PHYSICAL REVIEW A VOLUME 53, NUMBER 5 MAY 1996

Small denominators, frequency operators, and Lie transforms
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Based on the previously proposed notions of action operators and of quantum integréeidjtiency
operatorsare introduced in a fully quantum-mechanical setting. They are conceptually useful because another
formulation can be given to unitary perturbation theory. When worked out for quantum spin systems, this
variant is found to be formally equivalent to canonical perturbation theory applied to nearly integrable systems
consisting of classical spins. In particular, it becomes possible to locate the quantum-mechanical operator-
valued equivalent of thisequency denominatoithat may cause divergence of the classical perturbation series.
The results that are established here link the concept of quantum-mechanical integrability to a technical
guestion, namely, the behavior of specific perturbation series.

PACS numbegps): 03.65.Bz, 03.65.Fd, 03.65.Ca

I. INTRODUCTION guency operatordeing defined for integrable quantum sys-
tems, it will become obvious that quantum-mechanical
In classical mechanics, the distinction between integrablécounterparts” of the classicalfrequency denominators
and nonintegrable Hamiltonian systems is clear cut. On théhow up in this perturbational treatment. The results of the
one hand, for a system to be integrable, the existend¢ of Present work aréormal, i.e., questions of convergence have
smooth, involutive, and functionally independent constantd!0t yet been dealt with. Fortunately, the structural similarity
of the motion is required. Then, itsN2dimensional phase _of th_e results_ to classmgl mechanics allows one to already
space is guaranteed to be foliated iNedimensional tori, Mmagine possible scenarios.

and the resulting almost periodic motion of the system is t‘l’\(}/odgeneraltr?marlfrsharg In ?rdet_r hefore turnl_ng to ttr;e
very simple. On the other hand, a nonintegrable system mage.al ed presentation. The investigations are carried out for
. . . . pin systems but the generalization of the results to particle

explore a (N —1)-dimensional region of phase space in the : . X e
course of time iflexcept for the energythere are no invari- systems is not expe_cted to provide substantl_al dlfflculu_es.
Then, it should be pointed out that no part of this work relies

ants that restrict the motion to lower-dimensional manlfold_s.On semiclassical approximations.

Accordingly, the time evolution of a nonintegrable system is In brief, the paper is organized as follows. In Sec. I, the

extremely complicate@l]. _ notion of quantum integrability used here is recapitulated.

Much is known about the properties of quantum systems-yequency operators are introduced in Sec. Ill, and they are
obtained by quantizing classically integrable and noninteyecognized to naturally generalize the classical frequencies
grable systems, respectivelg]. Nevertheless, no rigorously known from integrable systems. The main part of the paper,
established and generally accepted features have emergsgc. IV, consists of formulating the theory of Lie transforms
that would allow one to unambiguously distinguish inte-for nearly quantum integrable systems. Applications to sys-
grable and nonintegrable quantum systems in analogy ttems with one and two degrees of freedom follow in Sec. V.
classical mechanics. While the concept of integrability is im-Finally, the results are summarized in Sec. VI, and connec-
portant in classical mechani¢®r example, the KAM theo- tions to other work are discussed.
rem deals with the influence of a perturbationiotegrable
systemg, it appears, for the time being, to be much less || A GEBRAIC VIEW OF QUANTUM INTEGRABILITY
fertile in quantum mechanics.

A new concept ofquantum integrabilityhas been pro- It will be useful to summarize the algebraic view of quan-
posed in[3] that is based on guantum-mechanieation tum integrability in order to motivate the investigations of
operatorswithout any reference to classical mechanics. In-the subsequent chapters. Only the essential points will be
corporating criticism of earlier concepts of quantum integra-mentioned; details have been elaborated on in F33f.
bility [4], this notion relies only on thalgebraicstructure of Let us outline the concept of integrability with a view on
a quantum system provided by the commutation relations othe algebraic structure of classical mechanics. For a system
the basic operators. It is the objective of the present paper tof N degrees of freedom there are canonical variables
explore the features of nearly quantum integrable systems: @=(d,, . ...,qn) andp=(p4, .. .,Pn). They provide a ba-
perturbation is added to a system that qualifies as quantusis for the algebra of(smooth) phase-space functions
integrable in the above sense, and a method is given to su€{p,q) since each such function can be approximated arbi-
cessively remove the disturbance. By using the quantum adrarily well by summing products gb,,,q, with appropriate
tions in a framework of Lie transforms it becomes possiblecoefficients. They can be multiplied by real coefficients, and
to lay open strong formal analogies to the correspondingne can add them; any two phase-space functions define a
classical perturbational approach. In particular, wite-  third one via the Poisson bracket, turning the set of all phase-
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space functions into a Lie algebra. This framework is the QJ: A given N-spin HamiltonianA=H(S,, ....,Sy) is
same for all classical mechanical systems. A particulaguantum integrabléf there exists a unitary transformation
physical system is described by selecting one specific phasgz(‘sl, o ,“3\‘) that converts the spin operator§ ’
space function and by calling it the Hamiltonian. Its role is to; =1,... N, into new spin operators,

generate the time evolution of the system by defining a flow

in phase space. Integrability comes in as follows. Typically, 9,=f/2 éj Q/f:g/j(éb .S, i=1...N,

the Hamiltonian function will depend on all components of

momentump and coordinatey. However, it is possible to such that the Hamiltonian turns into a functiondfjuantum
perform a canonical change of basig,§)—(p’',q'), as a actionsJ;=.7};:

result of which the Hamiltonian will turn into a different

function if expressed in terms of the primed variables. It may H(S - S0 =731, ... dn). (©))
happen that such a change of basis leads to a particular form ~ )
of the new Hamiltonian function, namely, that it depends onhe spectra of the operator§;,j=1,... N, in each

only half of the number of variablesy. One has found a (2s+1)-dimensional representatidfy consist of uniformly
particularly convenient basis of the algebra because it besPaced levels:

comes obvious that the flow in phase space decomposes into +s

N decoupled flows. A system with suchtavial flow is Is_ . .
oup A sy Jchiavial 1o st—z .oomp, osmA o my, L],

called integrable As is well known, this situation is very m=-s

rare: typically, no decoupling basis exists, and the phase-
space flow is extremely intricate. j=1,... N. (4)
It is straightforward to rephrase this line of thought for

quantum-mechanical systems. Now the basis of the algebra !f the transformatior(3) has been achieved, the eigenval-
of operators is given by p=(p;,...py) and Ues of the Hamiltonian can be read off immediately, and its

q=(4,, dn), and each operator in the algebra can pefigenfunctions are known as well. In spitg of the refererjce to
represented by an appropriate sum of productof, . _the r_epresentgtloﬁs, Eq.(4)is an algebraic statement since
The commutator of two operators defines a third one, andf 1S required to hold in all representations,
Jacobi’s identity holds in general: one is dealing with a LieS=1/2,1,3/2, ... As will become clear in Sec. IV, condition
algebra of operators. If one particular operator of the algebri3) defines a program that can be carried out in strong anal-
is chosen as Hamiltonian, a quantum system and its tim@9Y tO classical mechanics.

evolution are determined. A generic Hamiltonian operator

will depend on all components @ andq. In special cases, lIl. FREQUENCY OPERATORS

however, aunitary transformation exists that allows one to
express the Hamiltonian as a function of only half of the
number of basic operatordl. By analogy, the system will
then be calledjuantum integrablePart of the purpose of the
present work is to show that, in an appropriate sense, th
corresponding quantum-mechanical flowtiiwial, and that
this situation is not generic.

Frequency operators, to be defined for quantum integrable
systems in a straightforward way, are introduced in this sec-
tion. The main objective of Refl3] has been to provide
numerical and analytical support for the existence of
ﬁuantum-mechanical action operators, and to use them as
building blocks for quantum-mechanical integrability. These
. arguments will not be repeated here; instead, an independent
It should be noted that in the context of quantum meChanfapproach will be presented that illustrates the idea of action

ics the term “alget_)rau,:'” will be understood as “independent operators from a different perspective. To arrive at the defi-
of the representation.” The idea is to only use relations thahition of frequency operators will then be a small step.

have a counterpart in the classical algebra. For example, 5 4 starter, a classical spin system with one degree of

W't.h'n each f|n|te-d|men5|ongl matrix representatlon of thef eedom is considered. Its Hamiltonian is assumed to depend
spin algebra there exist relations between different powers oén a single spin component onlg,, say:

spin matrices that are specific to the representation at hand.
Such relations do not exist in the classical algebra and, thus, H=H(S,). (5)
they should not be used. An instructive discussion of the
common algebraic structure underlying classical and quanfhe complex quantities
tum mechanics has been given by Fgok i

For convenience, the definition of quantum integrability S.=Sxi1Sy (6)
for spin systems proposed (18] will be reproduced. The
description of a quantum spin system wiNhdegrees of free-
dom is based oM copies of the one-spin commutation re-
lations,

are classical counterparts of ladder operators for a quantum
spin. In these variables the Poisson brackets for a single spin
read

{Sbsi}:iistv {S+vsf}:2i821 (7)

as obtained from the replacement ]——iA{, } in (1).
) The equations of motion are given by

[Sja.Sypl=ih8 2 eapySyy 1i'=12,.. N,
y=Xyz

Here is the criterion for integrability of quantum spin sys- d_S:{H sl ®)
tems, denoted bQJ. dt R
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and for the Hamiltoniari5) they read explicitly and the equation foB_=(S,)" is the adjoint of the last
equation,
e —IH.S4=0 ©
gt —(H.84=0, dAS,_iﬁAS_- S)S 19
ds ar ~ptHS-1= eSS 19
o ={H.S.)=iS, a(S). 10

The self-adjoint operatoi= w(S,) depends on the com-

. . . . t of th i t ly; licitly, h
the equation of motion fo6_ being complex conjugate to ponent of the spin operatd only; explicitly, one has

that of S,. When expressing the spin as R 1 . ~

S=(\/S?— p3cosp,\/S?— pZsing,p,) in terms of canonical o(S)= 7 (H(S+A)—H(S)), (20)
coordinates with{p,,e}=1, it becomes obvious that the

third components,, plays the role of an action: it is both a thus providing the definition of a quantum-mechanitrat
canonical variable and a constant of the motion. The phasgency operatorlts form is suggested by requiring that the
space functionsS.. are proportional to the exponentiated operator§+ stand on the left of everything else in EA8).
angle variable. In view of later developments it is useful to1ha derivation of(20) hinges on the fact that the Hamilton

stick with the periodic functions of times. (t), instead of - .
using the canonical variable. The frequency operator depends on the operafonly because iil6) one
can then use the relation
dH(S)
ds,
is completely determined by the Hamiltonian and thus de-

pends on the actio, only. The time evolution of integer
powersk=2,3, ... ofS,(t) is obtained from(10) as

(12) [(5,),851=55 (f(5,+kh)—1(S))
=S [exp(kfid,) —11£(S,), (22)

w(S;)=

whered, denotes théformal) derivative with respect to the
operatorS,. An algebraic proof of21) is given in Appendix

dg—i o A for functions f(x) that ha}ve a powgr—series expansign in
TS ={H,S.}=iS | w(S,), (120  x, and another one for ar_bltrary functloh@() that hol_d_s_ln
each representation. A different but equivalent definition of
and similarly forS_ . The notation the frequency operator can be given if one mo8esto the
right in Eq. (18). Either convention is unambiguous; in the
o (S)=kw(S,), (13)  following, the version occurring i118) will be used.

Comparing the classical and the quantum-mechanical
used here will simplify comparison with quantum- equations of motion(10) and (18), it becomes plausible to

mechanical expressions. _ _ _call the operatofS, an action operator it is both a constant
Consider now a quantum-mechanical spin system withyt the motion andthe closest analog p& canonical momen-
one degree of freedom, i.e., one copy of the commutation,, in the spin algebra. It is reasonable to consider the
relations(1) only occurs. The Hamlltonlan of the system IS Hamiltonian(14) asquantum integrablesince it depends on
assumed to depend on the third component of the spin ORjthing but an action operator. This also fits well with con-
eratorS only, ceiving @ given in(20) as a frequency operator becay26)
. . is the discretized version @fl1).
H=H(S,). (14 On this basis, the notion of quantum-mechanical integra-
L . bility as defined in QJ makes sense: a system with Hamilton
Again, ladder operators are usefti; =S,*iS, leading to  gperator.7 will be called quantum integrable if a unitary
commutators similar t@7): transformation7 can be found such that the Hamiltonian
. A . A . . turns into a function of commuting components of the dif-
[S;.S:]1=%AS., [S;,S ]=2hS,. (15 ferent spins only while the commutation relatiqii$ remain
invariant. As a consequence, the equations of motion in the
Heisenberg picture strongly resemble those of classically in-
. tegrable systems. In addition, frequency operators are de-
= '_[ﬂlg], (16) fined in anglogy to the classical frequepcies, both_ of which
fi are determined completely by the Hamiltonian. It is not for
o the first time that operator-valued analogs of the classical
and for the Hamiltoniar{14) they read frequencies do occur: as early as 1925, Dirac introduced a
similar concept for particle systen§].
It is important to look at the time evolution of powers of

S, (andS_). One finds

S a8 0 . e
gi — 7 HS=1S00(S), (18) at = pHSH =S ed(S), (22)

Heisenberg’'s equations of motion for the quantum spin are

| &

o
—

—tzg[H,ASz]ZO- (17)
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where now H,=H(S,e)=Ho(S)+H(Se), (28)

w(S)= %(H(ASZJr ki) —H(S,)). (23 whereH, is a quantum integrable system, depending only on
the z components of the spir{si{ not indicated otherwiseS
Since generally denotes the collectiony, . . . ,Sy) of operatorg
. . The perturbatiorH(S,e) may depend on all components
o F ko, (24 of the N spins and it contains a real expansion parameter

a difference to the classical relati¢h3) arises that will have such that the_ perturbatlon vanishes o 0: H(S’O):.O' .
interesting consequences for the perturbative approach to tféjrthermore, it is assumed that the unperturbed Hamiltonian
studied later on. When formally expanding both sideg2dj ~ Ho is not degenerate. In the following, a possible depen-
in powers offi, however, the leading order reflects the clas-dence of operators on the invariar8§ will not be made

sical relation. explicit.
The generalization to systems consisting Mf spins,
éj ,ij=1,... N, is straightforward. The components of each A. Unitary transformations
individual spin fulfill commutation relation€l), and opera- To begin with, it is useful to study the effect of unitarily

tors associated with different spii,, ,S;; commute. The

2550 ; "€ " transforming the spin operators by an operdiqe=U(S,
Hamiltonian now will depend on all spins, ransforming spin operators by an operaige=U(S,s)

with U(S,e=0)=1. New spin operatorS’ (throughout this

H=H(S,, ...,S) and the equations of motion read paper the prime does not denote a derivatae introduced
4, _ | H,S = 25 >
at Al Skl a=xy.z. @9 S =U,(9 Suls), (29

For a quantum integrablil-spin Hamiltonian there arél and the induced transformation of the Hamiltonian reads
frequency operators generalizing the expressi@® and . .
(23: H(Se)=H'(S e), (30)

i), e 1 - 2 2 2 that is, in terms of the primed operato% the Hamiltonian
(J) —_ " _ ' ”
O (S,) fi (H(Syz, ... Sptkh, ... Sy —H(S)), is given by a new functiotd’. By using the inverse of29)
(26)  in the form

and the time evolution of the ladder operators is simply é:u;f(é) é; Ua(é)zué‘r(éé) é; Ué(éé), (31)
given by
A%( relation (30) can be written as
s, 0 .. A . ) .
g = M S=ISLe . k=12, @D U EH(Ee)US)=H (8 .e). (32
and their adjoints. This equation holds for any unitary transformation . In
view of the criterion for quantum integrability, QJ, the new
IV. PERTURBATION THEORY Hamiltonian.7#=H" is required to depend on treecompo-

. . . . f the pri i =S’ only, h
Having established a concept of integrability for quantumgg;tjsmcgsttﬁepsrlprgiic;lsgpmoperato??S only, so that(30)

systems, the program to be carried out is as follows. In clas-
sical mechanics, a small perturbation is added to an inte- H(§,8)=y7//(f:/'z,s). (33)
grable system and it is investigated whether, by successive

canonical transformations, the perturbation can be removefefining %8(.,9)=U§(,,§”), Eq. (32) turns into

completely; this would render the system integrable. As is

known from the KAM theorem, however, integrability is de- o/g;f(,% H(.7e) % ()=TU.7,,¢). (34)
stroyed by a generic perturbation: any perturbation series is

doomed to diverge in finite fractions of phase space. An order to distinguish quantities related to a general trans-
quantum-mechanical implementation of this approach aim$ormation as in(30) from those associated witt83), curly

at transforming a perturbed quantum integrable system intgymbols such a$”/ and.7Z have been used. It will be con-

an integrable one by applying a sequence of unitary transfofgenjent to rename the curly operatorsby S in Eq. (34).
mations. Lie transforms are a convenient tool here since they

are adapted to the algebraic structure of the theory. More-
over, they facilitate comparison with canonical perturbation .
theory, the relevant formulas of which are gathered in Ap- The construction of the unitary transformatiar, achiev-
pendix B. ing (34) is at stake now. Under three assumptions it can be
A guantum system consisting ® spins with constant reduced formally to the successive solution of an infinite set
length éjz is assumed to be described by a Hamiltonian Op_of hierarchical Pquations determined~b¥ the unperturbed
erator of the form HamiltonianHy(S,) and the perturbatiohl (S,e). First, it is

B. Perturbation expansion
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assumed that the perturbation (@8) can be expanded in a C. One degree of freedom
power series of the parameter For a single-spin system with Hamiltonian
ASe) =3 ePHy(S). (35) H(S.e)=Ho(5)+H(S), (40)
p=1 )
A the unknownsﬂp and .7, are determined from the nested
When writing the operator/, as a Lie transform, hierarchy(39) as follows.
. . Solving the first equation of the hierarchy is particularly
7/(S,e)=exd —iu(S,e)/h], (36)  simple because it states that the old and the new Hamil-

o o _ _ ~ tonian,H, and.7,, respectively, coincide. By assumption,
a S|m|larA expansion is required to exist for the Herm|t|an|:|0 depends on the component ob only, and, thus},//o has
operatoru, : this property, too, while”” and S are identical to orde?.
This is consistent, as is easily seen from the limit of vanish-
ing perturbationg =0.

o

& o 2
u(S.e) ,)21 2PUp(S). (37 The remaining equations are all of the same type:
The operatou, is called the generatdor generating opera- ;L_[HO(ASZ)!Up(’Si S)1=Ry(S:,S)—7,(S). (4

tor) of the unitary transformatiorrZ, . Finally, it must be
possible to expand the new Hamiltonian operatdf, in

The operatorlfz can be written as a power series in the
powers ofs: P

operatorsS. [cf. Eq. (84) in Appendix G
T(5,,8)= 3 Py, 38 & 2 ar LS g2 PP
(S0)= 2, " 7S B9 RiB.B)=R B+ 3 BR(E)TR(3)E),
Plugging these expansions into requirem@d) and collect- (42)

ing the terms multiplied by equal powers of the paramete;:, uniquely defined operatori%+k=(ﬁ2_ O andR, , that
e, one obtains the following set of equations: ~ P P P
depend ors, only.

. i . However, expandingi,(S. ,S,) as in(42),
OZHO_.}Z’b, %[Ho,u1]=Hl—,7K1,
. _ Up(S= 8 =Up o S+ 2, (SLup (S + U, (589,
i A A . i~ o~ . - =
%[HOaUZ]zHZ_ ﬁ[ulv'%l"' Hil— 75, (43
one obtains for the commutator {41)

i e g .
P %[Ho,up]=k21 (Sﬁu;’klwk+(—|wk)up’k8k_), (44)
%[HO,Up]
A A where Eq.(22) has been used. The order of the operators
=Rp(Ug, ... Up1,Hy, oo Hp 0, ) G,f’k and the frequency operator of the unperturbed system,
@y, is immaterial since they depend & only. Obviously,

there is no term depending cﬁi;: alone; hence, fof41) to
hold one must have

For convenience, each equation has been solved for the com- Ho(S)=RpolSy)- (45)

mutators of the unperturbed Hamiltonidt,, with the gen- Furthermore, the operatots; follow from comparing(42)
erator of the highest indexi,. Equations(39) constitute a  and (44):

nested hierarchy: at theth level the quantities7, andﬁp " - .
can be determined if all quantities with smaller indices have u (é éz)=u (éz)+ 2 & MJF Ro.k &
been found; the operatcﬁkp contains only quantities know L= PO S\ T ey e
from the beginning or determined when solving the equa- (46)

tions of the lower levels. Such a structure is typical for per- ] o ] )
turbation theory formulated in terms of Lie transforms. It is Where the inverse of the operatay is well-defined only if
possible to discuss the method to solve the equati@@sin the op_erator&)k does not have a zero eigenvalue; this, how-
full generality[7—9]. For simplicity, the procedure is carried €Ver, is guaranteed by the assumption that the unperturbed
out here for a system with a single degree of freedom firstHamiltonian has no degenerate eigenvalues. Therefore, an
generalization to twgor morg spins is then straightforward. operatoru, solving Eq.(41) has been found in terms &,

_'%/p,

(39




2976 THOMAS GRAMESPACHER AND STEFAN WEIGERT 53

and . Its “diagonal” part upVO(ASZ) (corresponding to a D. Two degrees of freedom
phase shift when acting on eigenstates %) remains For a nearly integrable quantum system with two degrees
undetermined—for simplicity, it will be chosen equal to zero of freedom
for all p. As a result, the possibility to solve the hierarchy of o o -
Egs. (39) has been established. The similarity of E46) H(S:,S,,e)=Hy(S12,S,) T H(S., S, ¢), (47)
with the classical formula, EqB5), is striking.
It is important to note that the expression6) for the
generatoru,, exhibits factors inversely proportional to the the transformed Hamiltonian operator should depend on two

& : " ; i ts onlyy;, and.”,,. As before, the
frequency operators,(S,), as is familiar from classical per- N€W SpIn component {17 € 2z o
turbation theory(cf. Appendix B. As can be read off from |oWest order of the hierarchB9) is easily solved by defin-
the structure of the hierarchg9), the operator§2p are linear M9 #o 10 be identical W'th the unperturbed Hamiltonian,
.~ . . ~prl Hy. For p=1, the equations to be solved read:
in up_: thus, they contain terms proportional tof/ .

Solving (46) for the generating operator gfth order,ﬁp,
one finds it to be proportional to the inverse of fhte power

[ P A A A
of frequency operators. The structurally similar classical ex- 7 [Ho(S12:522) Up(S1+ .S+ 1812, S20) ]
pansion is bound to converge to a well-defined canonical
transformation since all classical systems with one degree of = Rp(glt S,..8, ,ézz)—~7/p(élz,ézz)- (48)

freedom are integrable. By analogy, it is expected that the

individual generating operatofxgJ will add up to a sensible .

expression for the unitary transformatio#, . If classical ~Using expansions for the operatds and Clp (cf. Appendix
systems with two degrees of freedom are studied, the impa@) in analogy to(42) and(43), respectively, one finds for the
of a perturbation is known to be disastrous in most cases. generator

P S Rp(S)) . Roa(S)
Up(S:.S)= 2 | 8,8, ——F" &, P —8 +Hc.|.
i e T @ (50, St )+ 07512, 82) T H0M(S) - 0f(S)
o (49)
|
Again, the generatoti, is determined up to an arbitrary V. EXAMPLES

function of S, only which is chosen equal to zero. When
expressing the denominators in terms of the unperturbege
Hamiltonian, it becomes obvious that both spins enter sym
metrically in (49): the first one reads

The perturbation theory as developed in the preceding
ction is applied here to explicit examples. Systems with
one and two degrees of freedom will be studied in order to
obtain more detailed insight into the structure of the denomi-
nators.

- 1 - . A
A=7 (Ho(Si+kh, Sy, +11) —Ho(S12,52,)). (50)
A. One degree of freedom

, The Hamiltonian to be studied is defined as follows:
and the second one is equal to

& el ot
A 1 H(S,s)=a52+§BSZ+ESX
Ag=7(Ho(S1,Hkf,550) = Ho($17,. S5, 1)). (51) L .
=a:°'z+§ﬁ§§+z(é2—é§)+§(éi+§),

Equation(49) belongs to the main results of the present pa- (52)

per. For systems with tw¢r more degrees of freedom the

generators contain terms proportional to the inverdiefr

combinationsof frequency operatorAs; The expansit®®)  the nonzero constants and 8 being real numbers, and the
makes sense only if the denominatais do not have a zero  gquantum integrable partio=aS,+8S%2, is assumed to
eigenvalue, which will be assumed from now on. When dealhayve no degenerate eigenvalue. The perturbation
ing with the convergence of the perturbation series, it will beﬁ(é,a):sé§/2 is particularly simple because it consists of
necessary to proceed in two steps: first, the existence of eacj:uhSt one single term being proportional 40

generato, has to be shown, and subsequently it has to be |t js straightforward to calculate the frequency operators
checked that the sum of a]lp leads to a sensible result. according to(23):
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oc=k(a+BS)+ 1Bk, k=12,.... (53 oM (S17,) =koV(S,.S,,)
IH(Sy;,
The first term on the right-hand side defines a functigrof = k%
the operatoiS, which coincides with the expression for the 1z
classical frequencyw,(S,) =kw(S,)=k(a+ 8S,). Due to =k(a;+ B1S1,+vS,,), (60)
the discretization of the derivative an additional term propor-
tional to# shows up in(53). and analogously fow{?(S,,,S,,). In formula (49), the ex-
According to(45) the new first-order Hamiltonian is equal pansion of the generattﬁrp has been given in general terms.
to the diagonal part of the perturbation: Focus now on the second term of its right-hand side contain-
ing the difference of the frequency operators in the denomi-
'%1(‘82): %(éz—éi), (54) n_atpr. Its m_atrix elements in the product bdsi@_,mz), con-
sisting of eigenstates of the operat&s, are given by
as can be read off from E@52). When expanding the off- R
diagonal part of the perturbation the only nonvanishing co- (ml,m2|AS'§+P—’HAS'2,|m1,m§>
efficients are found to be Ay
PN 1 Ii+kl
RiAS) =5 (55 =<mi,m2|§—;|m1 ,My) 5m1m1+k5m2m§*| , (6D

kl

leading to the following expression for the first-order genera- Al R L
g gexp g where, as beforel, = o — ®{?, which in the present case

tor:
reads explicitly
alzl(éi%jL _1A é2_) (56) AI:I:[k(a1+ﬁlAslz+ ¥S2.) (ot B2So+ ¥S12)]
8 |(1)2 —1 wo ﬁ
+ E(Blkz_ﬂzlz)- (62)

with @, from (53). Since the energy eigenvalues of the
HamiltonianH, in (52) have been assumed not to be degensjnce poth operatorseggm and Ak], depend on the com-

erate, the expectann value of the denominators m(Eﬁ): gonents only, the expectation value of their ra(ié[&), is
will not have zero eigenvalues. Consequently, there is n al to the ratio of their expectation valy&)/(A). Con-
principal obstacle which would destroy the convergence of ! : Ir xp ion valy >.< )- -
the perturbation series for the unitary transformatién sequently, the convergence of the power series defining the
1€ P ) . y first-order generator for the systeff7), will be controlled

similar to classical mechanics. : <

by matrix elements of operators such/gsgin Eq. (62). They

are made up of two contributions with different origins. The

B. Two degrees of freedom operator in square brackets is recognized as the difference of
Consider a two-spin Hamiltoniaf#7) with the frequency operators that one would obtain if in the clas-
o R R o sical formula(60) one were to replace the variabl€g by
H(S.,S;,8) = 11(S12) +12(Sp) + ¥S1,S, + H(S,, S, ,8), their operator equivalentsy;,. The possibility to approxi-

(57 mate arbitrarily well the ratio of the frequencies?/w®
for a given torus(i.e., fixed values ofS;, and S,,) by k/I
where leads to the problem of small denominators in classical me-
chanics(cf. [10]). A
1, Then, the difference\,, contains a term proportional to
fi()=ax+5Bx%  j=1.2. (58 Pplanck’s constant; the occurrence of a tdimear in # fol-
lows from studying a Hamiltoniail being quadratic in the

The quantum integrable Hamiltonian consisting of the firstZ COMponents of the spins. Polynomials of degrefer the
three terms on the right-hand side of E§7) is quadratic in Hamiltonian lead to terms of at makt ™, etc. The presence
the z components of the spin. With a view to the structure ofof Such terms has been noted already by Roi in a

the denominators present in the generating operator—whicﬁ'm'lar treatment of particle systems. He suggested that these

are completely determined by the frequencies of the unpe,@dditional terms WiII_ have the effect to move the system
turbed system as seen from E49)—the form of the per- away from the classical resonance, however small the value

turbationﬁ(él,sz,s) must not be specified in detail. On of 4. But Iookir?g at theexactexpression(62) for a fixed_

evaluating(26) one finds yalue of Planck’s constant,= 1, say, one can alsp conceive
it as a new type of resonance condition that is no longer
linear in the indicesk andl: a qguantum-mechanicalonlin-

o =K(ay+ B1S1,+ ¥Sy,) + 3Bk, (59 ear resonance condition arises that has to be studied in its
own right for all possible representations.
and &{? follows from exchanging the indices {22). The The relevant matrix elements of the operatgy [cf. (61)]

first term is closely related to the classical frequency, read explicitly
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(my—k,my—I|Ag|my—k,mj—1) cover the behavior of the classical frequency denominators
from Eq.(63). Numerical tests make it plausible that, indeed,
=k(ay+ Bihimy+ yiml) =1 (ay+ Bofim,y+ yhim,) the value ofA(s) decrease monotonically when larger values
" of k and| provide better and better approximations of the
— 7(,81k2—,82|2), (63) classical frequency ratigthe values ofim; andZm, are
kept fixed here, defining thus a specific “torys’An ana-
Iytic study is not straightforward, even for the quadratically
modified resonance condition associated wiB): the be-

[note _the_ sign change of the last term rela_t|ve(6<2)]. In_ havior of the last term is not easily controlled sirfde’ and
each individual representation, there is an important differ-, 5
|- may have values of the order sf

ence compared to classical mechanics. The range of the nurﬁi-
bersk and! is not all the integers but it varies over a finite
subset of them only, which is determined by the spin length VI. DISCUSSION
s. This is characteristic of finite-dimensional representations
of spin systems while it does not occur for particle systems. _ ) _
The matrix elements of the other operators in &§) lead to For the sake of clarity, the main points of the develop-
expressions of the same structure. ment given in the previogs pages are briefly summarize_d.

There are two ways to study the expressié8). First, Starting from the algebraic skeleton necessary to describe
consider it as a quantum-mechanical statement in its owAuantum (spin systems, arguments for the existence of
right. This means to givé its actual value and to let vary duantum-mechanical action and frequency operators in sys-
both pairs (n,,m}) and (,1) over the finite range deter- tems with a_smgle degree of freedom have b_een put forward.
mined by the value oé. Within each (2+ 1)-dimensional When applying these concepts to systems with more degrees
representation of the spin algebra, the modulu(s&ﬂ) will .Of freedom they lend themselves_ to a dgﬁnmon of quantum
have some positive nonzero minimal valui(s). Conse- integrable systems. An algebraic version of perturpatlon

. : theory of such systems has been formulated appropriate to

qguently, for sufficiently small values af, the expansion of

the generatofi, in (37) is expected to converge because theabsorb the effect of an added disturbance. Since this formu-
b ) . ; -~ .
terms[e/A(s)]? can be kept small. For spins of lenggfihe lation respectgand exploit3 the underlying Lie-algebraic

o N L . structure, a tight analogy to classical Lie transforms is
perturbed HamiltoniaH, is given by a finite-dimensional ,chieved. As a natural consequence, operator-valued analogs

Hermitian matrix that guarantees the existence of a unitarys the classical frequency denominators show up when con-

transformation diagonalizing it. Therefore, the generic Conycting a unitary transformation that would diagonalize the

vergence of the construction should not come as a surprisg§amiitonian algebraically. In this way, the quantum-

(for possible technical difficulties, cf12]). For the present echanical locus of the convergence problems known to ex-
concept of integrability, however, it is essential that not 0ngg; i, ¢jassical mechanics has been found, at least on a formal
specificrepresentation is studied but that the statements holgl, | | an appropriate sense, the quantum-mechanical ex-

in analgebraicsense, or, equivalently, @l representations. ,ressions for the denominators generalize the classical ones.
The implications of this requirement will be made explicit Tha condition for a classical resonance to occur is, effec-

now. _ N tively, equivalent to alinear relation among the classical
_ Imgglne to have cor_wstructe(_j the dmgonghzmg trans_formafrequencies(associated with a “plane” in action space
tions in all representations. This set of_matnces_may either bﬁ/hereas, in a given representation, the relevant quantum-
the representations of osenglealgebraically defined opera-  mechanical relation turns out to menlinear (defining “el-
tor 7, or not. In the latter case, the unitary transformationsjipsoids” or other curved surfacesSuch structures have
in the individual representations will not “converge” to- peen observed in semiclassical treatments, for example, in
wards one specific unitary operator for large valuessof the work by Berry and Tabdrl3] who derive energy-level
(since the value of: is kept fixed, this procedure is not statistics for classically integrable quantum systems in the
identical to the classical limit to be discussed momentarily |imit of small values for.
In addition, for larger values of the numberA(s) takes on When scrutinizing the notion of quantum integrability the
smaller and smaller values, which requires the expansion pggtimate goal is to provide evidence for both, its usefulness
rameter to be correspondingly smaller. If there isfmite  ang its consistency. Rigorously testable predictions of spe-
value ofe such that the perturbation series converges for alkific properties must result for quantum integratded non-
allowed values ofs, i.e., algebraically, the perturbation integrable systems, just as the phase-space foliation of clas-
H(S,e) renders the system nonintegrable. A strong decreassically integrable systems flows from its classical
of the smallest occurring denominat(s) as a function of  counterpart. In our view, the major achievement of the
s has been observed numerically. If, however, the summatiopresent approach is to have boiled down the question of
of the perturbation series for aldoes not require vanishing quantum integrabilitfand,a fortiori, of quantum chaggo a
€, one may expect an algebraic diagonalizing operator téechnicalproblem, namely, to investigate tlieonvergence
exist; hence, the perturbation can be absorbed into an apprproperties of a perturbation series. Due to ttoalinearities
priate redefinition of the action operators. In classical medin the quantum-mechanical expressions just mentioned, the
chanics, this convergence for finidgeis known to result from  behavior of the perturbation series is, from the present point
appropriately decreasing numerators. of view, not obvious. In principle, there is no need for quan-
We turn now to the second way to stud§3): in the tum systems texactly parallel the properties of classically
semiclassical limit withz~1/s and s—c, one should re- (non) integrable systems: the underlying unifying structure is

A. Summary and outlook
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on analgebraiclevel but with the algebras being realized in out that the latter frequency operator is equivalent to the

different spaces, in phase space and in Hilbert space, respezxpression given ir{20). Dirac also mentions its two pos-

tively. In the semiclassical limit, however, one expects thatsible versions reflecting the freedom of ordering18). For

the statements associated with the two realizations becon#pin systems considered here, the operétprplays a role

comparable if appropriate tools such as Wigner functions argimilar to the exponentiated angle operator.

employed. The present formulation now calls for a detailed Wentzel[19] continued Dirac’s work by establishing a

parallel investigation of the effects that a perturbation has oflink between Heisenberg’s matrix mechanics anddghmim-

a classically integrable system and on its quantum counteiers. In particular, he wrote down expressions for quantum-

part. mechanical frequencies similar {@0) being applicable to
Here is a brief sketch of a scenario being plausible inmultiply periodic systems only. However, this line of reason-

view of the present results which, however, has to be subig seems to have come to an abrupt end by the advent of

stantiated by further investigations. Focus on the fullywave mechanics in 1926: the serious shortcoming of the ear-

quantum-mechanical regime, that is, fix the valugiond  lier quantum theory to allow for quantization of multiply

consider the behavior of the perturbation series in represereriodic systems only was removed by Sclinger’s equa-

tations of variable dimension,s2- 1. It is expected that the tion, which is easily written down for particles subjected to

“visibility” of the perturbation will increase for dimensions arbitrary potentials. o _

with larger values o8. A vivid illustration of this effect has Similarly, strong formal affinities to Heisenberg’s formu-

been reported for a system consisting of two coupled spinLation of perturbation theor}20] exist. This is easily under-

where a “regular quantum web” is gradually torn apart by astood if one recalls that before the introduction of Schro

perturbation of increasing strengith4]. Related phenomena inger’'s equation classical mechanics served much more than

e been observed n partce yslems by Bohiga, Toms(ESr 5 e tread for quarum mechancl develop.
vic, and Ullmo[15]. In a study of the spin-boson model the . ’ g'sapp P

the widely used perturbation scheme of Rayleigh-

observed “resonance phenomena” can be attributed to th o : ) i
. ; chralinger [21] differ conceptually in an important way
presence of small denominators becoming more or less ef- b

rom the present one. Traditionallgny quantum system

fective in representations of different dimensidiis]. An may serve as a starting point for perturbation theory, the onl
analytic study of these numerically observed effects in the y gp b Y y

vein of the present paper is under wgy7). In general, assumption being that it;mecessarily periodjcsolutions are

“quantum resonances” in a nonintegrable quantum systerrlfnown' In the approach developed here, the unperturbed sys-

. : em is assumed to be quantum integrable; henderaésum-
due to ever smaller denominators will become more ané q 9 der

. . . ably) stems from aestrictedclass of systems, and the effect
more pronounced if larger representations of the spin algebr S . )

. L T . . of the perturbation is to remove it from this class. In order to
are considered. The infinite-dimensional representdnon

to be confused with the semiclassical lifgbntains the most prove the KAM theorem, classical perturbation theory is de-

detailed structure, possibly leading to an actual divergence o\jﬁfgre?héeIaet'r\tlsrggzgengrigbilﬁv‘c’efgegza th:mfai‘,:g g:feactt?)rrlesan
the perturbation series. P J :

arbitrary periodic solution—which might happen to be an
isolated periodic orbit of a nonintegrable system. KAM
theory would not apply at all. It is hoped that by systemati-
There is a large number of joints between earlier workcally moving away fromrintegrablequantum systems generic
and the present one that so far have been alluded to onlgroperties will be seen to emerge for nonintegrable ones. As
occasionally. It is useful to dwell on them for a moment, tofor a close-up of the relation between classical tori and
draw parallels and to point out differences. Heisenberg’s matrix mechanics which fits well into the
The introduction of frequency operato(® the present scheme developed here, see the work by Greenberg, Klein,
terminology provides a link to the most advanced papers ofand Li[22].
the “old quantum mechanics.” In 1925, Dird6] defined Next, there are close ties to Birkhoff normal foririg and
“ g numbers,” which would fulfill the fundamental commu- to the so-called “algebraic quantization” reviewed [ia3].
tation relations of position and momentum. Baslgebraic  The idea is to quantize integrable approximations to classi-
consequences are derived, partly by exploiting the analogy toally nonintegrable systems. Crehdi24] worked out
the classical Poisson brackets. One section of the paper @antum-mechanical normal forms in the spirit of Birkhoff
devoted to “multiply periodic systems” characterized by the and Gustavson, starting from the classical Hamiltonian func-
existence of “uniformizing variables”(which nowadays tion in the neighborhood of a point of stable equilibrium.
would be called action and angle operajossich that the Impressive agreement between exact quantum-mechanical
Hamiltonian depends on the action operators diofy Eq.  solutions and the approximate ones has been obtained
(3)]. In the terminology of the present work multiply peri- [25,26]. In contrast to these works, however, no recourse has
odic systems are thus recognized as quantum integrable ondmen made to classical mechanics in the present approach.
Assuming the action-angle operators to fulfill the same com- Concerning the presence of the quantum equivalents of
mutation relations as momentum and position—which is unthe small denominators, their occurrence has been noted al-
tenable due to the defectiveness of a phase opefafpr—  ready by Robni11] for particle systemgand by Graffi, cf.
Dirac introduced two different types of frequencies. The firstthe introduction of27]). Robnik pointed out that for small
one is supposed to govern the time evolution of the phasgalues of Planck’s constant the classical denominators will
operator itself, whereas the second one is associated with the modified by terms of the ordér. In this way the reso-
time derivative of theexponentiateghhase operator. It turns nance conditions are destroyed that govern the fate of an

B. Related work
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individual classical torus, that is, its survival or destruction. an+tl & 1_r& & jan,&aran &

Furthermore, it is conjectured that the series for the diago- [S:77.54]=15: 5415, 515,58,

naliting unitary transformation will converge almost always =S5, {hS)+(5,+h)[expha,) — 115
without possessing a classical limit. It is expected that in

view of the exact expressio@9) the effect of the denomi- =é+[ethaz)_1]“sg+1, (A4)

nators can be studied in more detail for spin systems.

Also, the understanding of clashes between the behaviQfj,ce @ﬁh)exp@i&z):exp@iaz)éz. Using f(éz)
of classical and quantum perturbation expansions may ben_-Ew f & implies
efit from the present approach. It has been noted by Eckhardt <n=0 nS; IMp
[28] for a one-dimensional particle system that the conver- x
gence of a classical perturbation series is not automatically £(8)8. 1= Fran g
reflected in the convergence of the corresponding quantum [F(S,).5.] ngo Sz S+

perturbation series, as follows from a simple scaling argu-

ment. e _ - an

In order to deal with issues of perturbation series for =S [exphdy) 1],120 fnS,
guantum systems a new setting has been provided by Bellis- A .
sard and Vitto{27], whose work is based on the concept of =S, [exptd,) —1]f(S,). (A5)

noncommutative geometry. Their work is focussed on Lie-

transform techniques for quantum-mechanical particle systhus, Eq.(A3) holds fork=1, as is necessary for a proof by
tems with respect to the classical limit. The aspect of inteinduction onk. The step fromk to k+ 1 reads

grability, seemingly, has not been addressed in detail. It is

particularly important that estimates of the Nekhoroshev type [1(5,),8=811(5).5,1+[(5,),5 15,

become available that allow one to control the approxima-

tions for energy eigenvalues extremely well. For systems =A85*1{[exp(haz)—l]

with one degree of freedom, the convergence of the pertur- R

bation series has been provécf. [29]). At present, the +[exp(khd,) —1]lexp(d,) H(S,)
theory has been worked out for particle systems only while ki1 .

the transfer to spin systems is in preparafi®@]. A common =S {exd (kK+ 1), ] - 1}(S,), (A6)

feature of many works in this ardaf. also[31]) is that the ) ) .
unperturbed systems considered are collections of harmoni¢here, in the second line, EGAS) has been used in the form
oscillators. Having frequency operators at one’s diposal, thi§(S,)S, =S, expd)f(S), concluding the proof ofAl).
restriction seems to be no longer necessary. Relation(Al) can also be written as
Finally, a review of the use of Lie-transform techniques

and KAM-like results in quantum mechanics has been given (53¢ =8$(5,+k#) or (5,—kk)S =5 1(5);
by Jauslin[32] dealing, to a large extent, with externally (A7)
driven systems.

in words, the order of a function 08, only and thekth

APPENDIX A: THE COMMUTATORS [{(S,),S4] power of the operata®, may be exchanged if the argument
of the functionf is shifted by an appropriate multiple éf
Similar relations are obtained for the step-down operator by
taking the Hermitian conjugate of Eq@1) and (A7).

Ak AKeesp A A proof of Eq.(A5) for arbitrary functionsf(S,) is easily
[F(S2),Si1=SL[H(S ki) = (S ] given if one exploits the properties of the ladder operators in
explicit representations. The action of the step-up operator is

It will be shown by using the commutation relations of the
spin operators that

_ck _ Q
= Si[expkhdy) —1]1(S,), (A1) in all representations of the form
whered, is a shorthand for &ormal) derivative with respect S, |m,s)= cslm,s), ¢S =ys(s+1)—m(m+1).
to S,. The functionf(x) is assumed to have an expansion as (A8)
a power series ix. R
First, it is proved by induction that Using f(S,)|m,s)=f(m#)|m,s), one obtains for allm,s)
that
S),5,1=S,[exp#a,) —1]S]. A2 ~a
5,5 1= 5 [ expRa) ~ 115 (A2 (88, ms)=cof(m+ Di)m+1s)  (A9)
This relation holds fon=1, ~
=S, f(m+1)%A)|m+1,s)
[éz,é+]=é+[exrrhaz>—1]éz=‘s+<éz+ﬁ—éz>=hé(+.) =S.1(S:7)m,s), (A10)
A3
implying that

Equation(A2) is valid forn+1 if it is assumed to hold for o
n: f(S)S,. =S, {(S,+1), (A11)
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which is equivalent tqA5). As before, induction ok com- S““S”l (52)5n2+3n2 (Sz)' . (C1)
pletes the proof of relatiofAl).

The exponents; .. are integers greater than or equal to zero.

Since the product,S_=g(S,) depends only orS,, one
Results of classical Lie-perturbation theory are collectedcan write for arbitrary integers. =0 that

for easy comparison with the quantum-mechanical formulas . .

an analogous notation is used. Consider a Hamiltonian SHT7.(S) ny>n_

H(S,e)=H +H(S,e), whereH is integrable and an an_ ~ & ; —

ﬁES,sg is tr(:t(asé)erturf)atign. The goaol(?to remo?/e the pertur- S.787= 7=(5) Tone=n- (@

bation by introducing a new set of spin variables 7-(5)8" " n,<n_,

APPENDIX B: CLASSICAL PERTURBATION THEORY

S'=TS, (BL) by exchangingg(3,) with 3 according to the rulegA?).

where the canonical transformation is implemented by the Thus, expressiofC1) can be cast into one of these forms if
operator now n. are defined as the total number ®f operators in

A (CD, n.=3n;.

T=exp —{u(S,),-}). (B2) CoIIecting aII terms in the expansion &(S. ,S,) with
the same number &, or S_, the operatoF can be written

The functionu(S,e) is assumed to have an expansion inas

powers ofe, andu(S,e=0)=0. When expanding the old

and new Hamiltonian functions in powers of the construc- %

tion of the transformatiofl leads to a hierarchy of equations F(5..,5)=Fo(5)+ > [SFI(5)+F, (5)8],
k=1

{Ho(S).Up(S=+,S)}=Rp(S:,S) = 7#p(S,) (C3)

p=0,1,2,..., (83)  Which will be considered as standard form. For the sake of
generality, the indeX is assumed to run over all integers,
which is the classical counterpart @9). They can be solved while in a specific representation the sum(®3) will run
by an appropriate choice of the functions and .7, over 2+1 values only. IfF is a Hermitian operator, then
If in classical mechanics the expansion of funcUonsF is Hermitian and
F(S) is written in analogy tqC3) the solutions ofB3) are

To(S)=Ryo(Sy), (B4) Fr(S)=[F (SHT". (C4

(Sz) R* (S, The generalization to two or more degrees of freedom is

Up(S=,S)= 2 Ro.k Pk T2 ok (85)  straightforward but the notation becomes more cumbersome.
k=1 ""k(sz) toy(S,) First consider a functioff (S ,5,,,5,+ ,S,,) depending on

the components of two spir§ andS,. As before, the func-

tion F is assumed to have an expansion in powers of the spin

components Since the components of different spins com-

The expression fou,(S. ,S,) can be simplified by using
wi=ko from (13).
Similarly, the results for a two-spin system assume the

form of the expansioriC6), mute,F can be brought to the form
Ty(S) =Ry 0d Sy, (B6) F(5:2.,5..5%: .5
- Rp.i(S2) =Fo(5,,.5,,)+ i Far (s
Up(S: . 8)= 2 | SLSh “FodSu St (&, S8 P G S
P o il (S)+ ()] (K100
S ;kI(SZ) SIZ +ASII+F12—|_(A5121 2)82 +SZ+FkI S1Z’S2Z)Sl—
< + c.c.|.

i[od(S)—0Y(S)]

+Fq (51,5088, (CH)

(B7)

APPENDIX C: EXPANSION OF A FUNCTION F (3, .3, If F is a Hermitian operator this expression simplifies to

A convention for the expansion of functions of spin op- Kk A 4o
erators is established. For simplicity, the case of a single spin F(5,.8)=FodS)+ E [S1:S Fu (S
Sis considered first. LeE(S. ,S,) be expandable in powers (k=00
of S, andS_ . Functions depending o8, only are denoted +8FL(S)8,_+ H.cl, (C6)

by curly symbols7(S,). In general & will consist of a sum
of terms, each of which is of the form since, generalizingC4)
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Fif=Fu)) Fhi=FHn (C7)
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explicit dependence on the operatéﬁ andéj, . A unique
way of ordering would be, in an extension of the above, to

Functions depending on the components of more than twehroughout position the step-up operat8js on the left and
spins can be expanded similarly. One gets one term depentheir adjoints on the right of the middle part, which depends
ing only on thez components and"2terms that contain the on thez components only.
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