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Abstract-A new formulation of the quantum integrability condition for spin systems is proposed. It 
eliminates the atibiguities inherent in formulations derived from a direct transcription of the classical 
integrability criterion. In the new formulation, quantum integrability of an N-spin system depends 
on the existence of a unitary transformation which expresses the Hamiltonian as a function of N 
action operators. All operators are understood to be algebraic expressions of the spin components 
with no restriction to any finite-dimensional matrix representation. The consequences of quantum 
(non)integrability on the structure of quantum invariants are discussed in comparison with the 
consequences of classical (non)integrability on the corresponding classical invariants. Our results 
indicate that quantum integrability is universal for systems with N = 1 and contingent for systems 
with N 2 2. 

1. INTRODUCTION 

In the early days of analytical dynamics, integrubility was understood to be primarily a 
question of the development and application of adequate mathematical tools. Gradually it 
became clear that it is, in fact, an intrinsic property which some dynamical systems possess 
and others lack. The emerging awareness that seemingly simple dynamical systems will 
forever elude an analytical solution was painful to researchers at the time, only partly 
alleviated by their accomplishment of having found a general integrability condition for 
Hamiltonian systems. This criterion made it possible to identify integrable systems by 
means which amount to less than an explicit solution [l]. 

In today’s world of high-speed computers, the question of analytical solvability has lost 
much of its importance, but the integrability condition as a discriminant between two 
classes of systems with qualitatively distinct dynamical properties has remained at the core 
of research in nonlinear dynamics. The far-reaching implications of integrability and the 
dramatic consequences of nonintegrability have been elucidated in great detail by a 
combination of analytical and numerical methods [2]. 

For any given (integrable or nonintegrable) classical Hamiltonian system, a family of 
quantum mechanical systems with corresponding dynamical variables can be constructed by 
well-established procedures based on the correspondence principle. This raises the question 
as to what extent the classical attribute of integrability or the lack of it is still reflected in 
the properties of the quantized system. 

Quantum chaos research has revealed a wealth of phenomena which distinguish 
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quantized nonintegrable systems from quantized integrable systems [3-61. Are the sig- 
natures of quantum chaos quantum manifestations of classical nonintegrability or munifesta- 
tions of quantum nonintegrability ? The second alternative implies the existence of a 
quantum integrability condition which can stand on its own, i.e. which is not merely a 
classical label attached to a quantized system. 

The classical integrability condition for a system with N degrees of freedom requires the 
existence of N functionally independent analytic invariants in involution. When this 
condition is translated offhandedly into the requirement that there exist N independent 
commuting operators, then it fails to state two important qualifications: (i) which operators 
should be counted? (ii) what makes two operators independent? Various attempts at 
clarifying these points can be found in the literature [7-91, but none seems to be water- 
tight [lo]. 

In this paper we present an alternative formulation of the quantum integrability 
condition, which avoids known loopholes and ambiguities. It does not lean on any classical 
concept, yet its predictions appear to be consistent with the classical criterion in the sense 
that quantized integrable systems are quantum integrable and quantized nonintegrable 
ones quantum nonintegrable. The notion of quantum nonintegrability as proposed here is 
not linked to algorithmic complexity [ll]. Its effects are nevertheless compelling, as we 
shall see. 

In order to achieve a simple and unified conceptualization and notation, we focus the 
entire discussion on (classical or quantum) spin systems. However, a transcription of the 
essential features to systems involving other types of degrees of freedom seems straight- 
forward. 

In Section 2 we paint the classical backdrop for the new quantum integrability concept. 
The classical integrability condition is reformulated in a way that provides a more direct 
link to its newly proposed quantum counterpart. We describe and employ a computational 
procedure for the construction of classical invariants, whose properties depend sensitively 
on whether the underlying Hamiltonian is integrable or not [12, 131. In Section 3 we 
propose the existence of a unitary transformation which converts any quantum one-spin 
system into a function of a single quantum action-an operator with specific spectral 
properties. Such an expression defines quantum integrability and implies that the time 
evolution of any non-stationary operator can be determined explicitly. We employ quantum 
invariants, constructed by a procedure analogous to the one used previously for classical 
invariants [13], to produce analytical and numerical evidence in support of the proposition 
that all one-spin systems are quantum integrable. In Section 4 we demonstrate by the same 
methods that the spectral consequences of quantum integrability are not common to all 
two-spin systems, only to some. The implication is that a unitary transformation expressing 
the quantum two-spin Hamiltonian as a function of two action operators exists only in 
some cases. In the concluding Section 5, we outline possibilities to further corroborate the 
findings presented here by alternative methods based on perturbation expansions. 

2. INTEGRABLE AND NONINTEGBABLE CLASSICAL SPIN SYSTEMS 

Consider a system of N classical spins of length S, 

ST2 = V”,XP %y7 L) 

= S(sin 8” cos qn, sin tYn sin qn, cos 7!+“), n = 1, . . ., N. 
(1) 

The classical spin length is an invariant of the motion. The kinetics on the product of N 
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spheres with S = const is governed by the Poisson brackets between spin components, 

Each spin contributes one degree of freedom to the system and can be described in terms 
of one pair of canonical coordinates, 

pn = SCOS~~,, 40 = ‘ion* (3) 

The associated 2N-dimensional phase space is bounded ][14]. The value of the constant S is 
irrelevant for the issues discussed here. Hence, it will be suppressed in any list of 
independent variables. 

The algebra of dynamical variables for a system of classical spins consists of all analytic 
(piecewise smooth) phase space functions. Any such function can be regarded as the 
Hamiltonian 

H = H(Sl, . . .) S,) (4) 

of a dynamical system. In that role it determines the time evolution of any other dynamical 
variable F(& , . . . , S,) according to Hamilton’s equation of motion, 

z = {H, F}. 
For a specific Hamiltonian H, there may exist phase space functions I(&, . . ., S,) with 
the property 

J$ = {H, I} = 0. (6) 

These are analytic invariants or integrals of the motion. Analyticity guarantees that { H, Z} 
is well-defined; invariance (dZ/dt = 0) then follows from {H, Z> = 0. Nonanalytic invari- 
ants are functions I($, . . ., S,) which satisfy dZ/dt = 0, but for whieh {H, Z} cannot be 
evaluated due to lack of smoothness [12, 131. 

The phase flow generated by a given Hamiltonian must belong to one of two distinct 
types: (i) regular flow-the entire 2N-dimensional phase space is foliated into N-dimen- 
sional tori. Individual phase points wind around these tori periodically or quasi-periodic- 
ally; (ii) irregular flow- ‘a fraction of phase points are not confined to N-dimensional 
manifolds, Their flow is chaotic. Important for our study is that this clear-cut phenomeno- 
logical classification of flows is rigorously related to an :integrability criterion for the flow 
generating Hamiltonians. 

2.1. Classical integrability condition 

A classical system with N degrees of freedom, specified by some Hamiltonian (4), is 
integrable if three conditions are fulfilled [15]. 

Cl: There exist N analytic invariants I,&, . . ., SN): {H, Z,} = 0, n = 1, . . ., N. 
C2: All pairs of these invariants are in involution: {I,, I”,} = 0. 
C3: The invariants Z,, are functionally independent, i.e. the directions VZ, are linearly 

independent almost everywhere in phase space. 

Otherwise the system is nonintegrable. It is impossible to have more than N analytic 
invariants which are functionally independent and in involution. Therefore, H is either 
equal to one of the N invariants Z,, or else it can be written as a smooth function 
H = R(Z,, . . ., IN). A set of N invariants Z, satisfying conditions C2 and C3 determine 
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exactly one torus structure in phase space. Any smooth function n(Z,, . . ., IN) specifies a 
particular flow on that same torus structure. 

The action variables .Z,(S,, . . ., S,) are a special set of invariants. They represent N 
canonical momenta, for which the conditions C2 and C3 are necessarily satisfied. If the 
flow is generated by an action, all trajectories (except fixed points and separatrices) are 
closed and have the same period in time. The time evolution of any other dynamical 
variable F(Si, . . . , S,) for arbitrary initial conditions is then also periodic, but (generally) 
anharmonic. The associated intensity spectrum consists of a set of equidistant lines at 
integer frequencies. 

The N actions .Z, thus generate N periodic flows in N linearly independent directions on 
each torus. The flow of H = %‘(.Z,, . . . , .ZN) can then be interpreted as a superposition of 
these N fundamental periodic flows, determined by the linear time dependence of the 
angle variables, O,(t) = w,t + 8, , (O)* the characteristic frequencies w, = %X/&Z~ vary from 
one torus to another. The time evolution of a dynamical variable F = S(J1, &, . . . , JN, 
0,) with initial conditions on a given torus is generally quasiperiodic. Its intensity spectrum 
consists of a superposition of lines at the sums and differences of the frequencies w,. 
Without loss of generality, the classical integrability conditions Cl-C3 can be replaced by a 
single requirement: 

CJ(N): A given Hamiltonian, H&, . . ., S,), is integrable if there exists a canonical 
transformation which converts it into a smooth function of N actions .Z,: 
H = X(J,, . . .) .ZN). The actions are a set of invariant canonical momenta, and 
each .Z, generates a phase flow whose spectrum consists of uniformly spaced lines. 

This alternative integrability criterion is rarely used in classical mechanics because the 
additional requirement that the N invariants be canonical momenta would make any proof 
of integrability unnecessarily difficult. However, it is CJ(N) and not Cl-C3 that can be 
translated most directly into a meaningful quantum integrability condition as we shall see. 
As a preparation to our main theme (Sections 3 and 4), we need to discuss a general 
method for constructing invariants in classical systems-a method which can also be 
adapted to quantum mechanics. 

2.2. One degree of freedom 

The Hamiltonian H(S) of a one-spin system is an analytic invariant, the only one 
required to render the system integrable. Further smooth invariants are necessarily 
functionally dependent on H. Invariants can be constructed as the time average of an 
arbitrary dynamical variable F(S) over individual phase space trajectories, 

IF(S) = (F) = Iii$dtF(S(t)) := ;lo;llF(S(t)), (7) 

where the variable S on the left denotes the initial condition of the path S(t) in the integral 
on the right. The third equality uses the fact that in one-spin systems the time evolution is 
periodic on all trajectories except fixed points and separatrices. The phase space function IF 
is an invariant by construction. This is an analytic invariant because the torus structure 
guarantees a smooth dependence of the integral on the initial condition S, and it is 
functionally dependent on H because both Zr and-H assume a unique value for all initial 
conditions on a given torus: IF = jF( H) or H = H(Z,). For the special dynamical variable 
F = pQ with p, 4 from (3), the integral (7) yields the action 
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again as a function of the energy. Conversely, we have H = X(Z) and, by implication, 
IF = 4,(J). 

2.3. Two degrees of freedom 

The integrability of a two-spin system specified by some energy function H&, S,) 
hinges on the existence of a second independent analytic invariant I($, S,). For an 
integrable system, this second invariant is not unique, and no general prescription for 
obtaining an explicit expression for Z is known. However, a general method exists for the 
evaluation of that invariant on a dense set of phase points with full measure. This method 
was proposed earlier [12, 131, and its usefulness for practical applications was demonstrated 
by numerical implementations. 

The method extends the prescription given in (7). Choose an arbitrary dynamical 
variable F(S1, S,) and determine its time average over phase space trajectories as a 
function of the initial conditions: 

Z&I, S,) = (F) = &@I $irdrF(s,(r), S,(t)). 

The four-dimensional phase space is foliated by two-dimensional invariant tori. Therefore, 
the invariant ( F) represents a function of only two variables-the two action coordinates 
J1 and J2. They uniquely specify the torus which contains the phase point (S,, S,). The 
function 

~,(JI, Jz) = &@I, %:I (10) 

is an analytic invariant. Hence, it satifies condition Cl, but it may or may not satisfy 
condition C3, while property C2 is redundant for h’ = 2. The functional relationship 
between the invariant IF and the Hamiltonian H can be identified in a plot of IF versus H. 
If ZF is functionally dependent on H, the graph is a piecewise smooth line. Otherwise the 
points (IF, H), each representing an individual torus in phase space, fill a two-dimensional 
region. 

The existence of a smooth and functionally independent second invariant, which is 
guaranteed by integrability, can be visualized by a previously developed construction [13]. 
Determine, via time average (9), two analytic invariants Z, = sl,( J1, Jz) and ZG = .!S,(J,, J2) 
which are functionally independent of H = X(J,, Jz) and functionally independent of each 
other. The dependence of these invariants on the actions J1, Jz is, in general, not known 
explicitly, but for individual tori their numerical values can be determined everywhere in 
phase space. The points (H, IF, ZG) then form a piecewise smooth invariant-surface in a 
three-dimensional diagram. It is an image of the (J1, .Zz)-plane in (H, IF, Zo) space. The 
function 

H = iqz,, IO) (11) 

is piecewise smooth. Each invariant torus in phase s’pace determines a point on the 
invariant surface and a point in the plane of actions. 

In the phase flow of a nonintegrable two-spin system H(Sr, SJ, a fraction of the 
invariant tori are destroyed. The remaining ones are no longer dense anywhere, but they 
still occupy a volume with nonzero measure. The chaotic regions between intact tori 
exhaust the remaining measure. Nonintegrability causes dramatic changes in the structure 
of invariant surfaces. Suppose that two invariants IF and ZG have been determined which 
are functionally independent of the Hamiltonian H and of each other. The points 
(H, IF, ZG) resulting from all invariant structures in p’hase space (tori, cantori, chaotic 
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regions, periodic orbits) then from a strange invariant-surface, an almost two-dimensional 
object in three-dimensional space, pieces of which may look like a smooth surface on a 
large scale. The function H = g(ZF, I,) is nowhere continuous. The differences between 
smooth and strange invariant surfaces will be illustrated in Section 4 and compared with the 
properties of corresponding quantum mechanical structures. 

3. QUANTLJM SPIN SYSTEMS: ONE DEGREE OF FREEDOM 

A quantum mechanical spin is described by a 3-component vector operator S. Its 
components satisfy the familiar commutation relations 

The operator 

s^’ = s^; + s^“, + s;, (13) 

which represents the square of the quantum spin length, commutes with any Hamiltonian 
of the form 

A = H(S^), (14) 

or with any dynamical variable of this system as expressed by a (generally non-stationary) 
Hermitian operator 

Q = F(S^). (1% 

The representations of the spin algebra (12) can be labeled by the eigenvalues h*s(s + l), 
s = l/2, 1, 3/2, . . . of the operator S’. For each value of s there is an irreducible 
(2s + l)-dimensional matrix representation I, of the group W(2). 

In the context of this study, -any function of the spin componetns such as H(S) or F(S) 
is defined as an operator on the full Hilbert space. This is equivalent to considering all 
subspaces I, simultaneously by expressing the operators as infinite block matrices. A 
superscript s such as in Ps = F’(S) will mark any (2s + 1)-dimensional matrix represen- 
tation of an operator. Operators acting in the full Hilbert space are representation 
independent and will be called algebraic. 

3.1. Unitary transformation and action operator 

Any unitary transformation 6 = U(S) applied to a spin operator S produces again a 
spin operator, 

s^, = fis^gt zz S@), (16) 

i.e. it leaves the structure of the quantum spin algebra (12) unchanged: 

The rotations in spin space are a sub:et of these transformations with a linear dependence 
on the spin components. Under U(S), the Hamiltonian (14) and the dy?amical variable 
(151 are transformed into algebraic expressions of the new spin vector: H(S) = H’(S^‘) and 
F(S) = F’(S’), respectively. 
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Suppose there exists a special unitary transformation, I6 = %.(s^) with 

J^ = @%-it = J(8) (18) 

which converts a given one-spin Hamiltonian H(S) into a function of a single component 
of the transformed spin: 

H(S) = X(3,). (1% 

What are the consequences of such a transformation? The operator 3, is appropriately 
named action operator. Its eigenvalue spectrum in each subspace l?, consists of 2s + 1 
uniformly spaced levels, 

3; = 5 Jm, s)mh(m, SI. (20) 
In=--s 

The operator 3, is an invariant, [fi, ?,I = 0, and it shares many properties with the 
classical action variable as will be discussed. When the samz transformation which produces 
(19) is applied to a (non-stationary) dynamical variable P’(S), the resulting expression, 

F(S) = %(J^), (21) 

depe?ds not only on the quantum action 3, but also on the non-stationary components 
J,, J,. We shall see that these two operators assume a role similar to that of a classical 
exponentiated angle variable. On the basis of these properties we propose the following 
quantum integrability condition: 

QJ(l): A given one-spin Hamiltcnian 8 = H(S^) is quantum integrable if there exists a 
unitary transformation @U(S) which converts it into a function of the action operator 
J,. The action operator is a quantum invariant whose spectrum in any subspace r, 
consists of a set of 2s + 1 uniformly spaced levels. 

The classical integrability of all one-spin Hamiltonians H(S) is an elementary result. The 
criterion CJ( 1) is satisfied universally. The canonical transformation to action-angle 
coordinates leading to the expression H(S) = X(J) for the Hamiltonian, and to 
F(S) = 9(J, f3) for any dynamical variable of interest, can be established by constructive 
methods [2]. Correspondingly, we assert that all one-spin Hamiltonians H(S) are quantum 
integrable, i.e. that the criterion QJ(l) is satisfied universally. However, we h_ave yet to 
design a constructive method which leads to the expressions X( Jz) and 9(J) for the 
Hamiltonian and a non-stationary operator, respectively. 

In the classical canonical transformation to action-angle coordinates, the transformed 
Hamiltonian X(J) may have an additional dependence on the (constant) classical spin 
length S. Like_wise, the algebraic expression X(J,) resulting from the special unitary trans- 
formation Q(S) may contain an explicit dependence on the operator s^’ = 5^*, which 
represents th,e (invariant) quantum spin length. Since this invariant commutes with all 
operators F(S), it has no bearing on the question of quantum integrability. It will therefore 
be suppressed in any list of independent variables, as was the classical spin length. 

3.2. Quantum invariants 

In the absence of a general recipe for determining the relation (19) between Hamiltonian 
and quantum action in one-spin systems, we provide various kinds of indirect evidence 
which support the postulate of universal quantum integrability in these systems, and we 
show that the consequences of quantum integrability have much in common with those of 
classical integrability. Part of this evidence can be inferred from relations between 
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invariants as obtained via time average of dynamical variables, analogously to the classical 
construction presented in Section 2. 

Consider a Hamiltonian H(S) and a dynamical variable F(g). The solution of the 
Heisenberg equation of motion, 

d!? - = +i, s^], 
dt 

(22) 

is a one-parameter family of operators, g(t), and the time average of the operator F(S^(t)) 
defines an operator, 

(23) 

which is an invariant by construction. In the subspace of I,, the dynamical variable F is 
given by a matrix @’ with elements 

F”,,(t) = (m, s(Plm’, s) exp[i(Ek - E”,p)t/h], (24) 

in the energy representation 
fiqm, s) = E”,(m, s). (25) 

Taking the time average of @ then amounts to setting all its off-diagonal matrix elements 
equal to zero. If degenerate energy levels occur, the eigenvectors Im, s) can be chosen in 
such a way that no time-independent off-diagonal matrix elements remain. 

If our postulate is correct, then any quantum invariant obtained from the time average 
of a dynamical variable must also be expressible as a function of theAquantum action J,. 
In systems where the Hamiltonian is already given as a function of J,, the time average 
(23) can be carried out analytically, producing invariants in the form of explicit functions 
of s,. 

3.3. Dynamics of fi = H(S^,): exact calculation 

Consider a quantum spin in a constant magnetic field pointing in z-direction. With 
,$ = J, i.e. (6 = 1, the Hamiltonian is a linear function of the action: 

ii = -EBs^, = -CO& = X(3,). 
2mc 

(26) 

The equations of motion (22) for the components of J or the associated ladder operators 
J+ = J, + i?, are then readily solved algebraically: 

3,(t) = 3,(O)exp[* ito&?], 

3,(t) = S,(O). 
(27) 

The harmonic time dependence of the operators jrt indicate their kinship to a classical 
angle variable. The time evolution of an arbitrary dynamical variable @ = F(S^) = s(J) 
(here with F = S) is then obtained by insertion of (27). As in classical mechanics (Section 
2), the dynamics gene:ated by an action is universally periodic. Given the explicit 
time-dependence of 9(J), we can evaluate its time average. For a simple illustration, 
consider the dynamical variable 

rewritten in the form 

F = ($2 - 3y, + $7: + F);i, + 3,(32, + 32_)] (29) 
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for easy insertion of the solutions (27). The time average leaves the first term intact and 
wipes out the second one. The resulting invariant, 

fF = (P - 3;p, = gi&), (30) 

is indeed a function of the action operator a,s we claim it must necessarily be, 
This result holds for arbit_rary operators F expressible as power series in J,, 3,) 3,. For 

example, the nth power of J, has the form 

Y:(t) = ik$,P;(i+, 3-)exp[-i(n - 2k)w,t/h], (31) 

where Pi(J^+, SW) is a polynomial of order II containing all possible orderings of k powers 
of ?- and (n - k) powers of ?+ . The time average vanishes unless n is even, and then the 
only surviving term is the one with k = n/2: 

(Z(f)) = $p(?+, 3-h n even, (32) 

which is a sum of monomials ‘&, = IIj”:J^“lf^TJ^bz . . ., with a = al + a2 + . . . = n/2 and 
b = bl + b2 + . . . = n/2. By virtue of the relations 

3J, = j’ - 3; f h3,, 3,3* = J^J, Ik hJ^,, (33) 

each term 5, is a function of the quantum action 3,. We can use the same argument to 
determine ( j,“(t)) and, more generally, time averages of polynomials and power series of 
TX,, ?,, 3,. The final result is the time average of the non-stationary operator p expressed 
as an explicit and unique function of the action operator: 

I^F = (B(j)) = 9,(J^,). (34) 

Turning the argument around, we conclude that if the op_erator p = g(J) happens to be 
an invariant, then it must be expressible as a function of J,. All this reflects the existence 
of some algebraic dependence between any two invariant!;. It corresponds to the functional 
dependence between any two analytic invariants of a classical one-spin model (Section 2.2). 

Suppose the quantum one-spin Hamiltonian is given as a nonlinear function of a single 
spin component. A rotation in spin space turns that component into the quantum action: 

ii = 3x(3,). (35) 

In this case, the equation of motion has explicit solutions of the form 

j+(t) = exp[iX(J^,)t/h]3,(0)exp[--iX(J^,)t/h], 

&(t) = 3,(O). 
(36) 

The operators J^+ still vary harmonically in time, but now the frequency is a function of the 
energy. This is also true for the angle variable of the corresponding classical system. 

Given the solution_s (36), it can_still be shown that ,the time average of an arbitr_ary 
dynamical variable F = F(S) = 9(J) becomes a_functio~n of J, as in (34), and if F is 
known as a polynomial or power series, Jhen ga,( J,) can be determined as a polynomial or 
po?er series. Also, if any operator F(S) is an invariant, it can be reduced to_the form 
9(5,). What remains to be shown is that an arbitrary one-spin Hamiltonian H(S) can be 
brought into the form X(J,) by means of a unitary transformation. For that task we do not 
yet have a general prescription. However, the following results of a first-order perturbation 
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calculation (Section 3.4) and those of a numerical calculation (Section 3.5) provide 
evidence that the underlying hypothesis is reasonable. 

3.4. Dynamics of fi = H,(s^,) + EH~(S^): perturbation calculation 

For a one-spin Hamiltonian of the form 

H(S^) = H&) + EH&) (37) 

with E << 1, th,e unitary transformation Q(S) which turns H(S^) into a function of the action 
operator, EX( J,), can be determined perturbatively. The prescription for a first-order 
calculation is simple and transparent. We apply the unitary transformation to the original 
Hamiltonian (37), expand it to leading order in E as “IL = 1 - i&/k 

6+H(S^)6 = H(S^) - #u(s^), H(g)] + S(2), (38) 

and determine the operator u(g) such that the off-diagonal parts of the commutator 
term and of the original Hamiltonian cancel each other. The remaining diag_onal terms 
represent the Hamiltonian as a function of the action operator. Inserting u(S) into the 
expansion of (18)) 

s = 42x+ = s^ + +u(Q, $1 + O(2), (39) 

yields an operator J^ whose components satisfy the spin commutation relations (12) to 
S(2). For a simple illustration, consider the one-spin Hamiltonian, 

H(S^) = s^, + $5: = s^, + f’s” - 3;) + $(s: + s^t), (40) 

which we have rewritt?, in the last equation, as the sum of a diagonal and an off-diagonal 
term. The operator u(S) which diagonalizes (38) to O(E) is found to have the form 

u(s^) = $3: - 2). (41) 

The resulting diagonal Hamiltonian reads 

%+H(S^)$ = s^, + $($’ - 3;) 

or, in terms of the transformed spin ‘%$dij+ = J^, 

fi(s^) = X(3,) = s, + $(j2 - ?I). 

Note that the transformation generated by u(g), 

(42) 

(43) 

is not just a rotation in spin space. Once the Hamiltonian has been brought into the form 
(43), we have reduced the problem to the one solved in Section 3.3. 
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3.5. Dynamics of fi = H(6): numerical calculation 

For generic one-spin Hamiltonians such as (37) with unrestricted E, we can produce 
numerical results for quantum invariants. Their characteristic properties strongly support 
the existence of an action operator. We discuss the salient features in the context of a 
specific example. Consider the Hamiltonian 

ii = 3, + g, 

and the invariant fF determined via time average from the dynamical variable 

(45) 

In Fig. 1 we have compiled three sets of data for this model in the subspace of I, 
with s = 50. The primary data obtained from the numerical calculation are the energy 
eigenvalues E”, = ( IZ, sj @In, S) and the values Z>,n = (n, sI$~/I~, s) of the invariant I^:. 
The set of points (E”,, Z>,J, marked by open squares, exhibits two characteristic properties 
that reflect the universal integrability of quantum one-spin systems: (i) they fall onto a line 
which is smooth on a scale much larger than the average spacing between neighboring 
points; (ii) the sequence of successive spacings is smooth on the same large scale. 

Property (i) suggests a natural sequential labeling, .Zs/h = -s, --s + 1, . . ., +s, of the 
points (E”,, Z”,,,)_ along that smooth line. These labels represent the eigenvalues of the 
action operator .Z, in the subspace I,. Property (ii) then implies that the two sets of points 
(J”,, Z>,J and (E”,, J”,), marked by open and closed circles, respectively, also fall onto 
smooth lines. This is indeed the case. The smooth lines of points are strongly indicative 
of the algebraic dependence between a?y two_of the ,three op_erators &, fF, and jz, 
i.e. indicative of the algebraic relations Z-Z = EX( .Z,) and IF = .9jF( J,) which imply quantum 
integrability of this model system. 

-0.25 i 

Fig. 1. The three quantum invariants fi = s^, + 3:/2 energy), J^, (aclion), and 1~ = (P) determined via time 
average from the non-stationary operator P = s^l$, + S,s^:, plotted one versus the other in the subspace r, with 
s = 50 and with E = l/\/s@ + 1). Each data set consists of 2s + 1= 101 points, of which every fifth is marked by a 

distinctive symbol. 
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4. QUANTUM SPIN SYSTEMS: TWO DEGREES OF FREEDOM 

Consider a two-spin Hamiltonian defined as an algebraic expression 

ii = H(S^,, !$:I. (47) 

The components of the two spins satisfy the commutation relations 

[gja, S^kp] = ihS+ C c~Bu~~r, j, k = 1, 2. (48) 
y=xyz 

The operators, s^: and s^i, which represent the lengths of the two spins, commute with each 
other, with the Hamiltonian (47), and with any dynamical variable, 

2 = F(S^,, s^,). (49) 

With little loss of generality, we set s^: 
h2s(s + 1) of S2, 

= s^i = S2 and obtain, for each eigenvalue 
a (2s + 1)2-dimensional product representation I, = I,, @I I’, of the 

two-spin algebra (48). Any such representation of operators is again marked by a 
superscript s . 

4.1. Quantum integrability condition 

For the formulation of a quantum ir$egrabgity_condition applicable to two-spin systems, 
we consider unitary traFsfo_rmations U = U(Sr , S,) of the most general type. They trans- 
form the original spins S r, S2 into a new pair of spin operators, 

s^l = iis^j~+ = S;(s^,, sh2), j = 1, 2, (50) 
i.e. into operators whose components satisfy the same basic commutation rules 

They convert the algebraically_ de{ined operators (47) and <49)_into algebraic expressions of 
the new spin operators: H(Sr, S,) = H’(S;, $$ and_ F(Sr, S,) = F’(S^;, Si). Such trans- 
formations are not restricted to products U,(S,)U2(S2) of single-spin transformations. In 
generalization of the criterion QJ(l) for one-spin systems as stated in Section 3, we propose 
the following quantum integrability condition for two-spin systems: 

QJ(2): A given two-spin Hamiltonian e = H(S^,, s^,) is quantum integrable if there exists 
a unitary transformation %.(Sr, S,) which converts the spin operators Sj, j = 1, 2, 
into new spin operators, 

ik = %!@fi+ = J&, g2), j = 1, 2, (52) 

such that the Hamiltonian turns into a function of two action operators, 

H(S^,, L&z,) = 7eQlz, 3zz). (53) 

The eigenvalue spectra jr,, 32Z in each subspace I, consist of 2s + 1 uniformly 
spaced levels: 

3”, = 2 (m, n, s)mh(m, n, s[, 
+.i 

?I, = C (m, n, s)nh(m, n, s/. (54) 
i?l,n=--s m,n=-S 

If a given Hamiltonian can be brought into this form, then the time evolution of the 
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non-stationary spin components, 3,) 3,) k = 1, 2, can be stated explicitly and inserted 
into the transformed algebraic expression of any dynamical variable 

It is straightforward to generalize QJ(2) to the integrability condition QJ(N) for an 
N-spin system. The quantum integrability condition QJ(N) is a more or less direct 
translation of the classical criterion CJ( N) as defined in Section 2.1. It circumvents a 
technical difficulty that has plagued previous attempts at translating the classical criteria 
Cl-C3 into quantum mechanics [lo]. The difficulty has been to discriminate between two 
kinds of commuting operators-those that have a bearing on the question of integrability 
and those that do not. 

Granted that all one-spin systems are quantum integrable as we have asserted in 
Section 3, then quantum separability implies quantum integrability. Therefore, any system 
in which the two degrees of freedom are already separated, is quantum integrable. A 
two-spin Hamiltonian, for example, which can be expressed as the sum or as the product of 
two one-spin Hamiltonians, 

(56) 

can be converted into the form (53) by means of a product unitary transformation 
%,(S#lLz(S,). Are quantum integrable systems limited to cases that are obviously quantum 
separable? Do quantum nonintegrable systems exist at all? As a partial and preliminary 
answer to these questions, we present some numerical evidence for the distinctive spectral 
consequences of quantum integrability and nonintegrability. This numerical evidence will 
be inferred, as in Section 3 for one-spin systems, from relations between quantum 
invariants obtained from time averages of dynamical variables. 

4.2. Integrable two-spin system 

The existence of the special unitary transformation %(s^,, S,) which expresses a given 
integrable two-spin Hamiltonian as a function of two a:tioF operatozs a,s in (53) implies 
that the same is true for any other stationary operator Z(Si, S,) with [I, H] = 0: 

(57) 

Quantum invariants can be constructed from time averages of an arbitrary dynamical 
variable (55), and the result must be a function of the two action opertors: 

(58) 

The last equation in (58) cat be zstablished via a systematic process of elimination of the 
non-stationary components Jkx, J,, k = 1, 2, whose time evolution is known for a given 
X(3,,, Tzz). In Section 3.3 we have outlined this process of elimination for a one-spin 
system. 

Our aim here is to show evidence that the expressions 3 = X( ji,, jzr) and 
I^F = W%,, %z) d o exist in integrable two-spin systems. An aciual_calculation of these 
algebraic expressions via the special unitary transformation %(S1, S,) is a much more 
ambitious goal, which is generally out of reach. In classical mechanics our aim is 
tantamount to showing evidence that the phase flow has an intact torus structure, which 
implies that the Hamiltonian can be expressed as a function of two action variables J1, J2. 
The more ambitious goal translates into finding the actual functional dependence of X on 
J1, Jz via the special canonical transformation which eliminates the non-stationary canonical 
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coordinates from the Hamiltonian. That goal is not. within reach either, in most appfica- 
tions. 

In Section 3.5 the existence of the action operator as a special invariant in generic 
one-spin systems has been inferred indirec$y from the properties of other quantum 
invariants that are either given, such as H = H_(S), or can be constructed via time 
average from non-stationary operators, such as IF = (F(g)). The necessary algebraic 
dependence of any quantum invariant on the action operator ?, has been corroborated 
from the manifest algebraic dependence of any two quantum invariants (e.g. fi, fF) and 
from the regular pattern of points (ES, and Z>,n) i”, any I, stbspce (see Fig. 1). 

In a two-spin system, two quantum invariants, I, = (F(S,, S,)) and ZG = (G(S^,, &)), 
may or may not be algebraically dependent, no matter whether the system is quantum 
integrable or not. If the two invariants happen to be algebraically dependent, then the 
points (Z>,A, I&) lie again on a line that is smooth on a scale large compared to the 
average spacing but, unlike in the one-spin system, the spacings between successive points 
will be irregular. 

If the two-spin system is integrable, QJ(2) implies that any invariant can be expressed as 
a function of the two quantum actions. Hence, if we pick three quantum invariants, 
jF = .!+a,(J^,,, jzz), I^d = .%cG(llz, Tzz), fH = 9&j,,, jz,,), that are pairwise algebraically 
independent, then the two action operators imply that there exists an algebraic dependence 
between the three of them. Therefore, the points (Z>,A, Z&,A, ZL,l) plotted in a 3-dimen- 
sional diagram must lie on a surface that is smooth on a scale large compared to the 
average spacing and must form a regular pattern reflecting the characteristic spectral 
properties (54) of the two action operators. 

For a demonstration of quantum integrability in a nontrivial application, we consider the 
two-spin model 

H,& s^,> = 31 + Y)s^&x -I- (1 - Y)s^&,,l (59) 

with an integrable classical counterpart [14]. The three quantum invariants used here 
are the energy 6, and the stationary operators 

derived from time averages of non-stationary operators. 
In Fig. 2(a) we have plotted the eigenvalues Zi,A of the invariant ?, versus the energy 

eigenvalues Ei [16]. The open squares and full circles represent all (common) eigenstates 
with negative energy for spin quantum number s ~35 and specific transformation prop- 
erties under the (discrete) symmetry group of H, [13]. The arrangemznt of Joints 
(Ei, Z”,,J reflects the algebraic independence of the two quantum invariants H, and I,. On 
thz o!her hand, if interpreted as the projection of the points (Ei, I:,+ Zt,n) onto the 
(Hy,_l,)-plane, they illustrate the algebraic dependence of the three quantum invariants 
a,, I,, 1,. 

Not only are the points (Ei, Z~J, Zi,n) located on a surface that is smooth on a large 
scale compared to the average distance between them, but the spacings between neighbour- 
ing points on that surface are themselves smoothly varying along two linearly independent 
directions. The regular pattern is compelling evidence for the existence of two natural 
quantum numbers A = (m, n), reflecting the eigenvalues of two action operators (54) in the 
subspace IT:,=,, . 

Our conclusion, therefore, is that the two-spin system (59) satisfies the quantum 
integrability condition QJ(2). In ref. [14] it was proven that the classical counterpart of (59) 
satisfies the integrability criteria Cl-C3, which is equivalent to the condition CJ(2). 
However, a constructive proof of CJ(2) for this model may be about as challenging as a 
proof of QJ(2). 
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Fig. 2. (a) Quantum invariant r^, = d(&t) versus energy at E >,O for two symmetry classes of states (full circles 
and opens squares) of the integrable quantum two-spin model H with y = 0.2 in the subspace r, with s = 35 
and with h = l/qr(s + 1); (b) 1 c assical 
plane of the same model in the 

invariant-surface E(d( Mzj, d( MS)) projected onto the (E, d( A$)- 
classical limit s + ~1. The inset shows invariant q(M:) versus invariant t/( M,)) 

at energy E = 0.2. The data points represent time averages over individual trajectories for initial conditions 
randomly chosen in phase space (main plot) or on the energy hypersurface (inset) (adapted from ref. [16]). 

The characteristic signatures of quantum integrability in invariants as described in the 
context of Fig. 2(a) are perfectly in line with those of classical integrability expected in the 
corresponding classical invariants. The latter are plotted in Fig. 2(b) in exactly the same 
representation as their quantum counterparts. For a large number of randomly chosen 
initial conditions (S,, S,) in phase space, we have determined the energy E by insertion 
into the (stationary) Hamiltonian H,&, S,), and the invariants y’( Mt), v( MI) via time 
average (9) from the (non-stationary) dynamical variables M, = (SIP + S&2. 

For reasons stated in Section 2.3, classical integrability implies that the points 
(E, 1/W% 1/(M2,)) 1’ ie on a piecewise smooth invariant-surface. A projection of that 
surface onto the (E, v( Mz))-plane is shqwn in Fig. 2(b). The section at E = 0.2 of the 
unprojected surface is a piecewise smooth line as shown in the inset [16]. 

Each point on the invariant-surface of Fig. 2(b) represents an invariant torus in phase 
space, specified by two action coordinates. Likewise, each point on the invariant-web of 
Fig. 2(a) may be said to represent a quantized torus specified by the (discrete) values of 
two action operators in the given I, subspace. In the classical system, the smoothness of 
the invariant-surface guarantees integrability and hence the existence of action coordinates. 
However, knowledge of classical integrability alone does not provide a general recipe for 
an analytic solution of the equations of motion. Likewise, the smoothness and regularity of 
the invariant-web is the hallmark of quantum integrability and hence the existence of action 
operators, but neither does the knowledge of quantum integrability provide a recipe for an 
analytic solution of the equation of motion. In classical mechanics, any analytic solution is 
equivalent to finding the canonical transformation which expresses the Hamiltonian as a 
function of action coordinates, while in quantum mechanics, any analytic solution is 
equivalent to finding the unitary transformation which expresses the Hamiltonian as a 
function of action operators. 
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4.3. Nonintegrable two-spin system 

We have yet to demonstrate that the quantum nonintegrability as implied by the 
condition QJ(2) is associated with distinctive spectral properties. The two-spin Hamilto- 
nian, 

has exactly the same symmetries as H,,(&, s^,) defined in (59) [13], but its classical 
counterpart is known to be chaotic for a! # 0, f 1 [ 141. The impact of nonintegrability on 
both the quantum invariant-web and the classical invariant-surface is conspicuously 
displayed in Fig. 3. For the classical case we pick three invariants E, 1/( Mz), v( M:) by 
the same rule as in Section 4.2, but now applied to the energy function H,(S1, S,). The 
lack of a fully intact torus structure in phase space for any nonintegrable model destroys 
the smoothness of the invariant-surface formed by the points (E, v( M:), v( Mz)) as 
explained in Section 2.3. 

Figure 3(b) shows the projection of the strange invariant-surface onto the (E, I/ (M:))- 
plane, as generated from a large number of randomly chosen initial phase points. The 
section at E = 0.2 of the unprojected object is plotted in the inset. The pieces (a)-(c) of 
the invariant-surface represent three different types of tori. They have been identified and 
visualized on a PoincarC map in a previous study [16]. The large interruption separating the 
fragments marked (a) and (b) is due to a band of chaos along a separatrix between regions 
with an abundance of intact tori. A third major fragment of the invariant-surface, marked 
(c), has its origin in island chains of tori populating the large chaotic band. For initial 
conditions within that chaotic region, the points (d( Mz), v( Mt)) tend to cluster at (d) in 
the gap. Strictly speaking, any initial point within that region should yield the same time 

QUANTUM CLASSICAL 

E A E 

Fig. 3. (a) Quantum invariant r^, = v( k:) versus energy at E > 0 for the same two symmetry classes of states as 
in Fig. 2(a) but for the nonintegrable quantum two-spin modei A, with ty = 0.7 in the subspace r, with s = 90 
and with h = l/vs(s + 1). The inset shows the same quantities for states within a window of p ,size, and for 
spin quantum number s = 45; (b) remnant of the classical invariant-surface E(d( Mz), d( M,)) projected onto 
the (E, d(M$)-pl ane 
invariant v( M,)) 

of the same model in the classical limit s + m. The inset shows invariant q( M:) versus 
at energy E = 0.2. The data points represent time averages over individual trajectories for 

initial conditions randomly chosen in phase space (main plot) or on the energy hypersurface (inset) (adapted from 
ref. [16]). 
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average. Because of slow convergence, the numerical analysis yields a cluster of points 
instead. The characteristic pattern is that fragments of the strange invariant-surface are 
interrupted by gaps, and the gaps are populated by isolated points and smaller fragments of 
the strange surface. Upon magnification, each fragment reveals its own composition of 
points and yet smaller fragments ad infinitum. 

The signature of quantum nonintegrability in this representation is no less dramatic than 
that of classical nonintegrability as can be observed in Fig. 3(a). What has been a perfect 
invariant-web in the integrable case (Fig. 2(a)) now has its fabric torn into pieces. 
Comparison between the two sides of Fig. 3 reveals a remarkable correspondence between 
the irregularities in the invariant-web and the fragmentation of the invariant-surface. For 
example, the two disconnected regions (a) and (b) of the intact web in the inset to 
Fig. 3(a) correspond to two regions with abundant intact tori on opposite sides of a 
(choatic) separatrix, and the region (c) of the intact web corresponds to secondary KAM 
tori within that chaotic ‘band. This correspondence between quantum nonintegrability 
effects and well-understood phenomena of classical Hamiltonian chaos has been analysed in 
greater detail in a previous study [13,16]. All the available evidence for the two-spin model 
(61) strongly indicates that none of the quantum invariants is a function of two action 
operators. 

Two quantum states which are physically close are also nearby on the invariant-web. 
When the energies of two states happen to be nearly degenerate, the consequences depend 
sensitively on the integrability status of the Hamiltonian. In an integrable model, such as 
fi,, the two nearly degenerate states differ in at least one of the two quantum numbers m, 
IZ pertaining to the quantum actions (54). Hence the positions of the two states in the web 
are not at all affected by their near degeneracy. The fabric stays intact. 

In a nonintegrable model, such as H,, the natural quantum numbers m, n do no longer 
exist, and two nearly degenerate states which are also sufficiently close on the web undergo 
a resonance. The resonance is a form of hybridization, .which makes them physically even 
more alike. The main effects of the resonance as observable in the web are that the two 
states move closer vertically by a considerable amount and further apart horizontally by a 
small amount (level repulsion). The fabric is tom as a result of this effect. The degree of 
near degeneracy which is needed to trigger an observable resonance is higher in regions of 
the invariant-web that correspond to regions on the invariant-surface with many intact tori 
compared to the degree of near degeneracy needed in those parts of the web that 
correspond to widespread chaos. This type of resonance and their impact on the level 
statistics have been investigated more systematically in a recent study of the spin-boson 
model [ 171. 

The numerical evidence for the nonintegrability of a classical two-spin system as derived, 
for example, from a Poincare map or a strange invariant-surface, is virtually unmistakable 
if carried out with sufficient circumspection, even though it is not rigorous. Formal proofs 
of nonintegrability are scarce, essentially limited to systems that are as non-generic as 
integrable ones are. We maintain that the numerical evidence for quantum nonintegrability 
which can be inferred from studies of quantum invariants is equally compelling if carried 
out systematically and with due care. Formal proofs of quantum nonintegrability in the 
sense of QJ(2), if they can be established at all, will probably be limited to a class of highly 
non-generic systems as in the classical case. 

5. OUTLOOK 

In this paper we have proposed a quantum integrability condition for N-spin systems 
that promises to be meaningful insofar as it claims to discriminate between two classes of 
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systems whose spectral properties, as exemplified in the invariant-web, differ dramatically. 
We have shown or cited compelling numerical evidence that none of the two classes is 
empty. Even though there are strong formal similarities between the quantum integrability 
condition proposed here and the well-established classical integrability condition, the 
former does not lean on the latter by way of the correspondence principle. In fact, our 
strategy has been to avoid a direct translation of the classical integrability criterion in its 
standard formulation, Cl-C3, in order to eliminate the technical difficulties that have 
haunted previous attempts. The price we have to pay for closing those loopholes is that the 
new criterion, QJ(N), or its classical counterpart, CJ(N), is considerably harder to verify 
in most applications. The evidence strongly suggests that the observed phenomena of 
quantum chaos are indeed manifestations of quantum nonintegrability , not merely quantum 
manifestations of classical nonintegrability . 

The quantum mechanical action operator 3 was introduced in the early days of quantum 
mechanics as a natural consequence of Bohr’s quantization rule [18-201, $p dq = nh, 
n = 1, 2, . . . . Problems with the quantum action do not arise unless we insist on 
interpreting it as a quantized (stationary) canonical momentum, which calls for a conjugate 
angle operator. It appears that there is no consensus about how to define such an operator 
in a satisfactory way [21-241. However, in our approach the action operator is defined 
solely on the basis of its spectral properties, and the existence of an angle operator is not 
required. 

However convincing the numerical evidence in support of the meaningfulness and 
usefulness of the proposed quantum integrability condition may be, it can only serve as a 
first step in the process of establishing this idea on firm ground. The logical next step, 
already alluded to in Section 3.4, would be to test this proposition in the context of a 
perturbation expansion. A continuation of this study in that direction is currently in 
progress. The prospects for significant new results may be judged from the following 
concluding remarks. 

In classical mechanics, a generic perturbation of an analytically solved system with one 
degree of freedom, Y&(J), introduces a dependence on the angle coordinate 8 into the 
Hamiltonian. The perturbative transformation to new action-angle variables shifts the angle 
dependence systematically to higher orders in the expansion parameter. In this process, a 
series of generating functions for successive canonical transformations is determined. Each 
generating function contains a factor equal to the inverse of a multiple nw of the frequency 
w = d%$/d./ of the unperturbed system. This process is known to converge under some 
restrictions. 

The situation is drastically different in systems with two degrees of freedom. There exist 
two fundamental frequencies in the unperturbed system, X,,(J,, J2), namely w1 = %9$,/N,, 
o2 = ZY,-,/~J,. The basic procedure of the perturbation series remains unchanged: calculate 
a sequence of generators of infinitesimal canonical transformations which remove the 
dependence on the angle coordinates 8,, 19, from the perturbed Hamiltonian order by 
order. The integrals required to determine the generators are now found to contain factors 
equal to the inverse nlml + n2w2 with integer coefficients. Any such denominator can take 
on arbitrarily small values, and thus has the potential for destroying the convergence of the 
perturbation series. This situation is known in classical mechanics as the problem of small 
denominators. The KAM theorem provides information about which tori survive a specific 
perturbation [25]. 

Van Vleck’s formulation of quantum mechanical perturbation theory [26, 271 which is 
akin to the Lie transform method [28], seems to be suitable for the implementation of the 
diagonalizing unitary transformation % for a one-spin system. Here the strategy is to 
systematically remove the (off-diagonal) creation and annihilation operators (or spin ladder 
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operators) from the Hamiltonian in increasing orders. In this process the generators of 
infinitesimal unitary transformations contain again factors equal to the inverse of multiples 
of the frequencies of the unperturbed system. 

In quantum systems with two or more degrees of freedom, however, the Van Vleck 
perturbation expansion may very well be subject to the problem of small denominators, 
possibly in a modified form. In leading order, the generators are indeed found to contain 
factors equal to the inverse of linear combinations of the unperturbed frequencies with 
integer coefficients. The associated problems of convergence are known to occur in various 
perturbational approaches, including transformations to the quantum mechanical Birkhoff- 
Gustavson normal form [29], algebraic quantization [30], and quasi-degenerate perturbation 
theory [26, 271. From the vantage point of a quantum mechanical notion of integrability, 
the lack of convergence of the perturbational schemes now appears in a new light. It may 
open an avenue to test the criterion QJ(N) of quantum integrability for a given system on 
a rigorous basis. 
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