inter-
val (T}, T, ;). The application of the Floquet operator
U (t) to an arbitrary initial state |1) can be considered as
a “quantum map” [15]. One is interested in the “images”
of the initial state [¢) at times T,27T,3T, ... only. The
knowledge of the wave function at these discrete times is
assumed to be sufficient for the investigation of the long-
time behavior—just as a stroboscopical observation of a
classical system may reveal chaotic behavior.

The choice of the time interval of periodicity deter-
mines the order in which the operators Ugx and Up(T)
appear in Eq. (43); another asymmetric version of the
Floquet operator is obtained by reversing their order

U(T)=UgUp(T) , 46)

whereas the convention

Us()=U(T,+T/2,T,—T/2)=Ug(T /2)Ug Up(T /2)
47)

would be a symmetric representation of the Floquet
operator U(T).

The time evolution of arbitrary states |¢) is known if
the time evolution of the elements of a basis of Hilbert
space is known. Two bases prove to be particularly use-
ful. On the one hand, there is the complete set of ortho-
normal (generalized) eigenvectors of the position operator

X|x)=x|x), x,y€[0,1), (48)
with the property
Ix+z)=I[x), z,,z,€Z, (49)

which follows from tiling the xy plane into equivalent
unit squares. On the other hand, there is an orthonormal
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basis associated with the momentum operator

plp)=plp) =#k|#k), k, .k, EZ, (50)

its discrete spectrum being a consequence of the spatial
periodicity.

It is interesting to determine the transformations of po-
sition and momentum operators generated by the unitary
kick operator Ug. This has been done in Appendix B
and one finds

(51)

corresponding exactly to Egs. (40), which followed from
direct integration of the Heisenberg equations.

Further, it is illuminating to determine the action of
the kick on the eigenfunctions of position and momentum
operators. Consider to this end the eigenvalue equation

X|x)=x|x), x,y€E[0,1). (52)

From multiplying this equation with Ug from the left
and making use of the first of Egs. (51) it follows that the
state |x)'=UZ |x) also is an eigenvector of the position
operator with eigenvalue M~ !-x

Xx)'=M"lx|x)". (53)

Therefore one necessarily has |x)'=|M~!-x), and from
substituting x— M-x it follows that

Uglx)=|M-x) . (54)

The kick Uy operates on the labels of the eigenvectors of
X exactly as the map M acts on the classical configuration
space. The elements of the position basis are inter-
changed according to the hyperbolic map M. The (gen-
eralized) orthogonality relations in Hilbert space of the
elements of {|x)} and {|M-x)}, respectively, are
equivalent. But the relation of ‘“neighborhood” in
configuration space changes, a relation which implicitly
is contained in the labels x; this observation, as a matter
of fact, is the crucial point. States with initially close la-
bels are mapped under the kick transformation to states
which do not necessarily have close labels again. As is
shown below, this mechanism gives rise to a type of
quantum-mechanical motion which mimics chaotic
behavior as it is known from classical mechanics.

The transformation of a momentum eigenstate may be
derived analogously to the calculation leading to Eq. (54).
Here a different way is presented which makes use of the
completeness relation

[ axlo(xl=1, (55)
where ' denotes the unit square in the xy plane which is

invariant under the map M: I''=MI'=I". One easily
derives



UK|P>=UKdeX‘X)(X|P)=frdX|M-x)(x|p)

=fr,=l_dx|x><M~l-x|p)— f dx|x)exp
_Lﬂ_hfrdxlx)exp %x-(ﬂ—l.p)
= [ dxlx)(xIM ~'p)=|M""p) .

Altogether, the canonical transformation generated by
the classical kick has a simple quantum counterpart in
the action of Uy on the position and momentum basis.
For the following it is of particular importance that the
kick Uyg does not map an eigenstate of X or p on compli-
cated linear combinations of vectors |x) or |p), but that
the image of such a state is simply another eigenvector of
the same operator. This property will make it possible to
determine exactly the eigenfunctions and the spectrum of
the Floquet operator U(T).

C. Eigenfunctions and spectrum of the Floquet operator

The eigenfunctions |¢) of the time-evolution operator
U(T) can be found by solving the equation

lET

U(D|¢)=exp |— 2% (57)

The set of all numbers E for which Eq. (57) holds is called
the quasienergy spectrum, and to each particular value of
E there is associated at least one (possibly generalized)
eigenstate.

In order to determine the states |¢) it is helpful to
visualize the action of the Floquet operator U(T) in the
momentum basis. Imagine the elements of the basis
{lp)} to be arranged in a two-dimensional grid, the
points of which are labeled by the quantum numbers p,,
and p,. The operator Ux maps any eigenstate |p) to
another eigenstate |p )’ according to Eq. (56). This trans-
formation is unique and invertible. Therefore one can
partition the set of all momentum eigenstates {|p)} into
disjoint families between which the operator Uy does not
induce transitions. For a hyperbolic map M the families
turn out to be a countably infinite number of “discrete
hyperbolas” S (P). Each hyperbola can be labeled by an
arbitrary point P belonging to it, e.g., the one nearest to
the origin O. The collection of states S(P)={|M"-P),
n €Z} constitutes an invariant set of the kick operator
Ug, that is,

U {IM"P)}={IM"P)} . (58)
Since the momentum is conserved during the free time
evolution, the operator Up(T) does not induce transitions
from one hyperbola S (P) to another. The only effect on
vectors |p) is that they acquire an additional phase from
one kick to the next
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i (x-M ~1)-
# ‘P
(56)
f
=(T)|p)=exp | — 2ﬁp Ip) . (59)

Therefore the eigenstates of the Floquet operator U(T)
have to be superpositions of states belonging to one hy-
perbola S(P) endowed with appropriate phases. As a
matter of fact, it can be shown (cf. Appendix C) that the
states

1 o0
Pa)y=—"n 3

M"P)
Vor 2, |

exp

iT .
Y ¢, (P)—ian

(60)
are indeed eigenfunctions of the operator U (T), that is,

T)P,a)=e '*|P,a) . (61)

Here a is any real number in the interval [0,27), and the
function @, (p) reads explicitly

n—1

=3 pMMp, 120
@, (p)= (62)
2 p-M M 5p, n<0.

s=1

Hence the quasienergy spectrum

g=2%
T
is absolutely continuous.
Every value E belonging to the spectrum of quasiener-
gies is countably infinite degenerate since there is an ana-

a€[0,27) (63)

log of the classical constant of motion in Eq. (35). It is
straightforward to show that
DT, Py (T, ) Ug =Ugpo (T, Py (T, 1)
=Ugp, (T, p,(T, ), (64)

where the second equality is due to the operator
equivalent of (34). Hence the quantity p, (T, )p,(T, )
commutes with the kick operator Uy and with the free
time-evolution operator Up(T). Consequently, one has

(65)

[/\IAI

b.p,,U(z',1)]=0

What is the mechanism to make the state |P,a) an
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eigenstate of the Floquet operator U(T)? In Fig. 1 part
of a hyperbola S (P) is depicted, and to every state the as-
sociated phase is assigned. First the kick operator Ug
shifts the amplitude of the state |M ~*-P) to its neighbor
IM ~*+1.p) and subsequently a phase shift occurs gen-
erated by the free time evolution Up(T). Altogether, the
effects of the two elements of the time evolution during
one period T cancel, except for an overall factor
expl —ia].

The set of states {|P,a )} of Eq. (60) constitutes a (gen-
eralized) orthonormal basis of Hilbert space. The com-
pleteness relation follows from a straightforward calcula-
tion, which is performed in Appendix C, and reads

Jda’S [Pa)(Pal=1. (66)
P

The sum over P runs over all different hyperbolas S (P).
The orthonormality of two states |P,a) and |P’,a’)
turns out to be

(P,alP,a)=8B,P") S bdla—a'+2rm), (67)

m=—o

where only the term with m =0 is relevant, because « is
restricted to the interval [0,27). The Kronecker symbol

1 if P=P’

5(P,P")= 0 otherwise

(68)
expresses the fact that two hyperbolas labeled with
different P and P’ do not have any state in common.

Strictly speaking the states {|P,a)} are not elements
of the Hilbert space associated with the Hamiltonian
H(X,p,t): the continuous label a requires a Dirac-5-type
normalization of the states. A single state |P,a) contains
an infinite amount of energy: it is a superposition of an
infinite number of momentum eigenstates |p) with
coefficients of modulus one. Nevertheless, the general-
ized eigenstates of the Floquet operator U (T) can be used
in complete analogy to the basis {|x)} of generalized po-
sition eigenstates: the construction of physically realiz-
able “wave packets” is possible by superposition of such
states.

Py

~
e—i[/\<p+z(P)+2a]'ﬁ2 . P) P
Vi =

\
e—fw_x(p)lguﬁ—l P) _ _-*
‘e -
AN . o<

~ _- _

Mo <—— e—i[A<p+1(p)+a]lM . P)
IP)
0 Pz

FIG. 1. Some states with correct phases belonging to an
eigenstate of the Floquet operator U(T). The action of the kick
operator is indicated by arrows and A =T /2.

D. The quantum resonance

The discrete and equidistant spectrum of the momen-
tum operator P has a consequence for which, in a similar
context, the term quantum resonance [7] has been coined.
If there were no external kicks Uy, any initial state would
have built up again exactly after the elapse of a time in-
terval tg =2/h,

lh(tg) ) =Ur(tg)|9(0))=11(0)) (69)

since the operator for free time evolution is periodic with
tr,

it
Up(tg)=T Ugp(tx)lp){p|=T exp —%pz Ip)<pl
) )
=3 exp[ —2mi(k?+k2%)]lp){pl
P
=3 |p){pl=1. (70)
P

In general, the kicking period T of the external fields is
completely unrelated to the internal resonance time zg.
If, however, one chooses T to be an integer multiple of
the recurrence time t,

T=T(s)=stg, SEN, (71)

then the Floquet operator U(T, (s)) reduces to a se-
quence of n kicks

U(T, (s))=(Up(T(s))Ug)"=Ug , (72)

and its eigenfunctions simplify to

o0

Pa)=—A 3

Vo e "M "-P) . (73)

n=-—oo

A study of the quantum-mechanical system may take
advantage of the quantum resonances. If the external
period T equals the internal recurrence time t, then the
quantum-mechanical dispersion of wave packets, caused
by the free time evolution, is absent in a stroboscopical
observation of the system. In other words, it is possible
to investigate solely the effect of the ‘“‘chaos-generating”
kicks Ug on the quantum system. Furthermore, the re-
striction to the resonant situation simplifies the calcula-
tion of various time-dependent quantities considerably
since the effect of the free time evolution does not have to
be taken into account. Free motion of a particle in a
two-dimensional region with periodic boundary condi-
tions is well understood; suppressing it for the sake of
mathematical convenience by studying the resonant situ-
ation will not affect the validity of the general con-
clusions.

IV. QUANTUM DYNAMICS

A. Irregular behavior of quantum orbits

The irregular behavior of the classical system has its
origin in the external perturbation. Without the time-
dependent forces all trajectories would evolve regularly in
phase space. Associated with the time evolution of a free
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particle is the well-known quantum-mechanical disper-
sion of its wave packet. As was mentioned before, this
part of the dynamics is apparently absent in the quantum
map if the external period T of the kicks is equal to the
internal recurrence time fz. Thus in order to work out
the effect of the linear hyperbolic maps on the quantum-
mechanical time evolution the restriction to resonant
times T'(s) Eq. (71) seems to be promising.

Concentrating for the moment on the time evolution of
a generalized position eigenstate |x,) one can write down
the state reached after an arbitrary number n of periods
T (s)

[T, () =UgIxy)=IM"x0) , (74)

and, consequently, the expectation value of the position
operator becomes

(YT, (NPT, (5))) =(M"x4)mod1 . (75)

The time evolution of the expectation value of the posi-
tion operator X strictly parallels the time evolution of the
classical coordinate in the case of vanishing initial
momentum or of a classical resonance.

There is an important difference between the classical
and the quantum-mechanical model: given a ‘“quantum
orbit” consisting of all iterates of some initial state one
can calculate all properties of the system at times T, (s).
The information about the dynamics as Eq. (74) does not
present partial knowledge of the time evolution only,
contrary to the classical case. There is no need to think
of this “‘configurational” orbit as a “projection,” as it has
to be done in the discussion of the classical model.

For the following it is useful to point out a parallel be-
tween a classical distribution of initial conditions in a
small “configurational volume” (an area) about the point
x with momenta fulfilling the classical resonance condi-
tion, Eq. (20), and a superposition of position eigenstates
with labels centered about x. The time evolution of both
situations in configuration space can be visualized identi-
cally.

The mathematical structure of Egs. (74) and (75) clear-
ly contains elements familiar from the description of clas-
sical systems which behave chaotically. The exponential
stretching generated by the hyperbolic map M is accom-
panied by the mechanism of folding. Does this structure
in the quantum system likewise lead to physical conse-
quences with an impact on the prediction of the long-
time behavior of the system? In other words, does the
quantum-mechanical time evolution include physically
relevant aspects of ‘“deterministic randomness” as they
are familiar from classical mechanics? This question will
be answered by investigating the concepts of the Bernoul-
li shift and of algorithmic complexity in view of Egs. (74)
and (75).

Choose M for simplicity to be the symmetric cat map
C. If only eigenstates of the position operator X are taken
into account as initial conditions, the set of all resulting
quantum orbits equals the set of all trajectories of the
classical Arnold cat map. It is possible to associate the
Bernoulli property in two ways with the quantum system.

First, such an association can be worked out in the

context of wave functions which, of course, evolve deter-
ministically in time. Yet the sequence of points in the
unit square describing the physical state of the system at
times T, (s) is governed by a Bernoulli shift with respect
to the labels of the state. This follows immediately from
the equivalence of quantum labels and phase-space points
of the classical Arnold cat map. Effectively, the predic-
tion of the long-time behavior becomes extremely difficult
on the same grounds as it is familiar from classically
chaotic systems.

Second, the association can be established in the con-
text of measurable quantities: the sequence of expecta-
tion values {|X(T, (s))|¢) has the Bernoulli property.
The difficulty to predict the Hilbert-space state occupied
after long times naturally is reflected in the difficulty to
predict the expectation value of the position operator and
arbitrary functions of it.

In the arguments given above idealized eigenstates of
the position operator were considered. The consideration
of such physically not realizable idealizations is not
necessary: in Sec. IV B the time evolution of states ini-
tially localized in a small but finite region of
configuration space will be investigated. There is, howev-
er, another way to get rid of the idealization related to
the continuous spectrum of the position operator. The
concept of algorithmic complexity may be applied to the
quantum dynamics likewise. It takes into account from
the very beginning the inevitably finite numerical accura-
cy of initial conditions and predictions derived thereof.
The arguments given now solely rely on the structure of
the Egs. (74) and (75).

From a numerical point of view there is no difference
between the calculation of the classical stroboscopically
observed trajectory, Eq. (19), of the time-evolved
quantum-mechanical state (74) and the time-dependent
expectation value of the position operator X according to
Eq. (75). In all three cases the same real numbers have to
be calculated, the only difference being their interpreta-
tion in physical terms. Henceforth, the algorithmic com-
plexity C,,, of the quantum orbits is identical to the com-
plexity C,, of the classical trajectory. In particular, it is
different from zero for almost all initial conditions

Cym=Cy>0. (76)

In the mathematical description of the quantum-
mechanical system (37) one thus faces exactly those prob-
lems which Ford [27] discussed for classical systems of
positive complexity. A principally unavoidable inaccura-
cy of the initial conditions—including physical and nu-
merical limitations—entails macroscopic irreversibility
and the fundamental impossibility of predictions over ar-
bitrarily long times.

The exponential separation of points in configuration
space expressing the irregularity of the classical motion
can also be observed in the quantum system. However, it
is not the Hilbert space metric which is relevant here but
the implicit concept of distance contained in the labels of
(orthogonal) position eigenstates. A detailed and general
investigation of this aspect has been given elsewhere [28].
It has to be emphasized that the ‘“randomness” in the se-
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quence of expectation values is a consequence of the pro-
babilistic element of quantum-mechanical predictions,
but indeed has its origin in the deterministic time evolu-
tion of the wave function. It is easy to devise a gedanken
experiment making use of the quantum-mechanical prob-
ability in order to produce a truly random number. Im-
agine a particle of spin J prepared in a stationary state
with the expectation value of the z component, §z, equal
to zero

-1
|¢>—\/§{11)+|¢>}. (77)

Repeated measurements of the operator §Z on an ensem-
ble of equivalently prepared systems result in a sequence
& of outcomes £#/2. This sequence can be considered as
binary representation of a real number with the property
that 0 and 1 appear equally often. This is enforced by the
condition {#|S,|¥)=0. If there are no hidden variables
possessing an integrable dynamics the information con-
tained in & is algorithmically incompressible or,
equivalently, the sequence & represents an object with
positive algorithmic complexity.

B. Expectation values, variances, and correlations

The simple evolution of the momentum operator P(¢)
over one period T allows one to calculate exactly the
long-time behavior of expectation values of momentum
and energy with respect to an arbitrary initial state
|[#(07)). Estimates of the expectation value of the posi-
tion operator and its variance are given, which for longer
times improve. This is done for a state 1) initially local-
ized in configuration space and subject to a resonant se-
quence of external kicks.

The conservation of momentum during the free motion

[Up(T),p]=0 (78)

and the second of Eq. (51) implies the following expres-
sion for the Heisenberg operator p(z) directly before the
nth kick at time T,

PT,)=[UMD]IDO)UD]"
=M—1.";(Tnf_l)= :M'".’ﬁ(o—) . (79)

Assuming for simplicity the matrix M to be symmetric
and using the matrix D of Eq. (26), which transforms M
to diagonal form A, one finds

(YIP(T) ) =D-A"D-(|p(O07)|¢) . (80)

Typically, an arbitrary initial state [¢) will lead to a
nonzero coefficient of the factor exp(+n|InA|) in this ex-
pression: the exponential growth of the momenta is gen-
eric in this system. The rate of growth is determined by
the Lyapunov exponents associated with the classical
map M of the configuration space (or momentum space).
As a consequence of the appearance of both *|InA|, there
is at the same time an exponential contraction of some
component of the initial momentum.

A calculation similar to the one leading to Eq. (80)
shows that the expectation value of the energy increases
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in exact correspondence to the classical quantity. From

AT, )=1p(07)-M ~2%$(07)

=1p(07)-D-A"2"D-p(07) , 81)

where M again is supposed to be a symmetric matrix, one
finds

<¢,;f—](Tn*)|¢)=%(e"“"x2‘(1/1|ﬁ;,20~ ly)

e ICyp [y, (82)

showing that for a typical initial state |1) the system ab-
sorbs energy at an exponential rate for all times.

This fact contrasts with results from an analysis of the
standard map and its quantum-mechanical counterpart
[7]. Averaged over an ensemble of initial conditions with
fixed momentum p and varying positions, the classical in-
crease of energy turns out to be diffusive, i.e., proportion-
al to time ¢. Numerical investigations revealed that this
behavior has a correspondence in the quantum system for
short times tz only. Later on the so-called “quantum-
mechanical suppression of diffusive energy growth” sets
in: the expectation value of the energy saturates after the
break time tz. This anomaly in the classical-quantum
correspondence was found in such a variety of classically
nonintegrable quantum systems that it is considered as
one of the manifestations of quantum chaos [29]. Clearly,
the results found here do not fit into this scheme.

An important quantity to calculate in time-dependent
systems is the momentum auto-correlation function

FO(Y, 1,0") = (DD, = (B(1) :(B()) (83)

where (a:b),z=a,bg denotes the tensor product of two
vectors a and b. The notation ¢ ), stands for the
quantum-mechanical expectation value in the state |¢).
Using a:(B-b)=B-(a:b) for any matrix B one can calcu-
late the autocorrelation function with respect to an arbi-
trary state |1)

FP(,t,t")=M ~" " HP(4,0,0) , (84)

where n is defined by the condition T, <t <7, and n’
correspondingly. The moduli of the elements of the ma-
trix M " grow exponentially with n. Therefore the corre-
lation function #P does not approach a limit for
(t'—t)— oo. This behavior is due to the fact that the
components of the momenta effectively grow for all
times. The momentum autocorrelation of classical parti-
cles under the influence of an inverted harmonic-
oscillator potential shows the same feature if an average
is taken over an ensemble with varying initial momenta.
The trace of the covariance matrix

KP(, 1) =FP(1f, 1, 1) (85)

is equal to the time-dependent variance of the momentum
operator which measures the spreading of an arbitrary
(initially narrow) momentum distribution. It turns out to
be given by

trKP(y, T, )=tr[M ~2"-KP(¢,07)], (86)
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so that arbitrary initial variances

KP(1,07)=((Ap, )}, +((AD, ), (87)

increase unboundedly with an exponential rate +2|InA|.
This is possible because of the classically infinite momen-
tum space.

Expectation values of powers of the position operator X
are more difficult to calculate than expectation values of
the momentum operator P because there is no analog to
Eq. (78). The following results all apply to the special
case of a quantum resonance 7'= T'(s) and an initial wave
function

]

The corresponding probability amplitude
|#(x)|>=x(xo)/Ax Ay is nonzero only in a rectangle cen-
tered about x,

[xo—x|<Ax/2, lyo—y| <Ay /2

(x9)=
XXo 0 otherwise , (89)

f dx x(xy)|x) . (88)

as shown in Fig. 2. More general distributions |¢(x)|?
can be approximated arbitrarily well by piecewise con-
stant distributions such as y(xg).

The expectation value of the operator X(7, ) directly
before the nth kick is given by
(YIR(T)|Y) = f dx x(x)(M™x)modl . (90)

AAy

Concentrating for the moment on the first component of
this equation one has to evaluate the integral

Ips(1,x(x0))= J dxx(xo)[(Rx +Sy)mod1] ,

1
AxAy
R,SEN, (91

where the elements of the matrix M” are

T2

/

0 1 Zy

FIG. 2. Distribution of nonzero coefficients of the state |¢>
over the configuration space at time t =0~ (dark square) and
after a number of periods (light bands) (schematic representa-
tion).
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R

n__
M= vl

R,S, T, UEZ. (92)

Upper and lower bounds of this integral are calculated in
Appendix D, leading to the inequality

IRS(LX_(XO)) SIRS(I’X(XO)) SIRS(11X+(XO)) . (93)

Here a grid of R X S rectangles of size 1 /RS has been laid
on the unit square I" (see Fig. 3); the characteristic func-
tion of the smallest rectangle of the RS grid containing
the original rectangle is denoted by x T(x,), and x¥ (x,),
correspondingly, is the characteristic function of the larg-
est rectangle of the RS grid contained in the original one.
The areas of these rectangles are given by AR TAS* /RS,
respectively. Inserting the results of Appendix D for the
integrals Is(1,Y*(x,)) one finds

1 AR™ AS <(vl2 <1 1 AR™ AS*
SR WIRTOYY == (94)
Using the estimates
AR™ _ 2 AR™_, 2
<Ax+ L R = Ax R (95)
and equivalent relations for S one derives
- 1 1 1 2 .
PRI =axR T ays T axaprs ¢ 09

an analogous relation holds for the y component of Eq.
(90). This result indicates that the expectation value of
the position operator X does approach a limit (remember
that the entries R, S, . . . of the matrix M depend on »)

97

. o — 1
lim (Y[X(T,)|Y) ==
n— o0 2
Thus the continuous quasi-energy spectrum of the Flo-
quet operator U(T) allows for ‘relaxation” in
configuration space. This is in contrast to the well-

~ AR*/R -
Yy 1 !
l
| ~ Az ~ |
l 1 - |
! ] | [
] I
(So + ASH)/SS o —t-
X . R e |
= _—— e — — — —
X AS- /5 Ay
(et 0rs B s A
So/S
L] L] L
L . . .
1/5 . . .
0 1/R 1 z

FIG. 3. The grid of RS rectangles used for the calculation of
the integrals Irs(g(x),x(x0)).
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known quasiperiodic behavior of expectation values in
quantum systems with a discrete energy (or quasienergy)
spectrum [30]. Furthermore, the dependence of the ma-
trix elements on n: R < Ryexp(n |InA|), etc. effects an ap-
proach to the limit at an exponential rate. In other
words, the coefficients (AxAy)~ !/%y(x,) of the initial
state |1) are spread very effectively over the whole set of
position eigenstates |x).

The limiting value, Eq. (97), also is obtained under the
assumption that a constant probability distribution over
the unit square is given:

(98)

1
2 — e
frdxxlill(x)l —frdxx—— > 1

However, it is not such a continuous distribution which is
approached here: the time evolution in the Schrodinger
picture immediately reveals that there is no continuous
limiting distribution of |¢(x, T, )|? for large n. The unit
square is covered by an ever larger number of ever finer
parallel bands as it is shown schematically in Fig. 2.

It is interesting to compare this process with the pro-
cedure of “coarse graining,” which even in mixing sys-
tems has to be performed in order to obtain an approach
of “macroscopic” observables to equilibrium. In the
quantum-mechanical model studied here it is not neces-
sary to introduce a coarse graining by hand: the wave
function develops arbitrarily fine structures which are
smeared out automatically when going over to expecta-
tion values of observables.

The position autocorrelation function contains infor-
mation about the time evolution of spatial correlations.
It is defined in analogy to the momentum autocorrelation
function in Eq. (83)

7{‘(¢,t,t')=(i(t):'i(t’)),,,—(’i(ﬂ),,,:('i(t')),,, . (99)
One can write

K, T, , Ty ) =H (YT, ),07,T,,) . (100)
Suppose the state at time 7, to be given by

1) =191, )>—-——f dxx(xo)lx) ,  (101)

with y(x,) defined as before in Eq. (89).
culation leads to integrals of the type

The explicit cal-

Fx(W(T,7),0 ’T'"):A A

X[(Rx +Sy)mod1]
XIps(x,Xx(x0)) . (102)

In Appendix D this integral is evaluated approximately
leading to the inequality

1 1
,07,T, )= (O + t—+0 |[—
(T, )=3(R(07));+cons ? re
(103)
Thus one has for the correlation function
. 1/R 1/S — oA
HXY(T,),07,T, )= /T 1/U ~Ke , (104)

where K is an m-independent matrix, and terms of
O(1/R?), etc. have been dropped. As a result spatial
correlations decay exponentially in time. In classical
mechanics such a behavior for correlations of arbitrary
phase-space functions is found in K systems showing the
property of mixing.

A quantitative measure for the spreading of the state
[#) over the unit square is given by the trace of covari-
ance matrix

KXy, t)=H*(,t,t) (105)
The integral
a2 - —
(PIRHT,Y) =1—
=Irs(frs(x),X(x0)) (106)

contributes to the upper left element of this matrix. The
upper and lower bounds of this quantity (obtained in Ap-
pendix D) imply that

[CYI[AR (T, )Py — LI < —nllnkl+cze~2n|1nx| ,
(107)
where
- +
AR <ax, AR zax, (108)

and equivalent estimates for S have been used. From
analogous calculations qualitatively the same behavior
follows for the other diagonal element of the covariance
matrix. The variances thus relax at an exponential rate
to an ‘“‘equilibrium value” of 12, which is the maximum

value possible.
V. CONCLUSIONS

In summary, a physical system with two degrees of
freedom has been introduced and investigated analytical-
ly in great detail for both a classical and quantum-
mechanical description. The most important property of
the quantum system is the absolute continuity of the
quasienergy spectrum which follows immediately after
the construction of the complete set of eigenfunctions of
the Floquet operator U(T) has been achieved. In the
framework of classical mechanics it is ultimately the con-
tinuum of points in phase space which sets the stage for a
possible occurrence of chaotic behavior—in quantum
mechanics truly chaotic behavior becomes possible due to
the continuously labeled set of position basis vectors.

The time evolution of the system shows various
features which in classical mechanics are considered as
unmistakable characteristics of irregular motion. These
features have their origin in the continuous spectrum of
quasienergies in combination with the boundedness of the
configuration space. The continuity of the spectrum re-
lieves the time dependence of wave functions from being
quasiperiodic, and expectation values may tend to an
equilibrium value which is approached at an exponential
rate; at the same time, spatial autocorrelations decay ex-
ponentially. In addition, almost all sequences of time-
evolved position eigenstates have been shown to be algo-
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rithmically complex. The evolution of continuous spatial
distributions inherits these properties in a straightfor-
ward manner. It is worthwhile to mention that these re-
sults are in complete conformity with Ford and Ilg’s re-
sult [10] that the time-dependent wave functions of auto-
nomous bounded quantum systems are algorithmically
compressible.

These features are not commonly observed in typical
quantum systems with a classically chaotic counterpart,
and, in addition, various tools standard for characterizing
such systems do not apply to the present model. Consid-
er, as an example, the random-matrix theory hypothesis
[31] establishing a relation between the statistics of
discrete energy levels of particular quantum systems and
those of random matrices belonging to a specific ensem-
ble: a continuous spectrum clearly does not fit into this
scheme. Moreover, the model under investigation does
not show the widespread anomaly in the correspondence
of classical and quantum-mechanical behavior, i.e., the
“suppression of diffusive energy growth.” On the con-
trary, the quantum-mechanical expectation value of the
energy grows in perfect conformity with the classical
quantity.

Another important point should be emphasized: many
of the phenomena discussed in the preceding sections are
actually linked to the problem of effectively predicting
the future behavior of the system. This establishes a fur-
ther strong parallel to chaotic behavior in classical sys-
tems, since many ‘‘signatures of quantum chaos” pertain
more to “static” properties than to dynamical ones, e.g.,
the (unfolded) spectrum of energy-level distances, nodal
patterns of wave functions, or the occurrence of avoided
crossings. The continuous quasienergy spectrum indeed
entails consequences which are comparable to problems
showing up in the description of classically irregular
motion. Any inaccuracy in the determination of the ini-
tial quantum state quickly spreads over the total system,
rendering it difficult to predict precisely its evolution over
long times, albeit the wave functions evolve strictly deter-
ministically. As in classical mechanics this represents a
fundamental limitation of the statements one can make
about the system. A general theory concerning the actual
observation of this kind of irregular behavior and its ac-
tual observation by means of quantum nondemolition
measurements has been given elsewhere [28].

For further discussions of “sensitive dependence” and
similar concepts in quantum mechanics the reader is re-
ferred to work by, e.g., Jensen [32], Luna-Acosta [33],
and Mendes [34]. Recently, Mendes [35] provided a gen-
eral approach to this problem in which the importance of
“8’-type interactions” (i.e., the momentum dependence of
the kick amplitude in the present model) for the oc-
currence of nonvanishing quantum Lyapunov exponents
is pointed out.

Much work has been devoted to the question under
what circumstances ergodic behavior or mixing in driven
systems may occur. Discrete quasienergy spectra in com-
bination with bounded systems lead to wave functions
which are quasiperiodic in time, and hence the decay of
correlation functions is excluded. There are two prom-
inent types of systems without strict time periodicity
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which are known to exhibit ergodic behavior. Shepelyan-
sky [11] introduced a kicked rotator subject to a quasi-
periodic driving force; the suppression of diffusive energy
growth turned out to be no longer as pronounced as it is
in the periodically kicked system. Geisel [30] investigat-
ed a quasiperiodically kicked spin-; model, but on long
time scales no evidence for statistical properties such as
the decay of correlations was observed. Later,
Shepelyansky [11] and Toda, Adachi, and Ikeda [36] con-
sidered a model in which originally periodic kick times
are replaced by a stochastic sequence: numerical experi-
ments indeed show that macroscopic reversibility is no
longer present. This result is considered to be equivalent
to the existence of mixing behavior in the quantum time
evolution. Introducing external noise, however, does not
bear on the question whether deterministic randomness is
present in quantum dynamics.

The results obtained for the present model indicate
that macroscopic irreversibility, one of the hallmarks of
chaotic behavior, is at least principally realizable in
time-periodic quantum systems. Consider the situation
investigated in Sec. IV. Suppose a state |¢), which in
configuration space is a narrow wave packet, is propagat-
ed from time ¢; up to ¢,. The backward iteration, after
having transformed |¢) into |¢)* (if magnetic fields B
are involved they have to be transformed into —B) cer-
tainly does not lead to the original state |¢) or the associ-
ated probability distribution. This effect is due to the ex-
ponential separation of the coefficients of position eigen-
states which has been discussed in detail.

In conclusion, the time evolution of the model intro-
duced here allows one to pinpoint one possible origin of
irregularity in the quantum-mechanical motion. The lo-
cal instability, generated by a hyperbolic map acting in
configuration space, transforms the continuous labels of
position eigenstates just as the coordinates of the corre-
sponding classical system and, henceforth, it renders the
time evolution deterministically random.
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APPENDIX A: THE FLOQUET OPERATOR

In this appendix the explicit form of the time-evolution
operator U(t’,t) over one period, the Floquet operator
U(T)=U(T ,07), is determined.

First of all, one may break the time evolution into two
parts

U(T—,07)=U(T",0H)Uu0*,07), (A1)
where, for notational convenience, the kick operator acts
first. For definiteness it is appropriate to perform the cal-
culations with finite € and to take the limit €e—0 at the
end. One can write
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U'NT)=U(T —e¢,—€)=U(T —¢, +€)U(+€, —¢€)

=UE(TUY (A2)

with € << 1 being a finite positive number. The first term
representing the free time evolution from +e€ to T —e
immediately gives

US(T)=U(T —¢,+€)=exp —%ﬁﬁz (A3)

The second part follows from evaluating

UP=1+ \-—;—‘f“d

A+ [——

3

f_+6dtf_t dzlfjldt2

i
vl

1+ [—éJ{T(Ze)-FVH—

+

A (A (1A (1,)+
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U =% exp ——f+edtﬁ (2) }
had 1 i +e P "
=3 ﬁf_edtHs(t)I , (A4)
where
A (=19 +VEPAr)=T+VAr (1), (A5

with the abbreviations 7 and V for the operators of ki-
netic and potential energy, respectively. The kick opera-
tor reads

2
€ t A
[, [ anA )8 (1)
—€ —€

2
€ t
S| [ A [ an( THTVAL)+VTALD+ VA DAL2))

3 € t t
S| [ a [, [P an( TP+ TVAL) + TVTAL)+ VT +TV?A(2)A(3)
—€ —€ —€

+VTVALDA3)+V2TAL(DA(2)+V3AL1AL2)A(3)] + (A6)
where A (1) is a shorthand for §.(¢,), etc. Performing the integrals and rearranging the terms yield
2
U'=1+ |—— |[{TQe)+V}+ —é ‘ Tz%(26)2+(‘TV+ V‘T)e+%V2
. 3 1
+ [—é ] (TPO(E)+H(TV+ - )O(E)H(TV + - -+ )0(e)+§V3}+ R (A7)
1 ? ]
= _ i 1|_i 24 _i 3 = -t e
=1+ Z V+ 7 V 3! 7 ] V>+ - +0(e)=exp ﬁV [1+0(e)+ ].
Consequently, the Floquet operator U (T) becomes USRUg=eYR, UipUx=e VP (B1)
U(T)=lim U'e( T)=lim UL UE(T) From
€—> €—
Ug=exp |——RX-VPp+p-VR) [ze D (B2)
— iTAZ i an — Zﬁ
=exp | — P |exp —;V(x,p) =Up(T)Ug
it follows that [37]
(A8) o Y (NP-SN
2 =eDze @—Eom[@,x](,,), (B3)
APPENDIX B: THE KICK TRANSFORMATION where
[«-@,3](” =D, [-ﬁ,ﬁ](m] , (B4)

It is shown that the momentum P and the position
operators X transform under the kick U according to

with n EN. One finds successively
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[DR11)= 55 RV B+VRRI=VR,
[@,x](n)=V" X, nEN ’
so that
2=3 Lvrg=eVs, (B6)
n=0n!
and, along the same lines
Ar__ hd 1 FwvnAaA_ -V a
p=3 —(=V)"p=e""p, (B7)
n=0n'

what was to be shown.

APPENDIX C: THE STATES |P,a)

In this appendix it is shown that the states |P,a) are
eigenfunctions of the Floquet operator U(T) and consti-
tute a complete orthonormal set.

First of all, it will be shown that the states

=1 3 _ir _; Vi
|P,a)—‘/§7—r n:z_wexp 2ﬁ(pn(P) ian ||M"P)
(C1)
J
UF(T)UKIP,a>=e_i“—1:— i exp —i];@ +H(P)—
Vor , 2 27"
=e "?|P,a) ,
where the last equality only holds if
@ +1(p)+P-M"M"p=g,(p) (C6)

is true for all n €Z. It is necessary to consider four
separate cases: (i) n >0, (i) » =0, (iii) n =—1, and (iv)
n<—I1.

(i) n > 0: Writing down ¢, (p) explicitly gives

n o~
Pn+1(P)=— 3 p-M*“M°*p
s=0

n—1

= 2 ﬁMSM S'p—f)'M"-lVI ".p
s=0

=@a(p)—pM"M"p, (C7)
so that Eq. (C6) holds.
(ii) n =0: Because of
P1(P)=—P'p, @o(p)=0, (C8)

J

T 1 s
foz da% |P,a)(P,a|=Ef02 day I exp

P n,m

=3 3 exp

P nm

=33 IM"P){M"P|=3 Ip){pl=1,
P n p

iT
Y [, (P)—@,,(P)]
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are eigenfunctions of the Floquet operator U (T),

U(T)P,a)=Up(TUg|P,a)=e "*|P,a) , (C2)
where a is any real number in the interval [0,27) and the
function @, (p) is defined as

(C3)

This can be seen as follows. With the use of Eq. (56) the
action of the kick Uy on the state |P,a ) yields

UKIP,a)=L S exp

iT .
Vo 2ﬁ<p,,(P) ian

n=—o0

XM~ Lp) . (C4)

Renaming the index n —n +1 and applying the operator
Up(T) leads to

ian |exp ——;—;?M”-M”-P M "-P)
(Cs)
[
Eq. (C6) is fulfilled again.
(iii) n = —1: Using
-1 _ _
e_(p)=3 pM M Sp=p-M ‘M “lp (C9)
s=1
together with Eq. (C8) one gets
@op)+p-M M "Lp=¢_,(p). (C10)
(iv) n < —1: Because of |n + 1| =|n|—1 one finds
[n|—1 _
@nr1(p)= 3 PM M "*p
s=1
=@,(p)—p-M"M"p, (C11)

which completes the proof of Eq. (C6). Consequently, the
states |P,a) are eigenstates of the Floquet operator U (T)
with the eigenvalue exp[—ia].

A straightforward calculation shows that the set of
states |P,a ) is complete,

exp[ —ia(m —n)]|M"-P){(M ™-P|

—;—:[(p,,(m—%(m] ,5,,,,,, IM"-P){M"-P|

(C12)
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where the sum over P runs over all different hyperbolas S (P).
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Finally, the orthonormality of two states |P,a ) and |P’,a’) is seen to follow from the relation

T | iT
(P,a|P',a )—5;,?’ exp |~ lgnm(P)—

=%8<P,P') 3 elmm=8(P,P) 3 Sla—a't2mm),

@,(P)] |exp[—i(a’'m —an)]{M"-P[M™-P")

(C13)

— o m=—o0

where only the m =0 term is relevant, o being restricted
0 [0,27). The Kronecker symbol

1 if P=P’

8(P, P")= 0 otherwise

(C14)

stems from the fact that two hyperbolas labeled by P and
P’ never have any state in common.

From a technical point of view it is interesting to note
that in the position representation the eigenvalue equa-
tion (C5) turns out to be a functional-integral equation

PYM ™ lx)= fdx@(e’T/Zﬁ x)P(x'), (C15)

(277% )?

the kernel being a two-dimensional Jacobian theta func-
tion

05(e’P,z)= (C16)

ép-zﬂb’pz

> exp
P

APPENDIX D: THE INTEGRALS I s(g(x),x(xq))
In this appendix estimates of the integral

IRs(g(X),X(X()))

AxAy f dx x(x4)g(x)[(Rx +Sy)mod1] ,

R,SeN (DI1)

are given for various (piecewise) continuous positive func-
tions g (x). I' denotes the unit square in the xy plane and
x(xg) is the characteristic function of a rectangle of area
Ax Ay about the point x,€T"

1, Ixg—x|<Ax/2, |y,

0 otherwise .

—y| <Ay /2

X(x)= (D2)

The function frg(x)=(Rx +Sy)modl is easily visual-
ized. Imagine the plane (Rx +Sy)=0 defined over the
unit square. The (modl)-prescription turns it into a
“two-dimensional sawtooth,” such that the resulting
(R +.S) disconnected strips are parallel to the original
plane.

In order to proceed with the evaluation of the integral
in Eq. (D1) it is convenient to decompose the unit square
into RS rectangles of size 1/RS, each of which is divided
into two triangles (see Fig. 4)

(D= T rtls o rtstI1-Rx
Crs [x’y‘R_x R s’ S
(D3)
and
(2) — _r_< <r+l.r+s+1—Rx< s+1
G = |V | g SX<"g 7 s YSTs
(D4)
where r=0,1,...,R—1 and s=0,1,...,8—1. In
these regions the function fs(x) equals
Fx)=Rx+Sy —(r+s), (D5)
fP(x)=Rx+Sy —(r+s+1), (D6)
respectively.

In general, the borders of the region characterized by
X(x,) do not fit with the rectangular grid defined by the
integers R and S. Let ¥ "(x,) be the smallest rectangle of
the grid containing x(x,), and let Y (x,) be the largest
rectangle of the grid which is contained in x(x). The cor-

1
y G
1
\ \ \
AN )\/ N
\ \ N
\ \ \
\ \ N (2)
\\ \\ \\ Gr’s
N R K
AN AN N/
N \ \
N \ \
N \ \
A N AN
b \ \
0 1 =z

FIG. 4. Definition of the triangular regions G\’ and G2, re-
spectively.
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responding areas fulfill the inequality Tps(g(x),x (xq)) = Ips(g(x),x(x0))

AR~ AS” AR AS™

TR s A =TT (D7) < Ips(g (x),x(x0)) . (D8)
leading to the relation The integrals I5(g(x), Y (x,)) can be written as

) Ry+ARE s +AsT
+ - (n )
(x9))= AxAy > 2+ fG,‘S“ng(X)f" (x)+ fG’(SZ)ng(X)f’S (x)

r:R(:—r r=S

Ips(g(x),x
0
(D9)

The meaning of the numbers R, and AR * can be inferred from Fig. 3. For ever larger values of R and S the rectangu-
lar grid in the unit square gets ever finer and the integrals Ir5(g(x), Y=(x,)) approach the original one, I5(g (x),x(x,)),
from above and below.

The upper and lower bounds of Trs(g(x),xY=(x,)) are calculated for the functions (i) g (x)=1, (ii) g (x)=x, and (iii)
g(x)=frs(x).

(i) In this case one finds

(r+1)/R (r+s+1—Rx)/S
Ips(1,X* (%)= S o e[ T

r/R s/S

2 2

—pt S o
r=Rg r==S8gs

Ro+ART s +AsT
l dy[Rx +Sy —(r +s)]

AxAy

+ [ R OV gy [Rx +Sy —(r s +1)]
r/R (r+s+1—Rx)/S

+ +
| Roramtsyras 1 1 |_1AR*/R AS*/S (D10)
AxAy _ZRi gt 3RS 6RS 2 Ax Ay .
r=Rg r=eop

(ii) A similar calculation yields

(r+1)/R (r+s+1—Rx)/S
IRS(x,Xi(xO))zm > b fr/R dxfs/s dy x[Rx +Sy —(r +s5)]

+ +
1 Ry+ART S, +AS l
r=R3*— r=S8"L

+ [ R [UTUE gy x[Rx +Sy—(r+s+1)]]
r/R (r+s+1—Rx)/S

+ +
__1 R";R S"*z“ 8r+3 | 4r+3
2 2
AxAy oI5 |24R’S 24RCS
_AR*/R AS*/s |1 |Ro  |ARG/R |Ax |, 1 |Ro 1 o)
Ax Ay |2 | R Ax 2 2R | R 2]}’

where the first term in the curly brackets is of O (1) approaching (% ),,, and the second one is of order O (1/R).
(iii) In this case one obtains

+ +
Ry+ART S +AS

(r+1)/R (r+2+1—Rx)/S
IRS(fRs(X)’Xr(XO)):m > > lf dx f dy[Rx +Sy —(r +s5)]?

Rt ot r/R s/8
r=Rg r==Sg

(r+1)/R (s+1)/S
+ d dy[Rx +Sy —(r +s +1)]?
fr/R xf(r+s+l—Rx)/S y[ * Y (rts )] J

Ry+ART s +asT

b

=Rrz* =gt
r=Rg r==Sgs

1

_ 1 1
AxAy

4RS * 12RS

1 AR*/R AS*/S
3 Ax Ay

(D12)

MACSYMA [38] has been used for these calculations.
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