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Abstract. Multiplication of two elements of the special unitary grodj/ (N) determines
uniquely a third group element. A Baker—Campbell-Hausdorff relation is derived which
expresses the group parameters of the product (written as an exponential) in terms of the
parameters of the exponential factors. This requires the eigenvalues of thre&V) matrices.
Consequently, the relation can be stated analytically upvte= 4, in principle. Similarity
transformations encoding the time evolution of quantum-mechanical observables, for example,
can be obtained by the same means.

1. Introduction

Various questions in physics reduce to the following problem: write the product of
exponential functions depending on noncommuting operatosnd B, respectively, as
the exponential of a third operatat,

exp[A] exp[B] = exp[C]. 1)

The names of Baker, Campbell, and Hausdorff (BCH) are associated [21] with a formula
for the operat0|C expressed in multiple commutators afand B:

C=A+B+—[A B]+1—2([A [A, B]] +[[A, B], B]) + .. 2

Remarkably, the operatc{r depends on commutators dfand B only implying that it is
contained in the same algebra.asand B. For this result to hold it is crucial to consider
products ofexponentialfunctions.

Although the expansion (2) for the operaﬁr is explicit, usually the infinite series
of repeated commutators cannot be summed in closed form. It may be used, however, to
generate an approximate expression ?foby directly calculating a finite number of terms
[8]. When read from left to right, equation (1) shows howewntanglethe two factors
into a single exponential. An application important in quantum mechanics results for the
Heisenberg group of position and momentum operajoasd p, where

expl—iplexp[-ig] = exp[-i(p + §) +ih/2]. @)
The right-hand side is particularly simple because the commutator
o R
[.d1=7 (4)

is a constant such that only the first commutator in (2) contributes to the opétamnother
situation with the need for entangling two operators is encountered in periodically driven
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systems. In specific cases, the propagator over one full period reduces to a product of the
propagators for shorter intervals [4, 7, 19]. The Lie algebras involved in these ‘quantum
maps’ may either have a finite or an infinite number of elements.

When read in the opposite sense, equation (1) represatiteatanglingrelation, that
is, the decomposition of a single exponential into factors with simple properties. Such a
relation is useful to calculate expectation values of basic operators in the §to(®), for
example, since they are easily derived from a generating function in disentangled form [1].
Similarly, changes of the group parametrization [9] are conveniently performed by using
BCH relations. In general, the discussion of coherent states for particle and spin systems
as well as for arbitrary Lie groups [16] benefits from the knowledge of (de-)composition
rules (1).

A closely related question arises from the need to perform similarity transformations
according to

exp[—A] B exp[A] = B'. (5)

If the operatorA is proportional to i times the Hamiltonian of a quantum system, equation (5)
describes the time evolution of the Heisenberg observAhieto B'.

A number of techniques has been established in order to efficiently treat entangling
and disentangling problems, in particular, if the operators involved in the BCH relation are
elements of dinite-dimensional Lie algebra. Two-dimensional unitary faithful irreducible
representations are used to derive explicit results for the gfalu@) [9], and for the group
of the harmonic oscillator [15, 10], for example. Applications to more complicated cases
involving symplectic groups also have been worked out in detail [20, 11]. However, it is
not necessary to exclusively work with unitary representations: any faithful representation
can be used [10]. This is helpful if one knows a representation consisting of upper and
lower triangular matrices since they are easily exponentiated. Disentanglement of Lie
group elements is also achieved by using recursion relations for expanded exponentials
and Laplace-transform techniques [18]. This approach generalizes a method first applied to
particular group elements ¢fU (3) [17]. The powerful approach in [21] maps the problem
of both (dis-)entangling (1) and similarity transformations (5) to the solution of a set of
coupled first-order differential equations. This paper also contains theoretical background
on BCH relations, applications in physics as well as a large number of references.

In this paper a different method to evaluate BCH relations is developped for the groups
SU(N). It is based on the spectral theorem for Hermitian operators in finite-dimensional
vector spaces. A ‘linearized’ version of this theorem is derived by exploiting a specific
feature of the algebra«(N) the fundamental of representation going beyond its Lie algebraic
properties. In this way, a one-to-one correspondence between an exponential of linearly
combined generators and a linear combination of them is established—thus ‘removing’ the
exponential function. It is then straightforward to entangle elements of the rowpy).
Conceptually, this method is related to work performed in the early 1970s where the study
of chiral algebras required the evaluationfioite transformations for special unitary groups
[2, 3]. In that context, however, BCH relations have not been considered.

2. Some fundamentals ofSU (N)

An irreducible faithful representation of the grodi/ (N) [14] is given by the set of all
unitary (N x N) matricesU with unit determinant,

detU =1 U, €C nn=1...,N (6)
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also known as the fundamental or defining representation. Each rhatd@n be written in
the form

U = exp[-iL] Lf=L 7
with a traceless Hermitian matrix. It is conveniently expressed as a linear combination
N2-1
j=1

with the setA forming a basis for traceless Hermitian matrices. The Hermitian generators
AJT. = A; are a basis of the Lialgebra su(N) of SU(N), satisfying the commutation
relations:

[Aj, Ar]- = 2ifiu 9)

where the indicesj, k, I, take values from 1 tav? — 1, the summation convention for
repeated indices applies, and tt& x N) unit matrix is denoted byy. The structure
constantsfj,; are elements of a completely antisymmetric tensor (spelled out explicitly in
[12] for example) with Jacobi identity

fklmfmpq + fplm fmkq + fkpmfmlq =0. (10)

The groupSU(N) has rank(N — 1). In other words, any maximal Abelian subalgebra
of su(N) consists of(N — 1) elements corresponding to all linearly independent traceless
N-dimensional diagonal matrices. A ‘complete set of commuting variables’ for a quantum
system described b§U (N) would contain in addition the same number of Casimir operators
according to Racah’s theorem [12]. The properties given so far are valid for all faithful
representations.

A particular feature of the generators in the defining representation of the algaira
is closure undeanticommutation:

4
[Aj, Ay = NéjklN + 2dju Ay (112)

where thed;; form a totally symmetric tensor [12]. FaV = 2, all numbersd;; are equal
to zero, and the generators coincide with the Pauli matrices: the anticommutator of
two of them is either equal to zero or a multiple of the unit matkix,

The anticommutation relation is crucial for the following, however, it is neither valid for
representations other than the fundamental one nor for other Lie algebras. As a consequence
of (11), two generatord; and A, of su(N) are ‘orthogonal’ to each other with respect to
the trace:

Tr(A;jAp) = 251 (12)

In addition, a second Jacobi-type identity exists involving both the antisymmetric and the
symmetric structure coefficients in (9) and (11):

fklmdmpq + fkqmdmpl + fkpmdmlq =0. (13)

For the following, a vector-type notation is useful, based on the structure constants and
the Kronecker symbol. Define the scalar product as already employed in equation (8),

A-B=A,,,B, =A,B, (14)

where the components cd and B are allowed to be either numbers or generatdys
Similarly, define an antisymmetric ‘cross produgt’ by

(A® B); = fiuArBi=—-(BQ®A), (15)
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and a symmetric ‘dot productd:

(AO B); =djuArB = +(B O A);. (16)
Then, the relations (9) and (11) can be written
[A-A,B-A]l_-=2i(A® B)-A (17)
4
[A-A,B-A]+:NA-BIN+2(A®B)-A (18)

where A and B arearbitrary vectors of dimensioriN2 — 1) with numeric entries. Adding
these equations leads to a compact form of the (anti-) commutation relations:

(A-A)(B-A):%A-BIN+(A®B+iA®B)-A. (19)

This equation emphasizes the important point that any expregsamiraticin the generators
can be expressed aslinear combination of them, including the identity. As a matter of
fact, it generalizes the known identity 81/ (2) for the Pauli matrices:

(A-o)(B-o)=A-Bly+iA® B-o. (20)
In the new notation, the identities (10), (13) read
(A®B)-(C®D)+(C®B)-(A®D)+(ARC)- (B®D)=0 (21)
(A®B)- (COD)+(A®D)- (COB)+(AQC)-(BoOD) =0. (22)
Another useful form of equation (13) is given by
AR(BOC)=(A®B)OC+B0O(AR®C) (23)

showing that applyindA® to a® product acts as does a derivative. The ‘orthogonality’ of
the generators (12) becomes

Tr(A-A)(B-A)=2A-B (24)
for arbitrary A and B.

3. Spectral theorem

Every matrixM e CV satisfies its own characteristic equation,
N
> M =0 ay =1, ap = detM (25)
n=0

according to the theorem of Cayley—Hamilton. The coefficientdefine the characteristic
polynomial of M. For traceless matrices such Bk € su(N), the coefficientay_1 in
equation (25) is equal to zero since it equals the trackl.ofAccording to equation (25),
any powerN’ > N of the matrixM is identical to a linear combination of its powe#'
with 0 < n < N — 1. The expansion of a matrix exponential can thus be written

) o) (-'M)m N-1 .
expl-iM] =) = > (MM (26)
n=0

|
m=0 )

with uniquely defined coefficients,(M). They are determined directly by referring to
the spectral theorem[13] valid for smooth functionsf of a Hermitian matrixM with
(nondegenerate) eigenvalueg, k =1, ..., N:

N
FM) =" Fm)P; 27)
k=1
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and the operatoP;, = |m;)(my| projects down to the one-dimensional eigenspace spanned
by the eigenvectojm,) associated with the eigenvalug. In terms of powerdv* and the
eigenvaluesn,, the matriced; read

Pe=]]-— =) PuM" (28)
n#k My — My n=0

the sum contains powers!¥~1 at most since the product runs oveN — 1) factors.
Combining equations (27) and (28), one obtains

N-1 N N-1
foy =" (Z Pknf(mw)w = LM (29)
n=0 \k=1 n=0
and, upon choosingf(x) = exp[-ix], the sum in the round brackets produces the
coefficientse, of the expansion (26) in terms of the eigenvalugs
It is possible to express the numbefsin (29) differently [18]. Write the coefficient
Ffv—1(M, 1) of MY~ with a dummy parameter introduced as follows

N
fvaM) =Y Afom) Ay =[]y —mo ™ (30)
n=1 k+#n
Linear combinations of derivatives with respectitoyield the remaining coefficientg,,,
n=0,1,..., N — 2, associated with any smooth functigh
N—n—-1
Sa(M) = [(85‘"‘1 -y anaf—”—l‘“>fN1(M, A)} (31)
v=1 r=1

with numbersa, from the characteristic polynomial (25), and the abbreviatg.d= 9;.
Since equation (29) requires the eigenvalues of M, analytic expressions will be obtained
only for (4 x 4) matrices at most, i.e. fa§U (4).

4. Linearized spectral theorem

A stronger version of relation (27) is now derived. It is valid for Hermitig x N)
matrices, and it will be called thinearized spectral theorem

JM - A) = fo(M) Iy + f(M) - A. (32)

It states that any functioyi of a linear combination of the generataxsof SU (N) is equal to
a linear combination of the identity and the generators with well-defined coeffigigntg).
In other words, the powers of the generatdrgontained in the powesl" = (M - A)" in
equation (29) can be reduced to linear combinations of them. In view of the commutation
relations of the algebrau(N), equation (19), this is not surprising: the required reduction is
carried out in a finite number of steps by repeatedly expressing products of two generators
by a linear combination of generators.

A convenient procedure to determig, f) in (32) starts from writing

M" = ponly + p, + A n=012...,N—-1 (33)
where

moo=1 no1=0 (34)
=0 p =M. (35)
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A recursion relation foKo,,, p,,) follows from writing M**1 = M"M, using (19) and (33),
M = 1o, M - A+ (p, - A)(M - A)

2 .
:N/J'n'MIN+(MO,nM+p'n®M+|IJ'n®M)'A' (36)
Comparison with (33) fokn 4+ 1) instead ofn shows that
2
Hon+1 = N""n -M (37)
. 2
/"’n+1::u0,nM+p‘n®M+|:u'n®M=N(“nfl'M)Mdl_/"’n@M (38)

which recursively definesuo,,, p,,) in terms of M, starting with the ‘initial values’ (34)
and (35). The termsu, ® M do not contribute since eacly, following from (33) is
proportional toM, M O M, (M & M)©® M, .... Using the derivative-like property (23),
one always encounters termldd ® M being equal to zero. Consequently, the coefficients
(fo, f) on the right-hand side of (32) have been expressed explicitly thrddghand the
eigenvaluesn;:

N—1 N-1
foM) =" fuon  FIM) = fum, (39)
n=0 n=0

with f, from equations (30) and (31). Note that according to (38) the expressigf(idh)
contains only totally symmetric powef®f, M &6 M, (M © M) M, .... Given M, a
simple expression foy, is provided by taking the trace of equation (32):

1 1Y
foM) = S TH(f(M - A) = & ; £ (my). (40)

It should be pointed out thafy is not independent off: one can solve the recursion for
w,, equation (38) without referring to (37). This is reasonable because only then are there
the samenumber of parameters i and on the right-hand side of (32).

Suppose now that theght-hand sideof equation (32) is given, i.e. the parameters
(fo, f) are known to define a group element / (N). How does one expresd/ in
terms of f? This is actually the difficult step when deriving a BCH formula: to find the
group element in terms of the the original parametrization. Assume the fungtimnbe
invertible, then one can write

M-A=ffln+Ff-N=F(f N (41)

with a new functionF. The clue to the inversion is to realize that (41) represents an equation
of the type (32) again. This follows from reading equation (32) from right to left, replacing
f — F, exchanging the role of and M, and settingfy equal to zero in (32). Now
the reasoning leading to equation (39) can be repeated in order to deteviniaeM (f).
Therefore,M can be found as a function ¢f by the means already established.

The orthonormality (12) for the generatoAsallows us to formally switch from\V/ to
f andvice versain a simple manner: multiply equation (32) with, and take the trace
which leads to

Je=Tr(foAx + f - AA) = Tr(f (M - M)Ay) (42)
while the inverse transformation follows from (41):

Mi = Tr(M - M)A = Tr(f Y folw + f - MAL). (43)
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Before applying the linearized spectral theorem to the derivation of BCH formulae, a
comment on the relation between the matritks= M - A andF in (32),

JM) = foly +F (44)

should be made. We must hawd,[F] = 0 since equation (44) is an identity. Nevertheless,
the matrices involved do not have to be multiples of each other. The vanishing commutator
implies that the matriceM and F can be diagonalized simultaneously. Having done this

M would be given by a specific linear combination(af— 1) traceless diagonal generators

He, k=1,2,..., N — 1. The matrixF commutes withM and it is therefore only required

to be another element of the maximal Abelian subalgebra contaMing-or the group
SU(2), the dimension of this algebra is equal to omM¢:andF are in this (and only this)

case proportional to each other (cf the first example below). SE6(3) this observation is
illustrated by a result of [6] where Lie groups are studied from a geometric point of view.
In an appropriate local basis, any group element can be written as a function of a linear
combination of two commuting operators which span a maximal Abelian subalgebra.

5. BCH for SU(N)

A BCH relation for composing a group of elements &&/(N) follows from twofold
application of the linearized spectral theorem wijthx) = exp[—ix]. Consider the product
of two finite transformations, exp{iM - A] and exp[-iN - A], which defines a third element
of SU(N) characterized byR,

exp[—iR - A] = exp[-iM - A]lexp[-iN - Al. (45)
Using equation (32) with the exponential function, we obtain
exp—iR - A] = povoly + (vopt + pov) - A+ (- A)(w - A)
= (MOVO+%H‘V)lN+(V0M+MOV+H®V+iH®V)'A
=poly +p- A (46)

using the commutation relations (19). The quantities, p) can be read off directly as
the coefficients ofly and A;, respectively. The components @& are thus given by
equation (43):

. 2 .
Ry = ITr{In |:(,uovo+ Nu-u) Iv + (vopr + o + L OV +ip Q@ v) -A:| Ak} (47)

providing the relationR = R(M, N). The explicit evaluation requires diagonalization of
the matricesM anN in order to determing: andv; finally, p- A has to be diagonalized in
order to evaluate the logarithm in equation (47). In total, ti{féex N) matrices have to be
diagonalized to achieve the entangling. Derivation of (47) makes use of the anticommutation
relations which are peculiar to the defining representation. Nevertheless the result is valid
for all representations since the operafoin (2) is a uniquely defined linear combination
of the generators. If it has been determined in one faithful representation it is known in all
others.

As an illustration, the familiar example &fU(2) will be looked at from the point of
view developed here. However, tk& product being identical to zero, this case does not
exhibit the full complexity. Therefore§U (4) will also be discussed briefly. Before giving
the examples, the use of the linearized spectral theorem for the determination of similarity
transformations in the groupU (N) will be indicated.
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6. Similarity transformations

The transformation of the operatdf = N - A € su(N) underM = M - A € su(N)
according to
exp[-iM]N exp[iM] = N’ (48)

could be determined from the linearized spectral theorem in the following way. Write the
group element as

exp[iM] = woly + p - A (49)
and its inverse follows from the adjoint of this equation as
exp[—iM] = uo*ly + p* - A (50)

where the star denotes complex conjugation. Plugging these expressions into (48), one
encounters triple products of generatdrsvhich when reduced to a linear combination lead

to a somewhat involved expression. It is more convenient to first multiply equation (48)
with exp[iM], and to work out the termguadratic in the generators. Comparison of the
coefficients ofly and A leads to

pov=p-N (51)
N+ NOp+iN@u=uN +poN +ip® N (52)

It is the vectorN' which must be determined from these equations. It is useful to rewrite
equation (52) with matrices

Ki=poly +p0+in® (53)
acting on the vectoréV and N’ respectively,
K_N =K, N’ (54)

The matrixK; doeshave an inversel,(;l, since it describes the action of exd]i on N’
which is invertible. Consequently, the vector N’ is determined by the relation

N =K *K_v
= (oly + 1 © +Hip®) (uoly + 1 © —ipuR)N (55)
as a function ofu and IV as required.

7. Example 1: SU(2)

The groupSU (2) is used to describe rotations in quantum mechanics and it is isomorphic
[5, 9] to the group of unimodular quaternions/(1,g). The multiplication rules of
guaternions being known, explicit expressions for the product of two elements of the group
SU(2) are obtained easily. In quantum mechanics, as a first step one usually establishes
the relation

exp[-ia - o/2] = cosa/2)l, —isin(a/2)e, - o a=ae, e,re, =1 (56)

by expansion (26) of the exponential exploiting the simple properties ofZhe2) Pauli
matrices. The three-vecter determines both the axis of rotatio#,, and the turning angle,

0 < a < 4x. Equation (56) is special since the matrix in the exponent and the second
term on the right are proportional to each other. As was mentioned before this is due to
the fact that the grouU (2) has rank one, implying that all tracele€sx 2) matrices are
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multiples of each other. Calculating the product of two rotations characterizeddnd 3,
respectively, one obtains

expl-iv - o/2] = (cosw/2) cogB/2) + - B)l2 — i(sin(er/2) cosB/2)e,
+codw/2) sin(B/2)ep + sin(a/2) sin(B/2)e, N eg) - T. (57)

The vectory which points along the axis of the composed rotation can be read off directly.
Equations (56) and (57) are derived easily from the spectral method. First, write down

the quantities introduced in the derivation of equation (39). The spectral theorem (32)

involves the projection operatoB, (with (&) = (1, 2)) which for SU(2) are found from

(28) to be

-0 — 1
R EThY (58)
o+ — o 2
using the fact that the operatar o has eigenvalueg. = +«. This immediately reproduces
equation (56) via

e P, +e ' P_ =expl-ia-0/2]. )

Writing down the right-hand side of equation (46) for the paramefess= coS«/2), u =
—sin(a/2)e,) and similarly for (v, v), one finds that (keep = 0 in mind)

Yo = €0 /2) coSB/2) + sin(ce/2) sin(B/2)e, - eg (60)
~ = (sin(e/2) cogB/2)e, + codw/2) Sin(B/2)es + Sin(ee/2) sin(B/2)e, @ ep) - . (61)

This reproduces equation (57) becagseoincides with the familiar cross product in three
dimensions. Note that the results have been derived here without explicitly expanding the
exponentials involved.

8. Example 2: SU (4)

The example ofSU (2) is exceptional in the sense that (i) the prodgcis identically zero,
(ii) the spectral theorem and its linearized version coincide, and (iii) the mavaesdF in
equation (44) are multiples of each other. None of these properties hol8i& fa¥), N > 3,
all of which do providegenericexamples to illustrate the BCH-composition rule. Analytic
solvability of the third- and fourth-order characteristic polynomials is a pleasant accident but
it does not have any structural consequences in this context. To give a nontrivial example,
SU (4) will be studied below.

The interesting point is the reduction of the spectral theorem for an eleméit @ to
linear form. Let us assume that the coefficiest&M) of the powers oM in equation (26)
have been determined (ug&x) = exp[—ix]) by solving the characteristic polynomial of
M and by employing equations (30) and (31):
exp[—iM] = eoly + exM - A + ex(M - A)? + e3(M - A)®

= (e1+ €23 M? + e33(M © M) - M)ls+ ((e1 + es3 M*) M
+e2M O M +e3(MOM)OM)-A (62)

and that the reduction has been carried out via equation (19), using the antisymmetry of the
® product. Alternatively, one employs formula (39) based on the recursion relations. The
guadratic and cubic terms lead to vectors with third powerdbfat most. As an identity
the left- and right-hand side of (62) must commute which is not trivial only for the last two
terms multiplyingA:

[M-A,(MOM)-Al =2i{M® (M o M)}-A=0 (63)
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as follows from (22) applied to the quantity in curly brackets. Similarly, for the fourth term
one finds

[M-A{(MOM)OM}-Al=2(M{(M6M)oM})-A=0. (64)

Furthermore, one shows along the same line that these two terms commute among
themselves,

[(MOM)-A{(MOM)OM)-A]l=2i(M6M)Q{(MoM)oM))-A =0.
(65)

Hence, in the process of ‘linearizatiotiree commuting linear combinations of thi&/?—1)
matricesA arise naturally foiSU (4). They span the maximal Abelian subalgebra associated
with the elementM - A. Knowing (62) it is straightforward to (i) multiply two elements
exp[—iM] and exp[iN] of SU(4); (ii) reduce the product to linear form by removing
the single term quadratic ih in analogy to (46) and (iii) to re-exponentiate using the
prescription in (47).

9. Summary and discussion

It has been shown how to explicitly calculate BCH relations for the gr8UN). The
essential ingredients are: (i) the property that products of generatprs SU(N) are
expressible as linear combinations of generators, and (ii) the reduction of the spectral
theorem to linearized form. It has been assumed throughout that the operators involved
have no degenerate eigenvalues (this case could be included along the lines shown in [18],
for example). Applications of these results are expected to deal with coherent states for the
group SU(N), useful for the description of lasers witt levels.

Both steps, (i) and (ii), are based on a surplus of structure in the fundamental
representation of the algebra(N), i.e. the specific form of the anticommutator (11).
Therefore, the generalization of this approach to other groups is possible whenever there
is a representation such that theduct of two generators defines another element of the
original algebra. In general, this is guaranteed only for ltleeproduct the commutator,
but not for the anticommutator. To put it differently, one must have a representation of the
Lie algebra which is closed under both commutatéod anticommutation of its elements.
Apart from SU (N), this property also holds for the general linear groupVirdimensions,
GL(N), for example.
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