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Solvable three-state model of a driven double-well potential
and coherent destruction of tunneling
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A simple model for a particle in a double well is derived from discretizing its configuration space. The
model contains as many free parameters as the original system and it respects all the existing symmetries. In
the presence of an external periodic force both the continuous system and the discrete model are shown to
possess a generalized time-reversal symmetry in addition to the known generalized parity. The impact of the
driving force on the spectrum of the Floquet operator is studied. In particular, the occurrence of degenerate
guasienergies causing coherent destruction of tunneling is discussed—to a large extent analytically—for arbi-
trary driving frequencies and barrier heightS1050-29478)00301-1

PACS numbsgs): 03.65-w, 73.40.Gk, 33.80.Be

I. INTRODUCTION which often requires extensive numerical work.
The paper is organized as follows. First, we briefly review
Tunneling of a particle in a symmetric double-well poten-the behavior of a particle in a double well, followed by the

tial on the real line is well understood, at least qualitatively.derivation of the model to be investigated in this work. The
For a large barrier separating the minima, semiclassical caPext section discusses the symmetries of the system, formu-
culations [1] provide reliable estimates of the system’s lated in terms of the Floquet description. Then, the properties
eigenstates and energy eigenvalues near the bottom of tigé the undriven model are compared with those of the con-
spectrum. In another approach, path integrals are used fiuous system. The driven system is studied in detail, the

obtain approximate solutiorig,3]. In this framework instan- [0CUS being on degeneracies of quasienergies. Finally, the
ae_ffectlve Hamiltonian for time translation over one period is

tions of motion of a particle in thmvertedpotential. For low determined approximatively in the h|gh-frequency limit. The
ummary collects the results and draws conclusions.

barriers, one can resort to the supersymmetric partner of the
original potential in order to determine the low lying energy

eigenvalue$4—6]. The partner potential possesses shene II. MODEL OF A DRIVEN DOUBLE WELL
spectrum as the original one except for the ground state but, _
fortunately, it is asinglewell potential. The approximate A. Continuous system

evaluation of the spectrum is then straightforward using The quantal dynamics of a particle in a symmetric double-
again semiclassical approximations or, for example, a variawell potential on the real line,
tional principle.

If an external driving force is added to the system it be-
comes more difficult to gain insight into its quantum me-
chanical properties. Even a coupling linear in the particle’s
coordinate leads to qualitative changes which are not easilis governed by Schringer’'s equation
discussed in the familiar language of tunneling phenomena
[7-10. To a large extent, this is related to the fact that J R
generically classical systems with one degree of freedom be- if ﬁ"’[/(t»: H(t)| (1)), (2
come nonintegrable as a driving force is turned on.

In this paper, an elementary model to describe a particle o
in a driven double-well system is introduced. The basic idedVhere the Hamiltonian reads
is to discretizethe continuous configuration space of the
original system while preserving its essential features. In this . p? - -
way, a three-level system is obtained which has both the ~ H(U=5-+Vow()+g(Ox, gt+T)=g(t). (3
same number of free parameters and the same symmetries as
its continuous ancestor, contrary to existitgo-level ap-
proximations of a double well11-14. Many calculations
can be performed analytically in this model. The discussio
of the undriven system shows that the drastic approximation
provides a reasonable qualitative description of the particle’s V(x,t) =V pw(X) +g(t)x 4)
behavior in a double well. On this basis, the dynamics of the
driven system is investigate®lutatis mutandisthe results at timet depends on the parametésB, andg(t). Equiva-
obtained here apply to the continuous system the study déntly, one can describe it in terms of the mean enéfgyof

A ) B 4
VDw(X)=—§X +ZX , A,B>0 D

Here a periodic driving forcg(t) acting on the particle has
rpeen added. The shape of the potential
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and the kinetic energy is proportional to the discretized La-
placian in one dimensiofl9]:

32 1
a—leﬂ(X)HDzlﬂk:A—z(lﬂkH_Zlﬂk*‘ 1) (7

As long as the indek runs over all integers, not much has
been gained. A further simplification is motivated by looking
at the qualitative shape of the potential landscape. A particu-
larly simple, qualitatively correct description ¥y (X) re-

fers only to the presence of the two minima, separated by a
barrier at the origin, and to the steep increasexfer= oo,
Therefore the choicd =L =|L.(0)| allows one to correctly
represent the overall structure 9§, (x) if for x,=0 and

X+ =L one defines

FIG. 1. The double-well potentidl,,(t) at timet is character-
ized by the locations .. of the local minima, the mean eneryly ,
the asymmetnAV, and the barrier crossing eneryy .

the potential minima, located zp.ti(t),' the t|me-(jependent V(xo)=Ve+Vg, V(xe)=VetAV()/2. (8)
asymmetryAV(t), and the barrier heighty (cf. Fig. 1).

The impact of the driving force on the tunneling behavior This approximation does not take into account that the loca-
of the particle has been studied [i] for sinusoidal time tions of the minima ak=L_ (t) are slightly shifted due to
dependence the position-dependent driving force.

For simplicity, the boundary conditiog(x) — 0 for x— o
g(t)=Ssinwt, o=27/T. (5)  is modeled by the requirement that the wave function vanish
for k=*2, or ¢.,=0, corresponding to an infinitely strong
For small and large values of the driving frequensythe  potentialVpy(X~,) at these points. Thus the wave function
force has been found to enhance the tunneling rate while this different from zero at three points only, and the discretized
system evolves in a complex manner for intermediate freyersion of the Hamiltoniar (t) becomes a (3 3) matrix:
guencies. In additioncoherent destructiof tunneling has
been observed15] for specific parameter values: a wave H(t)=Hgy+Hq(1), (9
packet localized initially in one of the wells periodically re- o
covers its shape, even for very long times. This phenomenoyhere the time-independent pat} reads
can be attributed to a crossing of quasienergies of the Flo-

guet operator. A related phenomenon has been observed in 0 -7 O
time-independent systems: tunneling is suppressed if energy Ho=(29+Vg)l+| = Ve —7|, (10
eigenvalues are forced to fall onto each other as is possible 0 -5 O

for systems with nontrivial topology in the presence of gauge

fields[16,17. with 1 being the (3¢ 3) unit matrix, andy=7%2%/2mL2. Here

To a large extent, results for a particle in the drivenand below, operators acting on the Hilbert sp&@eof the

double well are based on numerically obtained solutions ofnree-state model are denoted by sans-serif symbols. The
Schralinger's equation. It seems desirable to have availablgyriving term is

a model, as simple as possible, which reproduces the features

mentioned above at least qualitatively. In the following, an AV(t) |

apparently crude approximation of the system described by Hy(t)= 2 diag(—1,0,1), (11)
Egs.(3) and(5) is introduced. The model is required to re-

spect the qualitative structure of the potential landscape, th@ith a periodically varying asymmetief. Eq. (5)]
number of free parameters in the original system, as well as

its symmetries. The resulting model allows one to approach AV(t)=Lg(t). (12

many questions analytically fall parameter values. In spite , i i .
of the drastic simplification involved in its derivation, it is ~ Further, the sinusoidal time dependence of the driving

found to provide a reasonable description of tunneling in §€rm is replaced by a function taking two values only, being
driven double-well potential. constant during both the first and the second half of the in-

terval of periodicityT= 27/ w:

B. Discrete system +AV, 0=<t mod T<T/2

Let us revert Feynman’s “derivation” of Schdinger’s AV(H)= —AV, T/2<t mod T<T.
equation[18]: the configuration spaci& of the system de-
scribed by the Hamiltoniafi(t) is replaced by an equidis- This simplification retains the relevant features of the con-
tant set of pointsx,=kA, with integersk, and the lengtm\  tinuously varying time dependence, as is known, for ex-
is yet to be determined. In the position representation th@mple, from investigations of parametric resonaj@21).

wave functiong(x) =(x|#) now takes on values & only, Let us check the number of parameters in the discrete
model of the periodically driven double well. The Hamil-

P(X)— = (kA), (6) tonianH(t) in Eqg. (9) depends on four parameters, namely

(13
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the barrier heighVg, the kinetic parametef=#2/2mL?, a spatially periodic potential and the Floquet formalism are
the periodT of the driving, and its amplitudAV, matching closely related. Physically, it can be thought of as a strobo-
thus the number of parameters of the continuous system. Hcopic observation of the system at timies0,T,2T,..., say.

the double-well potential is described by a system with twoThe details of the time evolution for intermediate times are
stateqinstead of threg the number of parameters is reducednot determined. This approach comes down to studying the
by one, since the model now depends on a combinatioproperties of the propagator over one time interval

Q(7,Vp) of the barrier heigh¥/g and the parametey only. o

In this sense, the three-state model introduced here is more F=U(T,0)

realistic than two-level models known to reproduce qualita-

tively various aspects of the continuous sysfr. = lim e  (/MWHINAL o= (AH)Atg= (/AR )AL

Nevertheless, it is useful to eliminate the kinetic param- N—e
eter » by rescaling (19
T—nT, AV—AV/p, Vg—Vely, (14 where N is the number of time intervals of lengtit

=T/N, andt,=(n—1/2)At. Formally, the propagator can

leaving us with a system depending effectively only on thebe written as

three(rescaled parameterd/g, T, andVV.

The HamiltonianH(t) obtained as an approximation to a . i T
particle system also has an interpretation as a Hamiltonian F=r exp{ % f dt H(t)), (20
for a spin of lengtts=1 in a crystal field under the influence 0

of a time-dependent external magnetic field alongzlais: wherer denotes time ordering. The Floguet oper o aps

H(t)= —VBS§— gueB(t)-S, (15) a stateg|#{(0)) over one time interval:

where a term proportional to the unit matrix has been Flw(0)y=|%(T)), (21)

dropped, and ) _ ) . ]
corresponding to an integration of ScHioger's equation

7 from t=0 to t=T. The N-fold application ofF to |¢(0))
gueB(t) = v e, tAV(t)e,. (16)  results in the statps(NT)). Obviously, the eigenstates &
2 play an important role,

The vectorS has three components, each of which is & (2 SN e () o
+1=) three-dimensional matrix such that FleW)y=e"eile), j=01,... . (22)

[S;.Sl=iejS- (17) The eigenvalues expfie;) are complex numbers of modulus
one, and the reajuasienergieg; are defined modulo2 In
The extrema of the double-well potential correspond to thegeneral, the nature of the spectrum of quasienergies, be it
stationary configurations of the classical spin. The off-finite, countable, or continuous, reflects the complexity of the

diagonal elements dfi(t) couple the stationary states. system’s dynamicg23]. If the Hamiltonian does not explic-
ity depend on time, the eigenstatés!)) of the Floquet
. SYMMETRIES operatorF coincide with those of the Hamilton operater,

, o , . that is, | 1) =| ¢}, while the energy eigenvalues are re-
. Befo're investigating the dynamics of eithd(t) or H(t) lated to the quasienergies ly=(E;T/#i))mod 2. This as-
in detail, a careful search for symmetry transformations issgciation will continue to hold for a weak time-dependent

useful. For the class of systems studied here, three i”depeﬂfiving force, and the Staté$7(j)> can be ordered by sorting
dent discrete transformations can be identified which Ieavea1em according to the size of the expectation value of the

the !—|ami|tonian invaria}nt. Two. of_them are immedia‘gely rec'energy averaged over one periad
ognized, namely, the time periodicity and a generalized par-
ity transformation. The third one, a generalization of time- — 1 (T o o _

reversal invariance, has not yet been pointed out. The (H)J:? f dt(eD|U(t,0TH(1)U(1,0)[ V). (23
existence of these symmetries implies that the solutions of 0

the driven system have specific features, and each of th - . . R
invariances simplifies its study. /Es a matter of fact, it is the invariance of the Hamiltonian

H(t) under the time translatio® which leads to the exis-
A. Time periodicity tence of quasienergies defined according to (28).
Due to Eq.(5) or Eq.(13) the Hamilton operatoH(t) is B. Generalized parity

invariant under the discrete transformation . . . . :
For potentials symmetric under spatial reflection, that is,

Eitt+T. (18 Vpw(—X)=Vpw(X), the HamiltonianH (t) in Eq. (3) is in-

_ _ _ variant under a simultaneous transformation of space and
The long-time properties of a system with peribdre con-  time,

veniently extracted from a description in terms offiiequet
operatof22]. Mathematically, the description of electrons in I[I:x——x and t—t+T/2, (29
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known asgeneralized parity24]. Here, the property of the leading to a real symmetric Hamiltonian. Let us introduce

driving forceg(t+T/2)=—g(t) is crucial. the antilinear operatdk which has the properties
The invariance of the Hamiltonian under the transforma-
tion in Eq.(24) has an important consequence for the explicit K2=1 K=K' ROR=0* 33

form of the Floquet operataF. The symmetryiI means that

H(t+T/2)=PH(t)P, (25) whereQ is any operatotexpressed in the position represen-
tation) or a complex number, and the stadenotes complex
where reflection at the origin is described by the parity op-conjugation. Schidinger’'s equation(2) is invariant under

eratorP, the application of the antiunitary operaﬂ%f( combined with
the reflection of the time parameter

Py(x)=y(—x), P?=1, P=PT, (26)
andPy,= ¢_,, for the discrete model. Equatid@5) implies PK®(t—-1). (34)
that the propagator over ttsecondhalf of a periodT can be ~
expressed by the propagator overfitst half: This follows from the properties df in Eq. (33), the sym-
. A . metry O, and the fact that:l(t) is real. Hence, if the state
U(T,T/2)=PU(T/2,0)P. (27)  |y(t)) is a solution of the time-dependent Satlimger equa-

Hence the propagation over a full period of time can belioM then the transformed staiK|y(—1)) is a solution,
written as asquare too. Similarly, if () is an eigenstate of the Floquet opera-

tor F (or the operatorS) according to Eq.22), then the

O(T,00=0(T,T/2)U(T/2,0) transformed stateK | o)) is also an eigenstate. This is seen
o . from combining the time periodicitg of the Hamiltonian
=PU(T/2,00PU(T/2,0) (28)  with the symmetry® implying that

or, in terms of the Floquet operator A(T—t)=PA(1P. (35
F=8, 8§=P0(T/20. (29 X

_ o Therefore applying parity to the Floquet operatdr

Thus the action of the Floquet operator is given as a twofold

application of its “root” S, being a simple product of propa- = U(T,0) corresponds to a reversed time ordering. Since the
1 . - . e _ 2 T * __ ~ T . . . _
gation over half the period and a reflection at the origin. Harlnlltonlan IS rea! _syrpmetnd—,l—(H )*=H", this is iden
This decomposition has not been observed before. tical to a transposition:
In the following, the eigenequation &, o o U
PF P= lim e (/MPH(tNPAt  o(=i/h)PH(ty)PAL
S|¢(i)>:e*irrj|@(j)>, (30) N—oo
will be studied instead of Eq22). The eigenstates of the = lim e (/MHIWAL | o= (i/)H(tALZ ZT
operatorsS and F coincide, and the relation between their N—e

eigenvalues is governed by
using Eqs(19) and(35); the superscripT denotes the trans-

gj=20; mod 2. (31)  pose. This property is also shared by the opera&tor

This .relatlo.n is important for the discussion of degenerate PSP=3" (36)
quasienergies; .

C. Generalized time reversal As a consequence one has
The third symmetry transformation again involves both S(PKloMNY)=PSTK| o = PKST oDy = PRe*ivi| o)

space and time: (PK|¢")) Lo let) le)

—e 0 (PK| oW

0®:x——-x and t——t. (32 e ""I(PK[¢™)), (37

It will be called generalized time reversalhe symmetry is where the antilinearity oK, the unitarity ofS, and Eq.(36)

a consequence of the propegy—t)=—g(t) of the driving  have been used. Thus the stdie®)) andPK|¢) are both

force. _ o eigenstates of with the sameeigenvalue. They represent
In Hilbert space, the transformatidd is represented by the samephysical state if the eigenvalude'”i} are not

an antilinear operato@, not a linear one. There iso con-  degenerate.

served quantity associated with it. However, it is possible to Now the definition of a symmetry-adapted basis emerges

construct a symmetry-adapted basis such that(fhequel naturally for systems being invariant under generalized time

eigenfunctions do have a particular structure. This propertyeversal. Starting with an arbitrary orthonormal bdsis,)},

is a generalization of the possibility to choose purely realtthe symmetry-adapted bagisb )} is obtained from a linear

eigenfunctions if a system is invariant under time reversalcombination of the original and transformed states:
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c(|en)+PR|@n)) if PR|@n)# —|en) respectively. These relations have an analog in the well
|D )= AN known case of systems being invariant untiandard time
c(len) +iPK[en)) if PKlen)=—]¢n), 38 reversal, where wave functions can be chosen real.
wherec is a real normalization constant. The orthonormal IV. DISCRETE DOUBLE WELL

basis stated,) have the important property that they are  First the exact solution of the undriven discrete double

ipyariant under the application of the antiunitary operator,,q is presented, including a time-independent asymmetry

PK: of the well. Various properties of the discrete model are
L shown to agree qualitatively with those of the continuous
PK|®,)=|D,), (39 one. Then, the discretized version of tthéven double well

L is investigated, the focus being on crossings of quasiener-

using (PK)2=1. This construction of th@ormal form(38) gies.

is equivalent to Wigner's general treatment of anti-unitary

operatorg[25], as shown in Appendix A. Expressed in the A. Undriven system

basis(38) both the rootS and the Floguet operatdt turn out

to be symmetric, The discrete system with time-independent asymmetric

potential is described by the Hamiltonian

Sk|:<q)k|:gq)|>:<ﬁkq)k|ﬁkn(bo* :<ﬁkq)k|3‘1-ﬁkq)|>* AV
. H=H,+ ——diag —1,0,1), (47
= (04510 = Si, (40) v2

with Hy from Eq. (10). The energy eigenvalues; in the

where the antiunitarity oPK and Eqgs.(36) and (39) have time-independent Schdinger equation

been used. Hence, the operatbelongs to the orthogonal
ensemble of symmetric unitary matrick%6,23 obeying H| D)= Ej|¢//<i>>, (48)

5=4T, (41)  are obtained from the roots of the characteristic polynomial
of the matrixH:
when expressed in the symmetry-adapted basis. This result

holds generally for systems having an antiunitary symmetry

A provided A =A?=1. It has to be emphasized that the re-

lations (36) and (41) are equivalent. However, this equiva- i

lence is not a trivial one, since the construction of theWherej=0.,1,2, and

symmetry-adapted basis explicitly involves the transforma- 1

tion (38) which is neither unitary nor antiunitary. @= 5 arccosqp *?),
Relation(37) and definition(38) lead to the normal form 3

of a Floquet eigenstateb(") in the sense that it is also an

1 2(j+1
Ej=3 TrHo+2\p cos(<p+ %) (49)

2
eigenstate of the operator associated with generalized time _ 1(VB (AV)? )
. p=zl=% T +27°,
reversal: 3\ 3 4
PK|®W)=[0W). (42) Vg (V2 (AV)2
=3l "z 7 50

Hence, the corresponding wave functions satisfy

The term (TrH)/3 can be removed by shifting the origin of
the energy axis by an amouki;= —(6%+ Vg)/3, and the
new Hamiltonian is given by a traceless matrix. Even for the
three-level system, the dependence of the eigenvalues on the

dW=[dW1* n=0,+1. (44) barrier heightVg and the asymmetriV is far from trivial.

n n ’ The dependence oAV is quadratic throughout since the

The time-independent functions in Eq@3) and (44), re-  €igenvalues cannot be sensitive to the transformativi-
spectively, are identical to their complex conjugate reflected™ Av.

PN (x)=[dD(—x)]*, xeR, (43

which, in the discrete model, reads

at the origin and thus they have the form The splitting of the two ground states,
q()eu™,  g(x)=q(—x) and u(x)=—u(—x) AE=E,—Ey=2{3p sin¢, (51)
45 . . ,
is approximately given by
and
AE=(AV)?+4(9*IVg)>+O((7*/Vp)?). (52
k3 e'¢ sin a,COSa,i e ¢sinal, adel0,2m), This result is to be compared with the dependence of the

tunnel splitting in a continuous double-well potential. A
(46) semiclassical calculatiof27] leads to an asymptotic expres-
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04— R T B For finite Vg and a slight asymmetrV, the eigenstates of
1 i H are almost symmetric and antisymmetric under reflection
at the origin, as illustrated in Fig. 3. For vanishiny, par-

5 = ity P is a conserved quantity and the states(argi)symmet-
1 i ric under spatial inversion, also following from E3) by
E i taking the limitAV—0.

4 oA I The physical meaning of the splittinE easily emerges

] E, i from looking at the time evolution of stategR(t) initially
1 i localized in a well:| 4 (0)|>=8_1; [or [4(0)|?= &8, 14].
5] £ L For small AV the initial statesy?(0) are well approxi-
| i mated by a superposition of the two first eigenstates

|
(&}
R

S I PR~ (0 ), 54

FIG. 2. Eigenvalues of the discrete system as a function of therhe time evolution of this state reads
barrier heightVg for the symmetric double welAV=0. The en-
ergy axis has been shifted by an amoMy=—2#% so that the
barrier-independent eigenvalue is zea=0; units are such that lﬂL(t)% i(¢(0)e—iEot/ﬁ,+ (p(l)e—iElt/h)
7=1. 2

sion similar to Eq.(52): the main difference is that the 1

barrier-dependent term under the root decreases exponen- = — (O + Ve 1AEUR) o= IEQUR (55)

tially with Vg, not algebraically. Nevertheless, the overall V2

behavior of the eigenvalues is correct. In Fig. 2, the spectrum

is shown for a wide range of values of the barrier helght ~ Upon comparison with Eq’54) the localized states are seen
For Vg—, the wells decouple and the energy splitting to evolve into each othegst — yR— yt, with a characteris-

equals the potential asymmettyE=AV. The eigenstates tic tunneling frequencAE/#, apart from a physically irrel-

) andy ) are now localized on the left and on the right of €vant phase.

the barrier, respectivelyprovided thatAV#0), as can be While the states at the bottony{®) and y4), agree well

seen from the “spatial” structure of the three-componentwith those of the continuous system, the stgté is cen-

eigenfunctions oH, tered about the saddle at the orighas 0. This indicates that
72 the present approach is closely related to the methdidjlof
y= 51 2y E _ A_V YE. binding[28]: the states of an atomic lattice are approximated
KN 3 2 ! by superposing wave functions localized at individual atoms.

o112 In this sense, the discrete potential should be thought of as
+(VB A_V+E,) } providing three local minima dt= =1 andk=0 instead of
! ' two wells and a saddle in between. Apart from this discrep-
ancy, the discrete approximation of a double well indeed

. 1 AV -t itati i
1119)1: ol EVeF— +E ¢g>. (53) reproduces qualitatively t_he important features of the states
= 3 2 ! at the bottom of the continuous system.
(a)
.. "‘ LY
o FIG. 3. Eigenstates of the discrete double-
well model:(a) symmetricAV=0, and(b) asym-
PO L L metric caseAy:O.g. The dashed Iine_s are for
easy comparison with the wave functions of the
(b) o R continuous double well. Note tharge value of
o SN 2 at the central sitésee text




74

B. Driven system

This section deals with the eigenvalue equation of the

operators,

Sley=e"1ile0)), j=0,1,2 (56)

replacing the Floquet equatidB2) sinceF=S?. Explicitly,

(57)

whereH is the Hamiltonian with a fixed time-independent
asymmetry according to Eq47), since the piecewise con-
stant approximatiofil3) of the driving forceAV(t) has been
used. Since the operatoBsand H do not commute for an
asymmetryAV+0, there is no common basis to diagonalize
them simultaneously. Only then is the prodyb®) easily
transformed into a single exponential. The oper&aan be

S=P exp —iHT/2h),

understood as a product of two finite transformations in the

group U3). Unfortunately, a general Baker-Campbell-
Hausdorff formula seems not to be available for this group
although results tdisentangleexponents have been obtained
[29]. This situation is in contrast to the group @Jwhere a
closed form for the product is know0]. Nevertheless, the
eigenvalues and the eigenstatesSofan be determined ana-

lytically, as indicated in Appendix B, since the characteristic

polynomial of S is of third order for the discrete model. To
this end it is convenient to introduce the operafowhich
differs from S by a factor,

é: ei O'S, eiO': (det S) —-1/3_ ei(00+0'1+0'2)/3' (58)
It has unit determinant
detS=e%7 detS=1, (59

so thatS is an element of the group $8). The new phases
c~rj are shifted with respect to the old ones by the amaeunt

;j=(0'j+0') mod 2, (60)
having the property
oot o1+ 0,=0 mod 27 (61)

Explicitly, in terms ofé, one obtains the characteristic
polynomial:
A3—(Tr S)\2+yA—detS=0. (62
The coefficienty is easily determined: It follows from the
unitarity of S that its eigenvalues are complex numbers of

modulus one, hence the inversexoéquals its complex con-
jugate, \"1=\*. When taking into account Eq59) one
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FIG. 4. Eigenphases of the driven discrete driven double-well
model for T=10, Vg=10 for variable asymmetrAV: (a) eigen-

phase§;j , (b quasienergies;, j=0,1,2. The dashed vertical lines
all have a length ofr (see text

A simple expression for the trace 8ffollows if it is evalu-
ated in the eigenbasis of the Hamiltonidrin Eqg. (47) of the
undriven system:

3
Tr S=2, (yp1)]el"P exp —iHT/24)|¢))
i=1

3
= e IET2-0)yi)|p|yy, (64)
=1
containing the expectation values of the parity operator. Its
modulus obviously has the properyr S|<3. Explicit ex-

pressions of the eigenpha§é§0f S are not illuminating due
to their involved dependence on the parameterS ofa its
trace in Eqg.(64). In Fig. 4, the eigenphasé%i and the
quasienergies; , respectively, are plotted as functions of the
strength of the asymmetry while keeping the peribénd

the barrier height fixed. The quantiti€§ vary with a degree

multiplication with —\ ~* and subsequent complex conjuga- jight of the simplicity of the underlying model. They dmt

tion. A comparison of coefficients then reveals that
=(Tr S)*. Thus the characteristic polynomial reads

A3—(Tr S)N2+(Tr S)*A—1=0. (63)

cross each other which, however, does not exclude the de-
generacy of quasienergies. Before turning to the discussion
of degenerate quasienergies, a geometric interpretation of the
condition

TrS=e 714 e 024 g iva=7 (65)
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R=3 (0) O
g ._5_ \‘ i
0 T T
0 4 8 12

FIG. 5. The behavior of T in the complex plane for fixed 0 e
asymmetry AV=0.2) and varying periodl is depicted by the <b> : Lo

dashed line. The quasienergigsdo cross if(a) EJZEK mod 2, ] ; \‘\.\ - R
Tr S falls on the threefold cycloidz=exp(d¢)+2 expli¢), ¢ 1 SR \\

e[0,2m), or if (b) oj=oy+m mod 2r, Tr S falls on the unit 1 \ N &
circle, |z|=1. The dasfed line doesot touch the cycloid since : 3 \& -
crossings of the phases are generically avoided. — 54 \\R L

will be given. Considez=R€*“ as a vector in the complex ]
plane with lengthz| < 3. For a solution of Eq(65) one has

to find three unit vectorfe ' ?i} which must combine to give | k
the vectorz. This is always possible for a one-parameter |
family of angles{EJ}. Then one has to select that particular 0 - 1

. 0 4 38 12
solution which leads to the correct value of &t 1. AV

FIG. 6. () Contour plot of|Tr S|=1 for the parameters 0
<AV=12 and G=sT=<10, showing the parameter values where a
In this section we focus our interest on crossings ofcrossing of quasienergies occufs) Same aga) restricted to the

quasienergies. They are related to the effect of coherent d@oints where the degenerate Floquet eigenstagéd), o)) are
struction of tunnelind15], corresponding to the relocaliza- strongly localized in the potential wells.

tion of a tunneling state in a potential well at stroboscopic ) N o )
timest=T,2T,... . Asseen in Fig. 4, the quasienergies In order to realize conditiorb) the variation of asingle
may degenerate for specific values of the asymmattiyout ~ Parameter is sufficient. In this case the difference between

a crossing of the phases (or a;). More precisely, the re- Wo phasesr, anda,, say, has to be an odd multiple of

lation betweery; ande; implies that quasienergies do cross In terms of the trace of the root operator this implies that

if one of the following conditions is fulfilled: (8 o;  Tr S=exp(-ioy) or

=0 ‘mod 2, or (b) Ej=(?r!<+ m) mod 2. These ITr S| =|Tr &|=1, 67

conditions also apply to the original phases Generically,

in order to realize conditioia), which means to have a de- describing the unit circle in the complex plafg. Fig. 5. In

generate eigenvalue expio;), the variation oftwo system  fact, a realization of Eq67) is already sufficient in order to

parameters is required. This follows from the fact that thefulfill condition (b) as follows from writting down explicitly

matrix S belongs to the orthogonal ensemble of symmetricthe roots\; of Eq. (63),

unitary matrices according to E¢41) and a comparison of

the number of free parameters for orthogonal matrices in the {\}={Tr S, =\ —(Tr §)*}. (68)

nondegenerate and degenerate ¢ag respectively. A geo-

metric interpretation of the realization of conditi¢® is ob- ~ Therefore conditior{67) determines the locus of degenerate

tained from looking at the corresponding expression for thejuasienergies. Variation of a single parametes,T6<3, in-

trace ofS, deed leads to such crossings as shown by the dashed line in

_ _ Fig. 5, intersecting repeatedly the unit circle.
Tr S=e%%i+2e717, (66) It is straightforward to obtain a global picture of the pres-

ence of crossings in the parameter plan&/(T), say. Figure

The right-hand side of Eq66) describes a one-dimensional g(a) shows the contours of T$ with modulus equal to unity.

curve in the complex plane, shown in Fig. 5. In the genericopyiously, variation of asingle parameter in the 4V, T)

case, the complex number=Tr S is confined to remain plane will generically result in a crossing, as has been argued

inside the region defined by E¢66). before. The arrangement of lines in Figafor not too large

C. Coherent destruction of tunneling
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values ofAV is a consequence of conditigh). In the sym-  discrete model. To this end we introduce an effective, time-
metric caseAV =0, the operatoP is diagonal in the eigen- independent Hamiltoniam®™ producing the same strobo-
basis| o) of the nondriven system. For smalV, the Flo-  scopic dynamics of the driven system as does the Hamil-
quet eigenstatekp)) are well approximated by the states tonianH(t) in Eq. (9), i.e.,

|y, Using Egs.(48), (56), and the definition oP from _

Eq. (26), one obtains approximate values of the eigenphases, F= ex% _ ;L_ Heff-l-> _ (72)

0, j eve

. oddr)] mod 27. (69  Knowledge of a Baker-Campbell-Hausdorff relation for
’ SU(3) would explicitly provide the operatdd®™ in terms of

This equation together with conditioi) approximately re- Ho andP. SinceH*" is the logarithm ofF, it is not uniquely

produces the equidistant lines visible in Figa)s However, ~defined in general. However, a natural choiceH5f is to

a crossing of these contour lines is avoided, because it wouldave it coincide with the symmetric Hamiltoniad, in Eq.

imply a realization of conditioria). The lines almost parallel (10) in the nondriven case for vanishing asymmetry,

to the AV axis correspond to th@lternating realizations of

condition (b), oj=(oy+7) mod 2 for (j,k)=(0,2) and

(j ,k_)=(_1,2). The “hyperbolic” _b_ranch(_as correspond to the \\hare AH=0

realizations of the same condition foj,K)=(0,1). From

~ 1
O'j%(i EjT/ﬁ‘FO'-i-

He=Ho+ AH, (73)

if AV=0. Because of its invariance under
generalized time reversal, the effective Hamiltonian com-

01— 0o~AET/2h+  one finds the estimate mutes with the antiunitary operatei,
4mnh eff =
T~TE, neZ (70 [H.PK]=0. (74

In this picture, the eigenvalu&‘"ff are related to the quasien-
This reproduces the quasihyperbolic behavierAV ! vis- ergies by e;= (E?ﬁT/ﬁ) mod 27, and a crossing corre-
ible in Flg 6, sinceAE~AYV for sufficiently Iarge asymme- Sponds to a resonance
try AV.

Another interesting feature appearing in Fig. 6 is the com- (EJ.eff— Eﬁﬁ)T/ﬁ =2mn, j#kneZ. (75)

plete disappearance of quasi-energy crossings for large driv-
ing amplitudeAV=Vjg. This effect is a consequence of the  Express the effective Hamiltonian in the basis of the fun-
few-level discrete approximation scheme and it has no anadamental representatidB2] of SU(3),
log in the continuous system. From E®4) one estimates

|Tr §|s2|<P)j|, where(P); is the expectation value of the
parity operator for thejth eigenstate of the asymmetric
double well[cf. Eq. (53)]. For nonvanishing asymmeteyV
the modulus ofP); is less than unity since parity is not a with the traceless Gell-Mann ¢33) matrices\,, the gen-
conserved quantity in this case. At some threshold valuerators of the group. Due to the invariance under generalized
|Tr §| becomes strictly smaller than one, hence the conditioime reversal74) the nine real coefficients, are not inde-
(67) necessary for degenerate quasienergies cannot hold fpendent:
large driving amplitude.
Being mainly interested in the tunneling behavior of states a1=ag, ay=a7, andaz=—V3as. (77)
being localized in the wells, we now focus our attention on ) )
the quasienergy crossings of these states. FigloesBows Thu_s SiX par_amgtersk completely characterlze_ both the ef-
i i i i ini fective HamiltonianH®"™ and the Floquet matriE. In the
an appropriately modified version of Fig(ah, containing - p 100
only crossings with sufficiently large localization of the cor- Nondriven casefi*"=Hy, the coefficientsy are related to
responding Floquet eigenstates in the wells: the localizatiothe System parameters by,=27+Vs+Vp/3, a;=—7,
probability of the(degenerateeigenstatese()),|¢®) is re-  @3= —7/2+ Ve, ;= ay=a5=0. _ _
quired to be greater than that of the third eigenstat®), ITet us deter.mme the exphqt form of the effective Hamil-
tonian in the high-frequency limit —0. From Eq.(27) and
(j (k

|12, |0 12= ] o). (71  the driving approximatior§13) we have that

For 4<AV=10.5, not only the “hyperbolic” branches in b | i i
Fig. 6(b) (associated with the resonandes 47n/AE in the — g T =exq — 55 PHPT jexp — o HTJ,

undriven systeminduce crossings of quasienergies, but the (78
other branches contribute as well. It appears that a crossing

of quasienergies enhances the localization probability of thavith H from Eq. (47). Using the Baker-Campbell-Hausdorff
corresponding Floquet eigenstates in the wells. formula[33]

8
Heff: a01+2 ak)\k (ak reaD, (76)
k=1

] ] ) eAeB: eA+ B+ (1/2)[A,B]—(1/12([A,[A,B]]+[[A,B],BD) + -
D. The effective Hamiltonian (79
In this section we give an alternative physical interpreta-

tion of the effect of the time-dependent driving term in theone finds the expansion
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Ao AVT i ant (AV T)2 Orthe) whereK is complex conjugatiorin some basjsand U is
Mgy VTR gz (T e unitary [25]. Eigenstates of are constructed from those of
+O((AVT/A)?), 8oy  the unitary operatoA =A?=0U*. If |v,) is an eigenstate

of A with eigenvalue 1,
which respects the antiunitary symmetf¥7). An explicit
calculation of the energy eigenvalues of the effective Hamil-
tonian (along the same lines as in Sec. IV Aesults in an A _ A2
expression for the tunnel splittingE similar to Eq. (51): [vo)=lvo), (A2)
one only has to replace

72— (72M)2= p2[1+ (AVT)2/40h2]+ O((AVT/%)3). then the state
(81)
Consequently, in the limit of high frequencyT0) the TA it A _
driving force effectivelydecreaseshe height of the potential | >:[ c(lvo) _A|v°>) I_ Alvo# lvo) (A3)
barrier, c(lvg)+iAlvg)) if Alvgy=—|ve)

VeI~ Vg[1-(AVT)%40h%]<Vg, T—0. (82
A decrease of the effective potential barrier in the high—IS obviously an eigenstate of the operatorin the context of

frequency limit is also found for the continuous systgf  this paper, the operatdf in Eq. (A1) is to be identifiedcf.
Eq. (34)] with spatial reflectior, and the operatok equals
V. SUMMARY the identity. If the eigenvalue of the gigenstwg) of Ais

ifferent from one, the operatorA does not have

In _this_ paper, we ha"e. stu_died a simple discrete_model 0gigenstates—instead a set of “characteristic vectdr23]
a periodically driven particle in a double-well potential. Tak- can be associated with it

ing into account all the relevant symmetries, time periodic-
ity, generalized parity, and generalized time reversal, a natu-

ral decomposition of the Floquet operator and an associated

normal form of its eigenfunctions has been presented. A dis- ~ APPENDIX B ANALYTICAL DETERMINATION
cussion of quasienergy crossings, motivated by the effect of OF S AND ITS EIGENVALUES

coherent destruction of tunneling, has revealed that they are o knowledge of the eigenbasis and eigenvalues of the
closely related to the resonances of the non-driven asymmeﬁ‘me-independent asymmetric Hamiltonighin Eq. (9) al-

ric doubIe—weII_system. The results_qualitatively agree 0 35s one to explicitly calculate the matr& defined in Eq.
large extent with those of the continuous model, as far ag57):

they are known.
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