PHYSICAL REVIEW A VOLUME 53, NUMBER 4 APRIL 1996

Landscape of uncertainty in Hilbert space for one-particle states
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The functional of uncertainty [k/] assigns to each sta¢) the product of the variances of the momentum
and position operators. Its first and second variations are investigated. Each stationary point is located on one
of a countable set of three-dimensional manifolds in Hilbert space. For a harmonic oscillator with given mass
and frequency the extremals are identified as displaced squeezed energy eigenstates. The neighborhood of the
stationary states is found to have the structure of a saddle, thus completing the picture of the landscape of
uncertainty in Hilbert space. This result follows from the diagonalization of the second variation of the
uncertainty functional, which is not straightforward sinl{e/] depends nonlinearly on the stdig).

PACS numbsd(s): 03.65.Bz, 42.50.Dv

INTRODUCTION PRELIMINARIES

The operators of position and momentumand p, re-
There are various ways to define coherent states for apectively, obey the commutation relation
harmonic oscillatof1]. The annihilation operata is a lin-
ear combination of position and momentum operators, and [p,q]= é 1)
all its eigenstates are coherent states. Also, they can be ob- I

tained by appropriately displacing in phase space the vacuum . . . .
or ground staté0), defined by the propertg|0)=0. Finally, and the uncertainty functiondl[ 4] associated with the al-

. 7 . 1)i fi h f th i f th
the construction of quantum states, which are localized a ebra(1) is defined as the product of the variances of these

. . Co ; eperators

much as possible about a given point in the classical phas
space, i.e., the consideration of statesniiimal uncertainty, LLY1=ALPIAL W= NPl —1). 2)
leads to coherent states. _ - o

In the following, however, the focus will be on states with The varianced, of an operator in a state|y) is given by
stationary, not minimal uncertainty. The appropriate tool to L ag Al 2N 12
work with [2] is a functional[ # ], which assigns a value of AL y]= oIty = (oIt )™, 3
uncertainty[3] to each statéy) in the one-particle Hilbert 54 the restriction that the state be normalized,
space.7Z. Such a functional usually is introduced without
reference to a Hamiltonian operator: only the operapoasd (Yly)=1, 4
g—constituting the Heisenberg algebra—and the spate ) o
are required for its definition. For the Heisenberg algebra oné taken into account through the term containing the La-
finds that the states that render the uncertainty stationary afangian multiplier\. Contrary to the quantum-mechanical

eigenstates of an appropriate harmonic oscillator. The varigunctional used to derive Schiinger's equation from a

tional approach given if2] is applicable to any pair of non- yariational principlg 6], the one considered hererienlinear
commuting operators, not only position and momentum. Thid" tge St%td ¢t>h h f the functiondl wh .
feature has been exploited, for example[4i to introduce onsider the change of the functiony when moving

o N . . away from the statd) along direction|e)=g|e), with
intelligent” spin states that turn the uncertainty relation for <1 and(s|s)=1. It is natural to requirée|#)=0, so that

spin operators into an equality. Similar relations for number|£> becomes an element of the orthocomplementysf in
and phase operators have been studied in this $RijB}. In 7, denoted by7,.

extracied ffom the uncerianty nctional. s behavior near EXPANANG the functionab[y-+ 137+ 3.+ 5%, up
. . Y . ' to terms quadratic i, one obtains

the stationary states will be determined.
In order to establish notation, first the stationary points of &2

the uncertainty functional are derived in a representation- Whlgte]=d[¢]+eD h[¥]+ 7D§J>\[¢], )

independent way from the requirement that the first variation

of the functionalJ[ ] vanish. In the present approach the where the operatdD, contains functional derivatives

result is naturally expressed in terms of squeezed states, the

concept of which was put forward onlgfter [2] was pub- é

lished. Then, the quadratic approximation of the functional W

J[ ] in Hilbert space is calculated and diagonalized. Based

on this result the topography of thendscape of uncertainty In a first step the extrem@r stationary stateq| )} of the

defined over Hilbert space” will be discussed. functional J, will be determined by requiring the second

D= (6]t <] ®
e o)
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term in Eq.(5) to vanish for arbitrarfunrestrictegl variation

2085

where the operator for phase-space translations is given by

le). In a second step, the behavior of the functional in the

neighborhood of each stationary statg) is investigated,
which amounts to diagonalizing a quadratic form associated

with the third term in the expansia).

FIRST VARIATION

Turning to first order, the equation for the extrema is

found to be
D.I\[¢]=0=(e[{’ A [¢¥]Aq[¢]
+ A IA Y]\ + ce, ()

where the “left” derivative of the variancd, is given by

oA _
Syl 25,41

In order that Eq.(7) hold for arbitrary variationge|, one
must have

e 2(P?-2(p)P) ) +e* (@ —2A@a)| ) =2\y),  (9)

where

"Afyl= (F2=2(ylFl9)D)l9). (8)

1
=2

y=3In (10

Ap[tﬂ])
Adlyl)”

with both A, andA, assumed to be different from zef@].
Here and in the following all expectation valu¢s) are

taken in the statgy). A second equation results from vary-
ing |e) instead of(e|, which, however, turns out to be the

adjoint of Eq.(9).
It is convenient to rescale the operatgrsind p,

5 —a73—g At
py_e ’Yp_Sy pSyv
4,=e""4=s,8s, (1)

by using the unitary dilation or squeezing operd®j:

12

i -
Sy=e><p(ﬁy(pq+qp> :

The value of the multiplien in the state]¢) follows from
Eqg. (9) and the constrainf4)

A= P2 D -2(B)2 @) (19
Plugging this expression back into E@), one obtains
(By=(B )+ @y~ (@) )

By B, @)N ), (14

suggesting use of the shifted operators

Q=§,—(8,)=T,a,T., (15)

~ i . R
TQZEX[{ - %(é:'ypy_ nyqy) ) (16)

and the complex number denotes a point in phase space:

1 o 1 )
azE((%}“(PQ)EE(QHWQ- (17)

Note thaﬁa is defined in terms of the rescaled operators
p, andq,; the expression in terms of the original operators
follows from the relatioriT ,=S,T,S f/

Rewriting Eq.(14) leads to

1., - 1 .. 4
F(PHQI = S(P Q). (19

Consequently, a state)) is a stationary point of the func-
tional J\[¢] if it is an eigenstate of the operator
Ho=(P%+Q?)/2, which is formally identical to the Hamil-
tonian of a harmonic oscillator. The operator
ho=(p?+@%)/2 is unitarily equivalent taH, according to
(11) and(15). If the normalized eigenstates lo§ are denoted
by [n), n=0,1,2,..., one carexpress the solutions of Eq.
(18) in the form
In;y,@)=T,S,In), n=0,12,... . (19

These states have also been introduced in Pgéfin a dif-
ferent context.

The value of the uncertainty in the statpsy,a) in-
creases linearly with, just as does the energy of a harmonic
oscillatorHy:

hnl=h(n+ 2), (20

as follows from
Aln]=AZn]=h(n+ H=A%n). (22)

Consequently, the set of all states with stationary uncertainty
can be labeled by one discrete index0,1,2,. . ., andthree
continuous(rea) parameters: the real number R, corre-
sponding to a scaling of the position and momentum axis,
and the complex number, fixing one point in the complex
plane.

For eachne N, there is a three-dimensional manifold
., of states in Hilbert space” with constant(stationary
uncertainty. Two manifolds#, and.#,, do not have any
point in common ifn#n’. In particular, forn=0 one ob-
tains the set#, of standard coherent statEH0] that mini-
mizethe uncertainty. The manifolds#Z, do not provide a
foliation of Hilbert space into disjoint regions since their
dimension is negligible compared to the dimensionf
Qualitatively, this situation can be visualized in a low-
dimensional example. Imagine three orthonormal unit vec-
tors in R and attach to each of their tips a straight line. If
these lines do not intersect they correspond to the manifolds
My .
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SECOND VARIATION Now one can determine the orthonormal eigenvec&grs

Having found the stationary points of the functional, their@nd eigenvaluesy, k=1,2,..., of thematrix J. Translat-
neighborhoods will be investigated now by studying the quaing the vectorss, of T,, into elementé,sk> of 7, oneis

dratic approximation o8,[ ¢/] at|n;y,a). Consider the third |ed to a set of directions in Hilbert spac#,
term in the expansion(5), evaluated at the state

|¢0>:|n;71a>: |wk>~|¢0>+8|8k> (28)
2 2
ZJA[#/,O]— 1(2<8| hlv] le)+ 0 J”[‘f]}8>|8> with associated eigenvaludg. The eigendirectiong| )}
&l o) oly) do not have tdand, in general, will ngtbe orthogonal since
823,[v] they have been derived fromrenlinearfunctional, J,[ #].
+<£|<£|w] — (22) It remains to show that different vectogg ande, do not

define statesy,) and|y;) that belong to thesameray in
Due to the nonlinearity of,[ ¢,], its diagonalization is not Hilbert space”. Suppose that the normalized statgg)
straightforward; therefore a general discussion of the secon@nd |#) belonged to the same ray. Then, the modulus of
variation seems appropriate before calculating it explicitly. their scalar product

1
| (%eneral structure | - | |<¢k|¢|>|2:W|1+82<8k|8|>|2:11 (29)
The second variatioa?J, of the functional in Eq(22) is

defined onrays of Hilbert space.7Z, as it must be: it is ) .
invariant under the transformation with N= 1+82, would necessanly be equal to 1. HOWeVer,

usingey-£,=0 for k=1 in Eq. (27) one finds that

|po+e)—eP|yo+e), (23
that is, under the simultaneous transformations (ele)=igy-Se; (30
[ hoy—€P| o), |e)—ePle). (24)  as a result, Eq(29) only holds if

However, it is not defined on the rays of the spa%f@,o but
on its vectors replacing only|e)—e'?|e) modifies the last [(eledP=1+ e e#0. (31
two terms of Eq(22) and,a fortiori, the value of uncertainty.
The space” g AN be parametrized by the expansion coef-
ficients of its elementge) in an orthonormal basis of
Hyy Axn)n=12,...}, say, all of which fulfil
(ol xn)=0; one obtains

This is a contradiction since the product of two normalized
elements of 7, cannot exceed 1[(eyle)|<1. Conse-

quently, the direction$,) associated with dif“ferentfi< in-
deed define different rays in Hilbert space.

|8>:; enlxn), encC. (29 Explicit calculation

The explicit evaluation 062J, as given in Eq(22) sim-
plifies considerably if the neighborhood of the state
Ing)=|ny;0,0) is investigated, since the expectation values
. of position and momentum vanish; quantitatively the results
parametergen,ep }- will be the same for arbitrary state#y;y,«). From a

Plugging the expansion dk) into Eq. (22), one finds  ggraightforward, lengthy calculation one obtains
from decomposmg the coefficients into real and imaginary

parts,e,=¢, r+ie,, that one can write 1. n

" " ED?IA[n0]=ﬁ<s|§(p2+q2)|s)—A2(no)<s|s)
2

&€

52JA[¢//0+e]=75~J-§, (26)

For a fixed phase convention of the basis each ray
| 4o+ €) determines uniquely one set of valdes,} andvice
versa The second variationJ, becomes a function of the

1 . N
— S{(elplngy+ c.c)?+((elalng) + c.c)%
whereJ is a quadratic, real symmetric matrix acting on the

elements of the spacél,, spanned by the vectors 1 ap A
-, Paceuy SP Y —W(<8|(p2—q2)|”o>+ cc) (32
e=(ey,€1,€5, ...). Thescalar product of two elements of (No)

Jé],,o can be expressed as
here, the multiplier has been given the value it takes at the

(ul v>=/l-(E+iS)- ;, @2 sta’gionary state under consideration, as is familiar from iso-
perimetric problem$11]: )\||n0>:A2(no)Eh(n0+ 1/2).
whereE is the unit matrix inT,, , and the symplectic matrix Equation(32) suggests using the eigensta{¢s),ny#n
S consists of (%2) blocks along the diagonal, each of €N} of the operatohy=3(p®+G?) asy basis for the space
which is a standard symplectic matrix. .%/no:
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For convenience the eight nontrivial eigenvalues of the

le)= 20 gqln)  (N#np). (33)  matrix J are exhibited in units of,
=
Th ixJ will h ff-dl l el ly if no+no+1
e matrixJ will have nonzero off- lagonal e ements only i 03,—2,+2,— (2Ng+ 1)y, — ———, (40)
n=ng*t1ny=2. Consequently, the eigenvaluds of the 2ngt+1
matrix J for all the other values af can be read off from the . . o L
combination of the first two terms of E82): four of which are negativéhe multiplicities are indicated by
' indices.
Jo=f(n—ng), |[n—ng|>2, (34 In fact, the plane tangent to the surface of constant uncer-

tainty at the point|#), the three-dimensional manifold

each of the values,, occurring twice. This result is intu- 7, , is spanned by a linear combination of the Hilbert
itively plausible: if one starts from the stafte,) and rotates spage directions given in Eq&38) and(39), i.e.
it slightly towards another statg’<(no—2)), the uncer- T
tainty decreases, whereas adding a component of a state |y (.7, )) Ino) + ¢le (no)>+77|8q(”0)>+7’|8s(no)>,
[n">(ng+ 2)) having itself a larger uncertainty than), (41)
entails an increase of the uncertainty. B

There remains to investigate aX®) matrix J with off-  with real coefficients¢, ,y. One can directly check that the
diagonal elements resulting from the third and fourth contri-right-hand side of Eq(32) vanishes for these states.
butions in(32), with entries fomy—2<n<ngy+2; the cases Finally, for ng=0,1, these results are modified slightly. In
no=0,1 have to be considered separately. This matrix departicular, for|ny)=|0), the matrixJ hasno negative eigen-
composes into two (%4) blocks since the third term has value in agreement with the fact that the coherent states have
matrix elements only for states with quantum numbers dif-minimal uncertainty.
fering by 1 fromngy (case ), and the last term requires a

difference of 2 between the initial and final quantum number CONCLUSIONS
(case ). i .
Case I: Expandingle)=¢, 1N+ 1)+e, _1|no—1) In summary, first- and second-order variations of the func-
0 — 1

tional of uncertaintyd[ ] have been investigated in detail. It
is expected that the technique developed here to study the
h(sn0+1+s};§+1) (Sr’é 1+8:§ ). (35)  second variation will be of interest in quantum optics where
uncertainty relations for number and phase are discussed
. n [12,13.
=y Vno+1+ . . . .

U_smg <n°|q|8>_ hlz(g”g“ Mo+ 1 8”0_“\/”—0) ar_1d a The eigenstates of any given harmonic oscillator are guar-

similar expression fo(no|p|z), one obtains a contribution anteed to be states with stationary uncertainty since it is ex-

that can be written as

actly this set of states that is obtained if one requires the
first-order variation of)[ 4] to vanish. More precisely, there
is a countable set of three-dimensional manifolds,, of

L~ . ~ states such that the value of the uncertainty remains un-
and the matrbM decomposes into two (22) blocksM changed under arbitrary variations. Each point on these

andM”, coupling the real and imaginary components among,5nifolds. _/, corresponds to an eigenstdtg), say, of a
themselves only, respectively. Explicitly, one has harmonic oscillator with a definitely chosen scale of position

the first two terms are found to contribute

—#he-M-g, (36)

—— and momentum and prescribed expectation values of these
-~ Mo (No+1) quantities.
M*= Vng(ng+1) no+1 ' (37 Physically speaking, “kinematic” considerations thus

single out a “dynamical” object, namely the number opera-

~ . ~ . tor (and all its displaced rescaled versiprg the algebra
ahd M™ is identical toM excepf[ for the sign of th_e~oﬁ- spanned by andq. This observation provides another jus-
diagonal elements. The determinant of both matridds, ification of the fact that the Hamiltonian of the harmonic

andM", vanishes: the associated two zero eigenvalues cogscillator plays a particular role with respect to the Heisen-
respond to shifts in position and momentum leaving the unperg algebra.

certainty invariant: According to[10] it is possible to base completeness re-
A A lations on any(nonzer9 state| ) e.7, since the family of
|£p(10))~1PINo),  |eq(No))~id[no). (38) operatorsT,, aeC, acts irreducibly in Hilbert space?.

hus, one arrives at a countable number of resolutions of

The remaining two nonzero eigenvalues are both given b
J g g nity based on the states given in Efj9):

—27%i(ng+1/2) but no immediate physical interpretation of
the associated eigendirections has been found. 1
~Case II: From anglogous reasoning one_obtains fpur more _f daln;y,a)n;y,a|=1, n=012,..., (42

eigenvalues stemming from the last term in E8R), given mJc

by +2#,—#(n+ne+1)/(2n,+1), and one zero eigen- _ _ _

Va|ue associated W|th the Squeezing transformation: Usua”y written forn=0 Only. These resolutions of Un|ty for

n=1,2,..., occupy a specific position among all possible

les(Ng))~i(Pg+ap)|ng). (390  ones since they involve states of stationary uncertainty only.
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When collecting the results stemming from diagonalizinguncertainty—except for the three directions defined by the
the second variation of] ] about its stationary points, the manifold./ZnO along which the uncertainty remains constant.
following picture of the landscape of uncertainty in Hilbert
space.7Z associated with the Heisenberg algebra emerges.
The neighborhood of a state such|ag) is found to be an
infinite-dimensional saddle. There arg2(nyg—1)+4]
=2(np+1) directions in the space” along which the un- Discussions with Laro Schatzer, Rolf Schilling, and Harry
certainty decreasdff ny=2). With respect to the remaining Thomas are gratefully acknowledged. This work was sup-
variations the point|ny) represents a minimum of the ported by the Swiss National Science Foundation.
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