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Based on the previously proposed notions of action operators and of quantum integrability,frequency
operatorsare introduced in a fully quantum-mechanical setting. They are conceptually useful because another
formulation can be given to unitary perturbation theory. When worked out for quantum spin systems, this
variant is found to be formally equivalent to canonical perturbation theory applied to nearly integrable systems
consisting of classical spins. In particular, it becomes possible to locate the quantum-mechanical operator-
valued equivalent of thefrequency denominatorsthat may cause divergence of the classical perturbation series.
The results that are established here link the concept of quantum-mechanical integrability to a technical
question, namely, the behavior of specific perturbation series.

PACS number~s!: 03.65.Bz, 03.65.Fd, 03.65.Ca

I. INTRODUCTION

In classical mechanics, the distinction between integrable
and nonintegrable Hamiltonian systems is clear cut. On the
one hand, for a system to be integrable, the existence ofN
smooth, involutive, and functionally independent constants
of the motion is required. Then, its 2N-dimensional phase
space is guaranteed to be foliated intoN-dimensional tori,
and the resulting almost periodic motion of the system is
very simple. On the other hand, a nonintegrable system may
explore a (2N21)-dimensional region of phase space in the
course of time if~except for the energy! there are no invari-
ants that restrict the motion to lower-dimensional manifolds.
Accordingly, the time evolution of a nonintegrable system is
extremely complicated@1#.

Much is known about the properties of quantum systems
obtained by quantizing classically integrable and noninte-
grable systems, respectively@2#. Nevertheless, no rigorously
established and generally accepted features have emerged
that would allow one to unambiguously distinguish inte-
grable and nonintegrable quantum systems in analogy to
classical mechanics. While the concept of integrability is im-
portant in classical mechanics~for example, the KAM theo-
rem deals with the influence of a perturbation onintegrable
systems!, it appears, for the time being, to be much less
fertile in quantum mechanics.

A new concept ofquantum integrabilityhas been pro-
posed in @3# that is based on quantum-mechanicalaction
operatorswithout any reference to classical mechanics. In-
corporating criticism of earlier concepts of quantum integra-
bility @4#, this notion relies only on thealgebraicstructure of
a quantum system provided by the commutation relations of
the basic operators. It is the objective of the present paper to
explore the features of nearly quantum integrable systems: a
perturbation is added to a system that qualifies as quantum
integrable in the above sense, and a method is given to suc-
cessively remove the disturbance. By using the quantum ac-
tions in a framework of Lie transforms it becomes possible
to lay open strong formal analogies to the corresponding
classical perturbational approach. In particular, withfre-

quency operatorsbeing defined for integrable quantum sys-
tems, it will become obvious that quantum-mechanical
‘‘counterparts’’ of the classicalfrequency denominators
show up in this perturbational treatment. The results of the
present work areformal, i.e., questions of convergence have
not yet been dealt with. Fortunately, the structural similarity
of the results to classical mechanics allows one to already
imagine possible scenarios.

Two general remarks are in order before turning to the
detailed presentation. The investigations are carried out for
spin systems but the generalization of the results to particle
systems is not expected to provide substantial difficulties.
Then, it should be pointed out that no part of this work relies
on semiclassical approximations.

In brief, the paper is organized as follows. In Sec. II, the
notion of quantum integrability used here is recapitulated.
Frequency operators are introduced in Sec. III, and they are
recognized to naturally generalize the classical frequencies
known from integrable systems. The main part of the paper,
Sec. IV, consists of formulating the theory of Lie transforms
for nearly quantum integrable systems. Applications to sys-
tems with one and two degrees of freedom follow in Sec. V.
Finally, the results are summarized in Sec. VI, and connec-
tions to other work are discussed.

II. ALGEBRAIC VIEW OF QUANTUM INTEGRABILITY

It will be useful to summarize the algebraic view of quan-
tum integrability in order to motivate the investigations of
the subsequent chapters. Only the essential points will be
mentioned; details have been elaborated on in Ref.@3#.

Let us outline the concept of integrability with a view on
the algebraic structure of classical mechanics. For a system
of N degrees of freedom there are canonical variables
q5(q1 , . . . ,qN) andp5(p1 , . . . ,pN). They provide a ba-
sis for the algebra of~smooth! phase-space functions
f (p,q) since each such function can be approximated arbi-
trarily well by summing products ofpn ,qn with appropriate
coefficients. They can be multiplied by real coefficients, and
one can add them; any two phase-space functions define a
third one via the Poisson bracket, turning the set of all phase-
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space functions into a Lie algebra. This framework is the
same for all classical mechanical systems. A particular
physical system is described by selecting one specific phase-
space function and by calling it the Hamiltonian. Its role is to
generate the time evolution of the system by defining a flow
in phase space. Integrability comes in as follows. Typically,
the Hamiltonian function will depend on all components of
momentump and coordinateq. However, it is possible to
perform a canonical change of basis, (p,q)→(p8,q8), as a
result of which the Hamiltonian will turn into a different
function if expressed in terms of the primed variables. It may
happen that such a change of basis leads to a particular form
of the new Hamiltonian function, namely, that it depends on
only half of the number of variables,N. One has found a
particularly convenient basis of the algebra because it be-
comes obvious that the flow in phase space decomposes into
N decoupled flows. A system with such atrivial flow is
called integrable. As is well known, this situation is very
rare: typically, no decoupling basis exists, and the phase-
space flow is extremely intricate.

It is straightforward to rephrase this line of thought for
quantum-mechanical systems. Now the basis of the algebra
of operators is given by p̂5( p̂1 , . . . ,p̂N) and
q̂5(q̂1 , . . . ,q̂N), and each operator in the algebra can be
represented by an appropriate sum of products ofp̂n ,q̂n .
The commutator of two operators defines a third one, and
Jacobi’s identity holds in general: one is dealing with a Lie
algebra of operators. If one particular operator of the algebra
is chosen as Hamiltonian, a quantum system and its time
evolution are determined. A generic Hamiltonian operator
will depend on all components ofp̂ and q̂. In special cases,
however, aunitary transformation exists that allows one to
express the Hamiltonian as a function of only half of the
number of basic operators,N. By analogy, the system will
then be calledquantum integrable. Part of the purpose of the
present work is to show that, in an appropriate sense, the
corresponding quantum-mechanical flow istrivial , and that
this situation is not generic.

It should be noted that in the context of quantum mechan-
ics the term ‘‘algebraic’’ will be understood as ‘‘independent
of the representation.’’ The idea is to only use relations that
have a counterpart in the classical algebra. For example,
within each finite-dimensional matrix representation of the
spin algebra there exist relations between different powers of
spin matrices that are specific to the representation at hand.
Such relations do not exist in the classical algebra and, thus,
they should not be used. An instructive discussion of the
common algebraic structure underlying classical and quan-
tum mechanics has been given by Falk@5#.

For convenience, the definition of quantum integrability
for spin systems proposed in@3# will be reproduced. The
description of a quantum spin system withN degrees of free-
dom is based onN copies of the one-spin commutation re-
lations,

@Ŝja ,Ŝj 8b#5 i\d j j 8 (
g5xyz

«abgŜjg , j , j 851,2, . . .N.

~1!

Here is the criterion for integrability of quantum spin sys-
tems, denoted byQJ:

QJ: A givenN-spin HamiltonianĤ5H(Ŝ1 , . . . ,ŜN) is
quantum integrableif there exists a unitary transformation
U(Ŝ1 , . . . ,ŜN) that converts the spin operatorsŜj ,
j51, . . . ,N, into new spin operators,

Ŝ j5Û Ŝj Û
†5S j~Ŝ1 , . . . ŜN!, j51, . . . ,N, ~2!

such that the Hamiltonian turns into a function ofN quantum
actionsĴ j5Ŝ jz :

H~Ŝ1 , . . . ,ŜN!5H~ Ĵ1 , . . . ,ĴN!. ~3!

The spectra of the operatorsĴ j , j51, . . . ,N, in each
(2s11)-dimensional representationGs consist of uniformly
spaced levels:

Ĵ j
s5 (

mj52s

1s

u . . . ,mj , . . . ;s&mj\^ . . . ,mj , . . . ;su,

j51, . . . ,N. ~4!

If the transformation~3! has been achieved, the eigenval-
ues of the Hamiltonian can be read off immediately, and its
eigenfunctions are known as well. In spite of the reference to
the representationGs , Eq. ~4! is an algebraic statement since
it is required to hold in all representations,
s51/2,1,3/2, . . . As will become clear in Sec. IV, condition
~3! defines a program that can be carried out in strong anal-
ogy to classical mechanics.

III. FREQUENCY OPERATORS

Frequency operators, to be defined for quantum integrable
systems in a straightforward way, are introduced in this sec-
tion. The main objective of Ref.@3# has been to provide
numerical and analytical support for the existence of
quantum-mechanical action operators, and to use them as
building blocks for quantum-mechanical integrability. These
arguments will not be repeated here; instead, an independent
approach will be presented that illustrates the idea of action
operators from a different perspective. To arrive at the defi-
nition of frequency operators will then be a small step.

As a starter, a classical spin system with one degree of
freedom is considered. Its Hamiltonian is assumed to depend
on a single spin component only,Sz , say:

H5H~Sz!. ~5!

The complex quantities

S65Sx6 iSy ~6!

are classical counterparts of ladder operators for a quantum
spin. In these variables the Poisson brackets for a single spin
read

$Sz ,S6%56 iS6 , $S1 ,S2%52iSz , ~7!

as obtained from the replacement@ , #→2 i\$ , % in ~1!.
The equations of motion are given by

dS

dt
5$H,S%, ~8!
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and for the Hamiltonian~5! they read explicitly

dSz
dt

5$H,Sz%50, ~9!

dS1

dt
5$H,S1%5 iS1v~Sz!, ~10!

the equation of motion forS2 being complex conjugate to
that of S1 . When expressing the spin as
S5(AS22pw

2cosw,AS22pw
2sinw,pw) in terms of canonical

coordinates with$pw ,w%51, it becomes obvious that the
third component,Sz , plays the role of an action: it is both a
canonical variable and a constant of the motion. The phase-
space functionsS6 are proportional to the exponentiated
angle variable. In view of later developments it is useful to
stick with the periodic functions of time,S6(t), instead of
using the canonical variablew. The frequency

v~Sz!5
dH~Sz!

dSz
~11!

is completely determined by the Hamiltonian and thus de-
pends on the actionSz only. The time evolution of integer
powersk52,3, . . . ofS1(t) is obtained from~10! as

dS1
k

dt
5$H,S1

k %5 iS1
k vk~Sz!, ~12!

and similarly forS2 . The notation

vk~Sz![kv~Sz!, ~13!

used here will simplify comparison with quantum-
mechanical expressions.

Consider now a quantum-mechanical spin system with
one degree of freedom, i.e., one copy of the commutation
relations~1! only occurs. The Hamiltonian of the system is
assumed to depend on the third component of the spin op-
eratorŜ only,

Ĥ5H~Ŝz!. ~14!

Again, ladder operators are useful:Ŝ65Ŝx6 iŜy , leading to
commutators similar to~7!:

@Ŝz ,Ŝ6#56\Ŝ6 , @Ŝ1 ,Ŝ2#52\Ŝz . ~15!

Heisenberg’s equations of motion for the quantum spin are

dŜ

dt
5

i

\
@Ĥ,Ŝ#, ~16!

and for the Hamiltonian~14! they read

dŜz
dt

5
i

\
@Ĥ,Ŝz#50, ~17!

dŜ1

dt
5

i

\
@Ĥ,Ŝ1#5 iŜ1v~Ŝz!, ~18!

and the equation forŜ25(Ŝ1)
† is the adjoint of the last

equation,

dŜ2

dt
5

i

\
@Ĥ,Ŝ2#52 iv~Ŝz!Ŝ2 . ~19!

The self-adjoint operatorv̂[v(Ŝz) depends on thez com-
ponent of the spin operatorŜ only; explicitly, one has

v~Ŝz!5
1

\
„H~Ŝz1\!2H~Ŝz!…, ~20!

thus providing the definition of a quantum-mechanicalfre-
quency operator. Its form is suggested by requiring that the
operatorŜ1 stand on the left of everything else in Eq.~18!.
The derivation of~20! hinges on the fact that the Hamilton
operator depends on the operatorŜz only because in~16! one
can then use the relation

@ f ~Ŝz!,Ŝ1
k #5Ŝ1

k
„f ~Ŝz1k\!2 f ~Ŝz!…

5Ŝ1
k @exp~k\]z!21# f ~Ŝz!, ~21!

where]z denotes the~formal! derivative with respect to the
operatorŜz . An algebraic proof of~21! is given in Appendix
A for functions f (x) that have a power-series expansion in
x, and another one for arbitrary functionsf (x) that holds in
each representation. A different but equivalent definition of
the frequency operator can be given if one movesŜ1 to the
right in Eq. ~18!. Either convention is unambiguous; in the
following, the version occurring in~18! will be used.

Comparing the classical and the quantum-mechanical
equations of motion,~10! and ~18!, it becomes plausible to
call the operatorŜz an action operator: it is both a constant
of the motion and~the closest analog of! a canonical momen-
tum in the spin algebra. It is reasonable to consider the
Hamiltonian~14! asquantum integrablesince it depends on
nothing but an action operator. This also fits well with con-
ceiving v̂ given in ~20! as a frequency operator because~20!
is the discretized version of~11!.

On this basis, the notion of quantum-mechanical integra-
bility as defined in QJ makes sense: a system with Hamilton
operatorĤ will be called quantum integrable if a unitary
transformationÛ can be found such that the Hamiltonian
turns into a function of commutingz components of the dif-
ferent spins only while the commutation relations~1! remain
invariant. As a consequence, the equations of motion in the
Heisenberg picture strongly resemble those of classically in-
tegrable systems. In addition, frequency operators are de-
fined in analogy to the classical frequencies, both of which
are determined completely by the Hamiltonian. It is not for
the first time that operator-valued analogs of the classical
frequencies do occur: as early as 1925, Dirac introduced a
similar concept for particle systems@6#.

It is important to look at the time evolution of powers of
Ŝ1 ~and Ŝ2). One finds

dŜ1
k

dt
5

i

\
@Ĥ,Ŝ1

k #5 iŜ1
k vk~Ŝz!, ~22!
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where now

vk~Ŝz!5
1

\
„H~Ŝz1k\!2H~Ŝz!…. ~23!

Since generally

v̂kÞkv̂, ~24!

a difference to the classical relation~13! arises that will have
interesting consequences for the perturbative approach to be
studied later on. When formally expanding both sides of~24!
in powers of\, however, the leading order reflects the clas-
sical relation.

The generalization to systems consisting ofN spins,
Ŝj , j51, . . . ,N, is straightforward. The components of each
individual spin fulfill commutation relations~1!, and opera-
tors associated with different spinsŜja ,Ŝj 8b commute. The
Hamiltonian now will depend on all spins,
Ĥ5H(Ŝ1 , . . . ,ŜN) and the equations of motion read

dŜja
dt

5
i

\
@Ĥ,Ŝja#, a5x,y,z. ~25!

For a quantum integrableN-spin Hamiltonian there areN
frequency operators generalizing the expressions~20! and
~23!:

vk
~ j !~Ŝz!5

1

\
„H~Ŝ1z , . . . ,Ŝjz1k\, . . . ,ŜNz!2H~Ŝz!…,

~26!

and the time evolution of the ladder operators is simply
given by

dŜj1
k

dt
5

i

\
@Ĥ,Ŝj1

k #5 iŜj1
k v̂k

~ j ! , k51,2, . . . , ~27!

and their adjoints.

IV. PERTURBATION THEORY

Having established a concept of integrability for quantum
systems, the program to be carried out is as follows. In clas-
sical mechanics, a small perturbation is added to an inte-
grable system and it is investigated whether, by successive
canonical transformations, the perturbation can be removed
completely; this would render the system integrable. As is
known from the KAM theorem, however, integrability is de-
stroyed by a generic perturbation: any perturbation series is
doomed to diverge in finite fractions of phase space. A
quantum-mechanical implementation of this approach aims
at transforming a perturbed quantum integrable system into
an integrable one by applying a sequence of unitary transfor-
mations. Lie transforms are a convenient tool here since they
are adapted to the algebraic structure of the theory. More-
over, they facilitate comparison with canonical perturbation
theory, the relevant formulas of which are gathered in Ap-
pendix B.

A quantum system consisting ofN spins with constant
length Ŝj

2 is assumed to be described by a Hamiltonian op-
erator of the form

Ĥ«5H~Ŝ,«!5H0~Ŝz!1H̃~Ŝ,«!, ~28!

whereĤ0 is a quantum integrable system, depending only on
the z components of the spins@if not indicated otherwise,Ŝ
denotes the collection (Ŝ1 , . . . ,ŜN) of operators#.

The perturbationH̃(Ŝ,«) may depend on all components
of theN spins and it contains a real expansion parameter«

such that the perturbation vanishes for«50: H̃(Ŝ,0)50.
Furthermore, it is assumed that the unperturbed Hamiltonian
Ĥ0 is not degenerate. In the following, a possible depen-
dence of operators on the invariantsŜj

2 will not be made
explicit.

A. Unitary transformations

To begin with, it is useful to study the effect of unitarily
transforming the spin operators by an operatorÛ«5U(Ŝ,«)
with U(Ŝ,«50)51. New spin operatorsŜ8 ~throughout this
paper the prime does not denote a derivative! are introduced
by

Ŝ«85U«~Ŝ! Ŝ U«
†~Ŝ!, ~29!

and the induced transformation of the Hamiltonian reads

H~Ŝ,«!5H8~Ŝ«8 ,«!, ~30!

that is, in terms of the primed operators,Ŝ«8 , the Hamiltonian
is given by a new functionH8. By using the inverse of~29!
in the form

Ŝ5U«
†~Ŝ! Ŝ«8 U«~Ŝ!5U«8

†~Ŝ«8! Ŝ«8 U«8~Ŝ«8!, ~31!

relation ~30! can be written as

U«8
†~Ŝ«8!H~Ŝ«8 ,«!U«8~Ŝ«8!5H8~Ŝ«8 ,«!. ~32!

This equation holds for any unitary transformationÛ« . In
view of the criterion for quantum integrability, QJ, the new
HamiltonianĤ5Ĥ8 is required to depend on thez compo-
nents of the primed spin operatorsŜ 5Ŝ8 only, so that~30!
assumes the special form

H~Ŝ,«!5H~ Ŝ z ,«!. ~33!

DefiningU«(Ŝ )5U«8(Ŝ ), Eq. ~32! turns into

U«
†~ Ŝ ! H~ Ŝ ,«! U«~ Ŝ !5H~ Ŝ z ,«!. ~34!

In order to distinguish quantities related to a general trans-
formation as in~30! from those associated with~33!, curly
symbols such asÛ andĤ have been used. It will be con-
venient to rename the curly operatorsŜ by Ŝ in Eq. ~34!.

B. Perturbation expansion

The construction of the unitary transformationÛ« achiev-
ing ~34! is at stake now. Under three assumptions it can be
reduced formally to the successive solution of an infinite set
of hierarchical equations determined by the unperturbed
HamiltonianH0(Ŝz) and the perturbationH̃(Ŝ,«). First, it is
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assumed that the perturbation in~28! can be expanded in a
power series of the parameter«:

H̃~Ŝ,«!5 (
p51

`

«pHp~Ŝ!. ~35!

When writing the operatorÛ« as a Lie transform,

U~Ŝ,«!5exp@2 iu~Ŝ,«!/\#, ~36!

a similar expansion is required to exist for the Hermitian
operatorû« :

u~Ŝ,«!5 (
p51

`

«pup~Ŝ!. ~37!

The operatorû« is called the generator~or generating opera-
tor! of the unitary transformationÛ« . Finally, it must be
possible to expand the new Hamiltonian operator,Ĥ, in
powers of«:

H~Ŝz ,«!5 (
p50

`

«pHp~Ŝz!. ~38!

Plugging these expansions into requirement~34! and collect-
ing the terms multiplied by equal powers of the parameter
«, one obtains the following set of equations:

05Ĥ02Ĥ0 ,
i

\
@Ĥ0 ,û1#5Ĥ12Ĥ1 ,

i

\
@Ĥ0 ,û2#5Ĥ22

i

2\
@ û1 ,Ĥ11Ĥ1#2Ĥ2 ,

A

i

\
@Ĥ0 ,ûp#

5Rp~ û1 , . . . ,ûp21 ,Ĥ1 , . . . ,Ĥp ,Ĥ1 , . . . ,Ĥp21!

2Ĥp ,

A ~39!

For convenience, each equation has been solved for the com-
mutators of the unperturbed Hamiltonian,Ĥ0 , with the gen-
erator of the highest index,ûp . Equations~39! constitute a
nested hierarchy: at thepth level the quantitiesĤp and ûp
can be determined if all quantities with smaller indices have
been found; the operatorR̂p contains only quantities know
from the beginning or determined when solving the equa-
tions of the lower levels. Such a structure is typical for per-
turbation theory formulated in terms of Lie transforms. It is
possible to discuss the method to solve the equations~39! in
full generality@7–9#. For simplicity, the procedure is carried
out here for a system with a single degree of freedom first;
generalization to two~or more! spins is then straightforward.

C. One degree of freedom

For a single-spin system with Hamiltonian

H~Ŝ,«!5H0~Ŝz!1H̃~Ŝ,«!, ~40!

the unknownsûp and Ĥp are determined from the nested
hierarchy~39! as follows.

Solving the first equation of the hierarchy is particularly
simple because it states that the old and the new Hamil-
tonian, Ĥ0 andĤ0 , respectively, coincide. By assumption,
Ĥ0 depends on thez component ofŜonly, and, thus,Ĥ0 has
this property, too, whileŜ and Ŝ are identical to order«0.
This is consistent, as is easily seen from the limit of vanish-
ing perturbation,«50.

The remaining equations are all of the same type:

i

\
@H0~Ŝz!,up~Ŝ6 ,Ŝz!#5Rp~Ŝ6 ,Ŝz!2Hp~Ŝz!. ~41!

The operatorR̂p can be written as a power series in the
operatorsŜ6 @cf. Eq. ~84! in Appendix C#:

Rp~Ŝ6 ,Ŝz!5Rp,0~Ŝz!1 (
k51

`

„Ŝ1
k Rp,k

1 ~Ŝz!1Rp,k
2 ~Ŝz!Ŝ2

k
…,

~42!

with uniquely defined operatorsR̂p,k
1 5(R̂p,k

2 )† and R̂p,0 that

depend onŜz only.
However, expandingup(Ŝ6 ,Ŝz) as in ~42!,

up~Ŝ6 ,Ŝz!5up,0~Ŝz!1 (
k51

`

„Ŝ1
k up,k

1 ~Ŝz!1up,k
2 ~Ŝz!Ŝ2

k
…,

~43!

one obtains for the commutator in~41!

i

\
@Ĥ0 ,ûp#5 (

k51

`

„Ŝ1
k ûp,k

1 i v̂k1~2 i v̂k!ûp,k
2 Ŝ2

k
…, ~44!

where Eq.~22! has been used. The order of the operators
ûp,k

6 and the frequency operator of the unperturbed system,
v̂k , is immaterial since they depend onŜz only. Obviously,
there is no term depending onŜz alone; hence, for~41! to
hold one must have

Hp~Ŝz!5Rp,0~Ŝz!. ~45!

Furthermore, the operatorsûp,k
6 follow from comparing~42!

and ~44!:

up~Ŝ6 ,Ŝz!5up,0~Ŝz!1 (
k51

` S Ŝ1
k
R̂p,k

1

i v̂k

1
R̂p,k

2

2 i v̂k

Ŝ2
k D ,

~46!

where the inverse of the operatorv̂k is well-defined only if
the operatorv̂k does not have a zero eigenvalue; this, how-
ever, is guaranteed by the assumption that the unperturbed
Hamiltonian has no degenerate eigenvalues. Therefore, an
operatorûp solving Eq.~41! has been found in terms ofR̂p
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and v̂k . Its ‘‘diagonal’’ part up,0(Ŝz) ~corresponding to a
phase shift when acting on eigenstates ofŜz) remains
undetermined—for simplicity, it will be chosen equal to zero
for all p. As a result, the possibility to solve the hierarchy of
Eqs. ~39! has been established. The similarity of Eq.~46!
with the classical formula, Eq.~B5!, is striking.

It is important to note that the expression~46! for the
generatorûp exhibits factors inversely proportional to the
frequency operatorsvk(Ŝz), as is familiar from classical per-
turbation theory~cf. Appendix B!. As can be read off from
the structure of the hierarchy~39!, the operatorsR̂p are linear
in ûp21: thus, they contain terms proportional to 1/v̂k

p21 .

Solving ~46! for the generating operator ofpth order, ûp ,
one finds it to be proportional to the inverse of thepth power
of frequency operators. The structurally similar classical ex-
pansion is bound to converge to a well-defined canonical
transformation since all classical systems with one degree of
freedom are integrable. By analogy, it is expected that the
individual generating operatorsûp will add up to a sensible
expression for the unitary transformationÛ« . If classical
systems with two degrees of freedom are studied, the impact
of a perturbation is known to be disastrous in most cases.

D. Two degrees of freedom

For a nearly integrable quantum system with two degrees
of freedom

H~Ŝ1 ,Ŝ2 ,«!5H0~Ŝ1z ,Ŝ2z!1H̃~Ŝ1 ,Ŝ2 ,«!, ~47!

the transformed Hamiltonian operator should depend on two
new spin components only,Ŝ 1z and Ŝ 2z . As before, the
lowest order of the hierarchy~39! is easily solved by defin-
ing Ĥ0 to be identical with the unperturbed Hamiltonian,
Ĥ0 . For p>1, the equations to be solved read:

i

\
@H0~Ŝ1z ,Ŝ2z!,up~Ŝ16 ,Ŝ26 ,Ŝ1z ,Ŝ2z!#

5Rp~Ŝ16 ,Ŝ26 ,Ŝ1z ,Ŝ2z!2Hp~Ŝ1z ,Ŝ2z!. ~48!

Using expansions for the operatorsR̂p and ûp ~cf. Appendix
C! in analogy to~42! and~43!, respectively, one finds for the
generator

ûp~Ŝ6 ,Ŝz!5 (
k,l50

~k,l !Þ~0,0!

` S Ŝ11
k Ŝ21

l
Rp,kl

1 ~Ŝz!

i „vk
~1!~Ŝ1z ,Ŝ2z1 l\!1v l

~2!~Ŝ1z ,Ŝ2z!…
1Ŝ11

k
Rp,kl

6 ~Ŝz!

i „vk
~1!~Ŝz!2v l

~2!~Ŝz!…
Ŝ22
l 1 H.c.D .

~49!

Again, the generatorûp is determined up to an arbitrary
function of Ŝz only which is chosen equal to zero. When
expressing the denominators in terms of the unperturbed
Hamiltonian, it becomes obvious that both spins enter sym-
metrically in ~49!: the first one reads

D̂kl
15

1

\
„H0~Ŝ1z1k\,Ŝ2z1 l\!2H0~Ŝ1z ,Ŝ2z!…, ~50!

and the second one is equal to

D̂kl
25

1

\
„H0~Ŝ1z1k\,Ŝ2z!2H0~Ŝ1z ,Ŝ2z1 l\!…. ~51!

Equation~49! belongs to the main results of the present pa-
per. For systems with two~or more! degrees of freedom the
generators contain terms proportional to the inverse oflinear
combinationsof frequency operators. The expansion~49!
makes sense only if the denominatorsD̂kl

6 do not have a zero
eigenvalue, which will be assumed from now on. When deal-
ing with the convergence of the perturbation series, it will be
necessary to proceed in two steps: first, the existence of each
generatorûp has to be shown, and subsequently it has to be
checked that the sum of allûp leads to a sensible result.

V. EXAMPLES

The perturbation theory as developed in the preceding
section is applied here to explicit examples. Systems with
one and two degrees of freedom will be studied in order to
obtain more detailed insight into the structure of the denomi-
nators.

A. One degree of freedom

The Hamiltonian to be studied is defined as follows:

H~Ŝ,«!5aŜz1
1

2
bŜz

21
«

2
Ŝx
2

5aŜz1
1

2
bŜz

21
«

4
~Ŝ22Ŝz

2!1
«

8
~Ŝ1

2 1Ŝ2
2 !,

~52!

the nonzero constantsa andb being real numbers, and the
quantum integrable part,Ĥ05aŜz1bŜz

2/2, is assumed to
have no degenerate eigenvalue. The perturbation
H̃(Ŝ,«)5«Ŝx

2/2 is particularly simple because it consists of
just one single term being proportional to«.

It is straightforward to calculate the frequency operators
according to~23!:
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v̂k5k~a1bŜz!1 1
2bk2\, k51,2, . . . . ~53!

The first term on the right-hand side defines a functionvk of
the operatorŜz which coincides with the expression for the
classical frequency:vk(Sz)5kv(Sz)5k(a1bSz). Due to
the discretization of the derivative an additional term propor-
tional to\ shows up in~53!.

According to~45! the new first-order Hamiltonian is equal
to the diagonal part of the perturbation:

H1~Ŝz!5 1
4 ~Ŝ22Ŝz

2!, ~54!

as can be read off from Eq.~52!. When expanding the off-
diagonal part of the perturbation the only nonvanishing co-
efficients are found to be

R1,2
6 ~Ŝz!5 1

8 , ~55!

leading to the following expression for the first-order genera-
tor:

û15
1

8 S Ŝ1
2 1

i v̂2

1
1

2 i v̂2

Ŝ2
2 D , ~56!

with v̂2 from ~53!. Since the energy eigenvalues of the
HamiltonianĤ0 in ~52! have been assumed not to be degen-
erate, the expectation value of the denominators in Eq.~56!
will not have zero eigenvalues. Consequently, there is no
principal obstacle which would destroy the convergence of
the perturbation series for the unitary transformationÛ,
similar to classical mechanics.

B. Two degrees of freedom

Consider a two-spin Hamiltonian~47! with

H~Ŝ1 ,Ŝ2 ,«!5 f 1~Ŝ1z!1 f 2~Ŝ2z!1gŜ1zŜ2z1H̃~Ŝ1 ,Ŝ2 ,«!,
~57!

where

f j~x!5a j x1
1

2
b j x

2, j51,2. ~58!

The quantum integrable Hamiltonian consisting of the first
three terms on the right-hand side of Eq.~57! is quadratic in
thez components of the spin. With a view to the structure of
the denominators present in the generating operator—which
are completely determined by the frequencies of the unper-
turbed system as seen from Eq.~49!—the form of the per-
turbation H̃(Ŝ1 ,Ŝ2 ,«) must not be specified in detail. On
evaluating~26! one finds

v̂k
~1!5k~a11b1Ŝ1z1gŜ2z!1 1

2b1k
2\, ~59!

and v̂k
(2) follows from exchanging the indices (1↔2). The

first term is closely related to the classical frequency,

vk
~1!~S1z ,S2z!5kv~1!~S1z ,S2z!

5k
]H0~S1z ,S2z!

]S1z

5k~a11b1S1z1gS2z!, ~60!

and analogously forvk
(2)(S1z ,S2z). In formula ~49!, the ex-

pansion of the generatorûp has been given in general terms.
Focus now on the second term of its right-hand side contain-
ing the difference of the frequency operators in the denomi-
nator. Its matrix elements in the product basisum1 ,m2&, con-
sisting of eigenstates of the operatorsŜjz , are given by

^m1 ,m2uŜ11
k

R̂p,kl
1

D̂kl
2
Ŝ22
l um18 ,m28&

5^m18 ,m2u
R̂p,kl

1

D̂kl
2

um18 ,m2&dm1m181kdm2m282 l , ~61!

where, as before,D̂kl
25v̂k

(1)2v̂ l
(2) , which in the present case

reads explicitly

D̂kl
25@k~a11b1Ŝ1z1gŜ2z!2 l ~a21b2Ŝ2z1gŜ1z!#

1
\

2
~b1k

22b2l
2!. ~62!

Since both operators,R̂p,kl
1 and D̂kl

2 , depend on thez com-
ponents only, the expectation value of their ratio,^R̂/D̂&, is
equal to the ratio of their expectation value,^R̂&/^D̂&. Con-
sequently, the convergence of the power series defining the
first-order generator for the system~57!, will be controlled
by matrix elements of operators such asD̂kl

2 in Eq. ~62!. They
are made up of two contributions with different origins. The
operator in square brackets is recognized as the difference of
the frequency operators that one would obtain if in the clas-
sical formula~60! one were to replace the variablesSjz by
their operator equivalents,Ŝjz . The possibility to approxi-
mate arbitrarily well the ratio of the frequenciesv (2)/v (1)

for a given torus~i.e., fixed values ofS1z andS2z) by k/ l
leads to the problem of small denominators in classical me-
chanics~cf. @10#!.

Then, the differenceD̂kl
2 contains a term proportional to

Planck’s constant: the occurrence of a termlinear in \ fol-
lows from studying a HamiltonianĤ being quadratic in the
z components of the spins. Polynomials of degreer for the
Hamiltonian lead to terms of at most\ r21, etc. The presence
of such terms has been noted already by Robnik@11# in a
similar treatment of particle systems. He suggested that these
additional terms will have the effect to move the system
away from the classical resonance, however small the value
of \. But looking at theexactexpression~62! for a fixed
value of Planck’s constant,\51, say, one can also conceive
it as a new type of resonance condition that is no longer
linear in the indicesk and l : a quantum-mechanicalnonlin-
ear resonance condition arises that has to be studied in its
own right for all possible representations.

The relevant matrix elements of the operatorD̂kl
2 @cf. ~61!#

read explicitly
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^m12k,m282 l uD̂kl
2um12k,m282 l &

5k~a11b1\m11g\m28!2 l ~a21b2\m281g\m1!

2
\
2 ~b1k

22b2l
2!, ~63!

@note the sign change of the last term relative to~62!#. In
each individual representation, there is an important differ-
ence compared to classical mechanics. The range of the num-
bersk and l is not all the integers but it varies over a finite
subset of them only, which is determined by the spin length
s. This is characteristic of finite-dimensional representations
of spin systems while it does not occur for particle systems.
The matrix elements of the other operators in Eq.~49! lead to
expressions of the same structure.

There are two ways to study the expression~63!. First,
consider it as a quantum-mechanical statement in its own
right. This means to give\ its actual value and to let vary
both pairs (m1 ,m28) and (k,l ) over the finite range deter-
mined by the value ofs. Within each (2s11)-dimensional
representation of the spin algebra, the modulus of^D̂kl

2& will
have some positive nonzero minimal value,D(s). Conse-
quently, for sufficiently small values of«, the expansion of
the generatorûp in ~37! is expected to converge because the
terms@«/D(s)#p can be kept small. For spins of lengths the
perturbed HamiltonianĤ« is given by a finite-dimensional
Hermitian matrix that guarantees the existence of a unitary
transformation diagonalizing it. Therefore, the generic con-
vergence of the construction should not come as a surprise
~for possible technical difficulties, cf.@12#!. For the present
concept of integrability, however, it is essential that not one
specificrepresentation is studied but that the statements hold
in analgebraicsense, or, equivalently, inall representations.
The implications of this requirement will be made explicit
now.

Imagine to have constructed the diagonalizing transforma-
tions in all representations. This set of matrices may either be
the representations of onesinglealgebraically defined opera-
tor Û« or not. In the latter case, the unitary transformations
in the individual representations will not ‘‘converge’’ to-
wards one specific unitary operator for large values ofs
~since the value of\ is kept fixed, this procedure is not
identical to the classical limit to be discussed momentarily!.
In addition, for larger values ofs the numberD(s) takes on
smaller and smaller values, which requires the expansion pa-
rameter to be correspondingly smaller. If there is nofinite
value of« such that the perturbation series converges for all
allowed values ofs, i.e., algebraically, the perturbation
H̃(Ŝ,«) renders the system nonintegrable. A strong decrease
of the smallest occurring denominatorD(s) as a function of
s has been observed numerically. If, however, the summation
of the perturbation series for alls does not require vanishing
«, one may expect an algebraic diagonalizing operator to
exist; hence, the perturbation can be absorbed into an appro-
priate redefinition of the action operators. In classical me-
chanics, this convergence for finite« is known to result from
appropriately decreasing numerators.

We turn now to the second way to study~63!: in the
semiclassical limit with\;1/s and s→`, one should re-

cover the behavior of the classical frequency denominators
from Eq.~63!. Numerical tests make it plausible that, indeed,
the value ofD(s) decrease monotonically when larger values
of k and l provide better and better approximations of the
classical frequency ratio~the values of\m1 and \m28 are
kept fixed here, defining thus a specific ‘‘torus’’!. An ana-
lytic study is not straightforward, even for the quadratically
modified resonance condition associated with~63!: the be-
havior of the last term is not easily controlled since\k2 and
\ l 2 may have values of the order ofs.

VI. DISCUSSION

A. Summary and outlook

For the sake of clarity, the main points of the develop-
ment given in the previous pages are briefly summarized.
Starting from the algebraic skeleton necessary to describe
quantum ~spin! systems, arguments for the existence of
quantum-mechanical action and frequency operators in sys-
tems with a single degree of freedom have been put forward.
When applying these concepts to systems with more degrees
of freedom they lend themselves to a definition of quantum
integrable systems. An algebraic version of perturbation
theory of such systems has been formulated appropriate to
absorb the effect of an added disturbance. Since this formu-
lation respects~and exploits! the underlying Lie-algebraic
structure, a tight analogy to classical Lie transforms is
achieved. As a natural consequence, operator-valued analogs
of the classical frequency denominators show up when con-
structing a unitary transformation that would diagonalize the
Hamiltonian algebraically. In this way, the quantum-
mechanical locus of the convergence problems known to ex-
ist in classical mechanics has been found, at least on a formal
level. In an appropriate sense, the quantum-mechanical ex-
pressions for the denominators generalize the classical ones.
The condition for a classical resonance to occur is, effec-
tively, equivalent to alinear relation among the classical
frequencies~associated with a ‘‘plane’’ in action space!
whereas, in a given representation, the relevant quantum-
mechanical relation turns out to benonlinear ~defining ‘‘el-
lipsoids’’ or other curved surfaces!. Such structures have
been observed in semiclassical treatments, for example, in
the work by Berry and Tabor@13# who derive energy-level
statistics for classically integrable quantum systems in the
limit of small values for\.

When scrutinizing the notion of quantum integrability the
ultimate goal is to provide evidence for both, its usefulness
and its consistency. Rigorously testable predictions of spe-
cific properties must result for quantum integrable~and non-
integrable! systems, just as the phase-space foliation of clas-
sically integrable systems flows from its classical
counterpart. In our view, the major achievement of the
present approach is to have boiled down the question of
quantum integrability~and,a fortiori, of quantum chaos! to a
technicalproblem, namely, to investigate the~convergence!
properties of a perturbation series. Due to thenonlinearities
in the quantum-mechanical expressions just mentioned, the
behavior of the perturbation series is, from the present point
of view, not obvious. In principle, there is no need for quan-
tum systems toexactlyparallel the properties of classically
~non! integrable systems: the underlying unifying structure is
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on analgebraic level but with the algebras being realized in
different spaces, in phase space and in Hilbert space, respec-
tively. In the semiclassical limit, however, one expects that
the statements associated with the two realizations become
comparable if appropriate tools such as Wigner functions are
employed. The present formulation now calls for a detailed
parallel investigation of the effects that a perturbation has on
a classically integrable system and on its quantum counter-
part.

Here is a brief sketch of a scenario being plausible in
view of the present results which, however, has to be sub-
stantiated by further investigations. Focus on the fully
quantum-mechanical regime, that is, fix the value of\ and
consider the behavior of the perturbation series in represen-
tations of variable dimension, 2s11. It is expected that the
‘‘visibility’’ of the perturbation will increase for dimensions
with larger values ofs. A vivid illustration of this effect has
been reported for a system consisting of two coupled spins
where a ‘‘regular quantum web’’ is gradually torn apart by a
perturbation of increasing strength@14#. Related phenomena
have been observed in particle systems by Bohigas, Tomso-
vic, and Ullmo@15#. In a study of the spin-boson model the
observed ‘‘resonance phenomena’’ can be attributed to the
presence of small denominators becoming more or less ef-
fective in representations of different dimensions@16#. An
analytic study of these numerically observed effects in the
vein of the present paper is under way@17#. In general,
‘‘quantum resonances’’ in a nonintegrable quantum system
due to ever smaller denominators will become more and
more pronounced if larger representations of the spin algebra
are considered. The infinite-dimensional representation~not
to be confused with the semiclassical limit! contains the most
detailed structure, possibly leading to an actual divergence of
the perturbation series.

B. Related work

There is a large number of joints between earlier work
and the present one that so far have been alluded to only
occasionally. It is useful to dwell on them for a moment, to
draw parallels and to point out differences.

The introduction of frequency operators~in the present
terminology! provides a link to the most advanced papers of
the ‘‘old quantum mechanics.’’ In 1925, Dirac@6# defined
‘‘ q numbers,’’ which would fulfill the fundamental commu-
tation relations of position and momentum. Basicalgebraic
consequences are derived, partly by exploiting the analogy to
the classical Poisson brackets. One section of the paper is
devoted to ‘‘multiply periodic systems’’ characterized by the
existence of ‘‘uniformizing variables’’~which nowadays
would be called action and angle operators! such that the
Hamiltonian depends on the action operators only@cf. Eq.
~3!#. In the terminology of the present work multiply peri-
odic systems are thus recognized as quantum integrable ones.
Assuming the action-angle operators to fulfill the same com-
mutation relations as momentum and position—which is un-
tenable due to the defectiveness of a phase operator@18#—
Dirac introduced two different types of frequencies. The first
one is supposed to govern the time evolution of the phase
operator itself, whereas the second one is associated with the
time derivative of theexponentiatedphase operator. It turns

out that the latter frequency operator is equivalent to the
expression given in~20!. Dirac also mentions its two pos-
sible versions reflecting the freedom of ordering in~18!. For
spin systems considered here, the operatorŜ1 plays a role
similar to the exponentiated angle operator.

Wentzel @19# continued Dirac’s work by establishing a
link between Heisenberg’s matrix mechanics and theq num-
bers. In particular, he wrote down expressions for quantum-
mechanical frequencies similar to~20! being applicable to
multiply periodic systems only. However, this line of reason-
ing seems to have come to an abrupt end by the advent of
wave mechanics in 1926: the serious shortcoming of the ear-
lier quantum theory to allow for quantization of multiply
periodic systems only was removed by Schro¨dinger’s equa-
tion, which is easily written down for particles subjected to
arbitrary potentials.

Similarly, strong formal affinities to Heisenberg’s formu-
lation of perturbation theory@20# exist. This is easily under-
stood if one recalls that before the introduction of Schro¨d-
inger’s equation classical mechanics served much more than
later as Ariadne’s thread for quantum-mechanical develop-
ments. Still, Heisenberg’s approach to treat perturbations and
the widely used perturbation scheme of Rayleigh-
Schrödinger @21# differ conceptually in an important way
from the present one. Traditionally,any quantum system
may serve as a starting point for perturbation theory, the only
assumption being that its~necessarily periodic! solutions are
known. In the approach developed here, the unperturbed sys-
tem is assumed to be quantum integrable; hence, it~presum-
ably! stems from arestrictedclass of systems, and the effect
of the perturbation is to remove it from this class. In order to
prove the KAM theorem, classical perturbation theory is de-
veloped relative tointegrable systems: the fate of a torus
under the perturbation is investigated, not its effect on an
arbitrary periodic solution—which might happen to be an
isolated periodic orbit of a nonintegrable system. KAM
theory would not apply at all. It is hoped that by systemati-
cally moving away fromintegrablequantum systems generic
properties will be seen to emerge for nonintegrable ones. As
for a close-up of the relation between classical tori and
Heisenberg’s matrix mechanics which fits well into the
scheme developed here, see the work by Greenberg, Klein,
and Li @22#.

Next, there are close ties to Birkhoff normal forms@1# and
to the so-called ‘‘algebraic quantization’’ reviewed in@23#.
The idea is to quantize integrable approximations to classi-
cally nonintegrable systems. Crehan@24# worked out
quantum-mechanical normal forms in the spirit of Birkhoff
and Gustavson, starting from the classical Hamiltonian func-
tion in the neighborhood of a point of stable equilibrium.
Impressive agreement between exact quantum-mechanical
solutions and the approximate ones has been obtained
@25,26#. In contrast to these works, however, no recourse has
been made to classical mechanics in the present approach.

Concerning the presence of the quantum equivalents of
the small denominators, their occurrence has been noted al-
ready by Robnik@11# for particle systems~and by Graffi, cf.
the introduction of@27#!. Robnik pointed out that for small
values of Planck’s constant the classical denominators will
be modified by terms of the order\. In this way the reso-
nance conditions are destroyed that govern the fate of an
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individual classical torus, that is, its survival or destruction.
Furthermore, it is conjectured that the series for the diago-
naliting unitary transformation will converge almost always
without possessing a classical limit. It is expected that in
view of the exact expression~49! the effect of the denomi-
nators can be studied in more detail for spin systems.

Also, the understanding of clashes between the behavior
of classical and quantum perturbation expansions may ben-
efit from the present approach. It has been noted by Eckhardt
@28# for a one-dimensional particle system that the conver-
gence of a classical perturbation series is not automatically
reflected in the convergence of the corresponding quantum
perturbation series, as follows from a simple scaling argu-
ment.

In order to deal with issues of perturbation series for
quantum systems a new setting has been provided by Bellis-
sard and Vittot@27#, whose work is based on the concept of
noncommutative geometry. Their work is focussed on Lie-
transform techniques for quantum-mechanical particle sys-
tems with respect to the classical limit. The aspect of inte-
grability, seemingly, has not been addressed in detail. It is
particularly important that estimates of the Nekhoroshev type
become available that allow one to control the approxima-
tions for energy eigenvalues extremely well. For systems
with one degree of freedom, the convergence of the pertur-
bation series has been proven~cf. @29#!. At present, the
theory has been worked out for particle systems only while
the transfer to spin systems is in preparation@30#. A common
feature of many works in this area~cf. also@31#! is that the
unperturbed systems considered are collections of harmonic
oscillators. Having frequency operators at one’s diposal, this
restriction seems to be no longer necessary.

Finally, a review of the use of Lie-transform techniques
and KAM-like results in quantum mechanics has been given
by Jauslin@32# dealing, to a large extent, with externally
driven systems.

APPENDIX A: THE COMMUTATORS †f „Ŝz…,Ŝ6
k
‡

It will be shown by using the commutation relations of the
spin operators that

@ f ~Ŝz!,Ŝ1
k #5Ŝ1

k @ f ~Ŝz1k\!2 f ~Ŝz!#

5Ŝ1
k @exp~k\]z!21# f ~Ŝz!, ~A1!

where]z is a shorthand for a~formal! derivative with respect
to Ŝz . The functionf (x) is assumed to have an expansion as
a power series inx.

First, it is proved by induction that

@Ŝz
n ,Ŝ1#5Ŝ1@exp~\]z!21#Ŝz

n . ~A2!

This relation holds forn51,

@Ŝz ,Ŝ1#5Ŝ1@exp~\]z!21#Ŝz5Ŝ1~Ŝz1\2Ŝz!5\Ŝ1 .
~A3!

Equation~A2! is valid for n11 if it is assumed to hold for
n:

@Ŝz
n11 ,Ŝ1#5@Ŝz ,Ŝ1#Ŝz

n1Ŝz@Ŝz
n ,Ŝ1#

5Ŝ1$\Ŝz
n1~Ŝz1\!@exp~\]z!21#Ŝz

n%

5Ŝ1@exp~\]z!21#Ŝz
n11 , ~A4!

since (Ŝz1\)exp(\]z)5exp(\]z)Ŝz. Using f (Ŝz)
5(n50

` f nŜz
n implies

@ f ~Ŝz!,Ŝ1#5 (
n50

`

f n@Ŝz
n ,Ŝ1#

5Ŝ1@exp~\]z!21# (
n50

`

f nŜz
n

5Ŝ1@exp~\]z!21# f ~Ŝz!. ~A5!

Thus, Eq.~A3! holds fork51, as is necessary for a proof by
induction onk. The step fromk to k11 reads

@ f ~Ŝz!,Ŝ1
k11#5Ŝ1

k @ f ~Ŝz!,Ŝ1#1@ f ~Ŝz!,Ŝ1
k #Ŝ1

5Ŝ1
k11$@exp~\]z!21#

1@exp~k\]z!21#exp~\]z!% f ~Ŝz!

5Ŝ1
k11$exp@~k11!\]z#21% f ~Ŝz!, ~A6!

where, in the second line, Eq.~A5! has been used in the form
f (Ŝz)Ŝ15Ŝ1exp(\]z)f(Ŝz), concluding the proof of~A1!.
Relation~A1! can also be written as

f ~Ŝz!Ŝ1
k 5Ŝ1

k f ~Ŝz1k\! or f ~Ŝz2k\!Ŝ1
k 5Ŝ1

k f ~Ŝz!;
~A7!

in words, the order of a function ofŜz only and thekth
power of the operatorŜ1 may be exchanged if the argument
of the functionf is shifted by an appropriate multiple of\.
Similar relations are obtained for the step-down operator by
taking the Hermitian conjugate of Eqs.~A1! and ~A7!.

A proof of Eq.~A5! for arbitrary functionsf (Ŝz) is easily
given if one exploits the properties of the ladder operators in
explicit representations. The action of the step-up operator is
in all representations of the form

Ŝ1um,s&5cm
s um,s&, cm

s 5As~s11!2m~m11!.
~A8!

Using f (Ŝz)um,s&5 f (m\)um,s&, one obtains for allum,s&
that

f ~Ŝz!Ŝ1um,s&5cm
s f „~m11!\…um11,s& ~A9!

5Ŝ1 f „~m11!\…um11,s&

5Ŝ1 f ~Ŝ1\!um,s&, ~A10!

implying that

f ~Ŝz!Ŝ15Ŝ1 f ~Ŝz1\!, ~A11!

2980 53THOMAS GRAMESPACHER AND STEFAN WEIGERT



which is equivalent to~A5!. As before, induction onk com-
pletes the proof of relation~A1!.

APPENDIX B: CLASSICAL PERTURBATION THEORY

Results of classical Lie-perturbation theory are collected;
for easy comparison with the quantum-mechanical formulas
an analogous notation is used. Consider a Hamiltonian
H(S,«)5H0(Sz)1H̃(S,«), whereH0(Sz) is integrable and
H̃(S,«) is the perturbation. The goal is to remove the pertur-
bation by introducing a new set of spin variables

S85T̂S, ~B1!

where the canonical transformation is implemented by the
operator

T̂5exp~2$u~S,«!,•%!. ~B2!

The functionu(S,«) is assumed to have an expansion in
powers of«, and u(S,«50)50. When expanding the old
and new Hamiltonian functions in powers of«, the construc-
tion of the transformationT̂ leads to a hierarchy of equations

$H0~Sz!,up~S6 ,Sz!%5Rp~S6 ,Sz!2Hp~Sz!

p50,1,2,. . . , ~B3!

which is the classical counterpart of~39!. They can be solved
by an appropriate choice of the functionsup andHp .

If in classical mechanics the expansion of functions
F(S) is written in analogy to~C3! the solutions of~B3! are

Hp~Sz!5Rp,0~Sz!, ~B4!

up~S6 ,Sz!5 (
k51

` SS1
k Rp,k~Sz!

ivk~Sz!
2
Rp,k* ~Sz!

ivk~Sz!
S2
k D . ~B5!

The expression forup(S6 ,Sz) can be simplified by using
vk5kv from ~13!.

Similarly, the results for a two-spin system assume the
form of the expansion~C6!,

Hp~Sz!5Rp,00~Sz!, ~B6!

up~S6 ,Sz!5 (
k,l50

~k,l !Þ~0,0!

` S S11
k S21

l
Rp,kl

1 ~Sz!

i @vk
~1!~Sz!1v l

~2!~Sz!#

1S11
k

Rp,kl
6 ~Sz!

i @vk
~1!~Sz!2v l

~1!~Sz!#
S22
l 1 c.c.D .

~B7!

APPENDIX C: EXPANSION OF A FUNCTION F „Ŝ6 ,Ŝz…

A convention for the expansion of functions of spin op-
erators is established. For simplicity, the case of a single spin
Ŝ is considered first. LetF(Ŝ6 ,Ŝz) be expandable in powers
of Ŝ1 andŜ2 . Functions depending onŜz only are denoted
by curly symbolsF (Ŝz). In general,F̂ will consist of a sum
of terms, each of which is of the form

Ŝ
1

n11Ŝ
2

n12F 1~Ŝz!Ŝ1

n21Ŝ
2

n22F 2~Ŝz!•••. ~C1!

The exponentsnj ,6 are integers greater than or equal to zero.
Since the productŜ1Ŝ25g(Ŝz) depends only onŜz , one
can write for arbitrary integersn6>0 that

Ŝ
1

n1Ŝ
2

n25H Ŝ
1

n12n2F .~Ŝz! n1.n2

F 5~Ŝz! if n15n2

F ,~Ŝz!Ŝ2

n22n1 n1,n2 ,

~C2!

by exchangingg(Ŝz) with Ŝ6
k according to the rules~A7!.

Thus, expression~C1! can be cast into one of these forms if
now n6 are defined as the total number ofŜ6 operators in
~C1!, n65( jnj6 .

Collecting all terms in the expansion ofF(Ŝ6 ,Ŝz) with
the same number ofŜ1 or Ŝ2 , the operatorF̂ can be written
as

F~Ŝ6 ,Ŝz!5F0~Ŝz!1 (
k51

`

@Ŝ1
k Fk

1~Ŝz!1Fk
2~Ŝz!Ŝ2

k #,

~C3!

which will be considered as standard form. For the sake of
generality, the indexk is assumed to run over all integers,
while in a specific representation the sum in~C3! will run
over 2s11 values only. IfF̂ is a Hermitian operator, then
F̂0 is Hermitian and

Fk
1~Ŝz!5@Fk

2~Ŝz!#
†. ~C4!

The generalization to two or more degrees of freedom is
straightforward but the notation becomes more cumbersome.
First consider a functionF(Ŝ16 ,Ŝ1z ,Ŝ26 ,Ŝ2z) depending on
the components of two spinsŜ1 andŜ2 . As before, the func-
tion F is assumed to have an expansion in powers of the spin
components. Since the components of different spins com-
mute,F̂ can be brought to the form

F~Ŝ16 ,Ŝ1z ,Ŝ26 ,Ŝ2z!

5F00~Ŝ1z ,Ŝ2z!1 (
k,l50

~k,l !Þ~0,0!

` F Ŝ11
k Ŝ21

l Fkl
11~Ŝ1z ,Ŝ2z!

1Ŝ11
k Fkl

12~Ŝ1z ,Ŝ2z!Ŝ22
l 1Ŝ21

l Fkl
21~Ŝ1z ,Ŝ2z!Ŝ12

k

1Fkl
22~Ŝ1z ,Ŝ2z!Ŝ12

k Ŝ22
l G . ~C5!

If F̂ is a Hermitian operator this expression simplifies to

F~Ŝ1 ,Ŝ2!5F00~Ŝz!1 (
k,l50

~k,l !Þ~0,0!

`

@Ŝ11
k Ŝ21

l Fkl
11~Ŝz!

1Ŝ11
k Fkl

12~Ŝz!Ŝ22
l 1 H.c.#, ~C6!

since, generalizing~C4!
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F̂kl
115~ F̂kl

22!†, F̂kl
125~ F̂kl

21!†. ~C7!

Functions depending on the components of more than two
spins can be expanded similarly. One gets one term depend-
ing only on thez components and 2N terms that contain the

explicit dependence on the operatorsŜj1 andŜj2 . A unique
way of ordering would be, in an extension of the above, to
throughout position the step-up operatorsŜj1 on the left and
their adjoints on the right of the middle part, which depends
on thez components only.
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