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Rue A. L. Breguet 1, CH-2000 Neuchâtel, Switzerland
2 Departement für Physik der Universität Basel
Klingelbergstrasse 82, CH-4056 Basel, Switzerland

(received 22 December 1997; accepted 28 April 1998)

PACS. 03.65Sq – Semiclassical theories and applications.
PACS. 73.20Dx – Electron states in low-dimensional structures (superlattices, quantum well

structures and multilayers).
PACS. 03.65Db – Functional analytical methods.

Abstract. – Quantum interference is studied for a charged particle on a multiply connected
configuration space. The holes of the space are assumed to accommodate independent mag-
netic fluxes. As follows from an instanton calculation, tunneling of the particle is suppressed
completely in such a geometry for appropriately chosen field strengths. This set of values
defines an algebraic variety in parameter space, not a manifold. The quenching persists even
if the geometric symmetry of the system is broken. Aharonov-Bohm–type experiments and
mesoscopic tunneling devices are natural candidates to observe many-path interference.

For a quantum particle on the real line, all paths contributing to the propagator from one
point Pa to another point Pb are topologically equivalent since they can be deformed smoothly
into each other. On a closed loop, however, paths connecting two points come in different
types labelled by a winding number which indicates how often a given path wraps around
the loop [1]. Hence, the propagator is given by a sum of terms which may have nonzero
relative phases when added up in point Pb. The resulting interference of amplitudes can be
tuned if the particle interacts with a magnetic field penetrating the loop. This topological
mechanism allows one to suppress the tunneling of a charged particle [2] if a gauge field is
present. Tunneling of a spin can be modified similarly if its classical equilibrium positions are
connected by two paths in phase space instead of only one path [3].

The purpose of this work is to study such phenomena if the underlying space is topologically
more complicated than a loop. A charged particle in a symmetric double-well potential will be
considered from now on. Its minima are separated by a barrier havingN = 2, 3, 4, . . . equivalent
saddles and a magnetic field B is present. The relevant features of this situation are captured
by a model system defined as follows. Consider two points P± on the z-axis at a distance
2R, and connect them [4] by N semicircles (“legs”) with radius R consisting of a normally
conducting metal. The resulting object is required to be invariant under the elements of the
dihedral group DNh; it is denoted by CN , and it will be called a carambola [5]. A carambola
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Fig. 1. – a): Carambola C3 with symmetry Dnh. The potential V (z) turns the points P± into stable
minima. A homogeneous magnetic field B points along the x-axis, and the angle β determines the
amount of flux piercing the three areas. b): Equipotential lines of the squared modulus of the
interference term ∆ as a function of the deflection angle β ∈ [0, π/6] defined in a) and the rescaled
field strength B (F is the area enclosed by two legs). Full circles correspond to zeroes of |∆|2.

CN is topologically equivalent to the retraction of the plane with N − 1 points removed or of a
sphere punched N times [6], corresponding thus to a circle for N = 2 and a “figure-eight” for
N = 3 (cf. fig. 1a)). If N ≥ 3, the carambola has a non-Abelian homotopy group π1(CN ), given
by the free group with N − 1 generators [7]. In other words, the composition of fundamental
paths in this space is not commutative [8].

Consider a configuration space C with points q. The amplitude for a transition from position
eigenstate |qa〉 at time ta to state |qb〉 at tb can be expressed as a path integral,

K(qb,qa;T ) =

∫ qb

qa

Dq eiS[q(t)]/h̄ , (1)

where the right-hand side is a sum over all paths connecting the points qa and qb in time
T = tb − ta. Each path contributes a phase factor exp[iS[q(t)]/h̄], where the action S[q(t)],
a functional of the paths q(t), is defined as the integral over the Lagrangian L(q, q̇) of the
system. For a non-relativistic particle moving in a magnetic field B = ∇×A(q), it takes the
form

S[q(t)] =

∫ tb

ta

dt
(m

2
q̇2 − V (q) +

e

c
q̇ ·A(q)

)
, (2)

where the dot denotes differentiation with respect to t.
If the space C is multiply path-connected, its first homotopy group π1(C) is not trivial.

Then the propagator (1) decomposes [9] into a sum,

K(qb,qa;T ) =
∑

[γ]∈π1(C)

a[γ]K
[γ](ba;T ) , (3)

over partial propagators K [γ](ba;T )≡K [γ](qb,qa;T ) labelled by the elements [γ] of the homo-
topy group which correspond to classes of topologically inequivalent paths in C. The phase
factors a[γ] constitute a one-dimensional unitary representation of the group π1(C), and they

account for the nontrivial interference between the propagators K [γ](ba;T ).
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The propagator will now be calculated for the carambola CN in the presence of a potential
V (q) which turns the meeting points into potential minima (cf. fig. 1a)). Upon introducing
an imaginary time coordinate τ = it, the Euclidean action SE is obtained from integrating the
Euclidean Lagrangian LE,

SE[q(τ)] =

∫ τb

τa

dτ
{m

2
q′

2
−W (q) + i

e

c
q′ ·A(q)

}
, (4)

where W (q) ≡ −V (q) is the inverted potential [10] and the prime denotes differentiation with
respect to τ . The resulting Euclidean propagator,

KE(ba; τb − τa) =

∫ q(τb)

q(τa)

Dq e−SE[q(τ)]/h̄ , (5)

can be used to extract the separation of the two lowest energy levels by looking at large
imaginary time (τb− τa)→∞. For tunneling problems, kink-solutions or instantons dominate
the propagator. They correspond to a classical particle moving not in V (q) but in the inverted
potential, W (q), starting at one of its maxima at time τ → −∞ and reaching the other at
τ → ∞. The vector potential A(q) has no influence on the classical motion since the term
containing it is a total derivative [2] along each path.

For the carambola configuration CN , there are N different single instantons connecting the
minima, and the Euclidean propagator (5) takes the form

KE(ba;T ) ∝
N∑
j=1

exp[−S0
E,j/h̄] , (6)

where S0
E,j is the Euclidean action associated with a path γj along wire j. The imaginary

parts σj [q(τ)] of the actions S0
E,j = SR,j − iσj depend on the vector potential A. The real

parts depend only on the potential W (q) on leg j, hence they may be different for each path.
This implies

KE(ba;T ) ∝ e−(SR,1−iσ1)/h̄∆, (7)

where SR,1 is taken to be the largest real part of the partial Euclidean actions. The quantity
∆ measures the interference of the N contributions to the propagator and can be expressed as

∆ =
N∑
n=1

dne
iσn1/h̄ , (8)

where σn1 ≡ σn − σ1 and 0 ≤ dn ≡ exp[(SR,1 − SR,n)/h̄] ≤ 1. Since [10] the ground-state
splitting δE is proportional to ∆, a quenching will occur whenever ∆ vanishes:

1 +
N∑
n=2

dne
iσn1/h̄ = 0 . (9)

The differences σjk are calculated from Stokes’ theorem

σjk =
e

c

∮
jk

dq ·A(q) =
Φjk

Φ0
h̄ , (10)

where Φjk is the flux through the area enclosed by the path γj ◦ (−γk) traversing leg j in the
positive and leg k in the negative sense; Φ0 = hc/2e is the magnetic flux quantum.
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In order to better understand condition (9), let us first look at a situation with all paths
being equivalent, i.e. with dj = 1 for all legs j. The quenching condition (9) contains (N − 1)
parameters σn1 corresponding to independent fluxes through (N − 1) surfaces defined by the
wires. Thinking of (9) as a linear combination of unit vectors in the complex plane which have
to add up to zero, its solutions correspond to polygons with N equal sides. The case N = 2
has already been investigated [2]: a quenching of the tunnel splitting δE occurs whenever
cos(Φ21/Φ0) = 0. For N = 3, the quenching condition requires the three vectors in (9) to form
a triangle. The vector 1 is fixed, and one can combine the remaining ones in two ways to add
up to zero. This happens whenever

Φ12 =
2π

3
(3n+ δ)Φ0 , m, n ∈ ZZ ,

Φ13 =
2π

3
(3m+ δ′)Φ0 , (δ 6= δ′) ∈ {1, 2} . (11)

These conditions give rise to a regular grid of zeroes in a plane parameterized by the two fluxes.
As an illustration, fig. 1b) shows the equipotential lines of the quantity ∆ for a carambola
C3 with full symmetry D3h, expressed in terms of parameters associated with the realistic
geometry shown in fig. 1a). The full circles correspond to a vanishing tunnel splitting, i.e. the
points given in (11). ForN = 4, a continuous parameter is needed to label the zeroes of (9): the
first two sides of the rhombus define an angle taking values between ±π; only a finite number
of possibilities to close the polygon remains. As a result, the tunnel splitting ∆ now vanishes
on lines in the three-dimensional parameter space. The set of all solutions is not a manifold
but an algebraic variety [7]: it consists of three circles S1 with any two of them touching
each other at one point. For arbitrary N , eq. (9) defines a variety in an (N − 1)-dimensional
parameter space composed of (N − 3)-dimensional manifolds glued together in a well-defined
way. In other words, the lowest two energy levels of a particle tunneling on the carambola CN
generically coincide on a variety of codimension 2.

Interference on a loop (∼ C2) and on CN with N ≥ 3 differ fundamentally from each other
for the following reason. The real parts of the two instanton contributions for a particle on a
loop are required to be identical for completely destructive interference. This restriction does
not apply if there are three (or more) paths: closed polygons which imply a quenching can
also result if N appropriate vectors with different lengths are added. Physically, it is possible
to satisfy eq. (9) by invoking inequivalent wires: the difference may be due to either different
potentials on the wires or to wires of different lengths (which do not leave the planes defined
by the semicircles).

Going beyond the single-instanton approximation [11] does not change the result (9). At
first sight, this is surprising: a multi-instanton calculation could be expected to be sensitive to
the full non-Abelian homotopy group π1(CN ). However, for the propagator KE(ba;T ) in (6),
only its “abelianization” π1/[π1, π1] is relevant [8], as always in scalar quantum mechanics [9].
The relevant topological information about the carambola is therefore already accounted for
by N single instantons.

One experimental realization of a space with homotopy π1(C3) relies on the fabrication
of nanostructures. Squeezing the three-dimensional carambola configuration of fig. 1a) into a
plane while preserving the lengths of the individual wires yields a two-dimensional arrangement
of wires (the “Yin-Yang”) shown in fig. 2a). The quenching condition (9) holds since the real
parts of the complex actions associated with the paths γ0 and γ± are equal; the imaginary parts
of the actions are, as before, determined by the amount of flux piercing the two regions into
which the area with boundary γ± is divided. Applying a magnetic field that is inhomogeneous
on a length scale given by the dimension of the mesoscopic structure, one can vary the fluxes
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Fig. 2. – a): Planar Yin-Yang configuration with the topology of a carambola; the wire γ0 is supposed
to have the same lenght as the semicircles γ±. Positive charges near the points P± turn them into
equivalent potential minima for an electron. An inhomogeneous magnetic field B (perpendicular to the
plane) provides different fluxes passing through the areas enclosed by γ0, γ+ and γ0, γ−, respectively.
b): Aharonov-Bohm–type arrangement for three-path interference: electron source Q, shield A with
C3 symmetric location of three holes, coils C and C′ with fields B and B′, respectively, and screen M .

independently, in principle. Methods to actually measure the tunnel splitting have been
discussed briefly in [2].

Further, a variant of an Aharonov-Bohm–type setup allows one to check experimentally
properties of a system with multiply connected configuration space in the presence of gauge
fields [12]. The topological structure of the carambola C3 is indeed realized by the arrangement
shown in fig. 2b). A source Q emits electrons which subsequently pass through three holes
located (with C3 symmetry) on a shield A. The particles only travel through field-free regions
since the magnetic fields B and B′ are constrained to two tiny coils C and C′, placed
immediately behind the shield. By appropriately varying the fluxes in the coils, one can
smoothly tune constructive into destructive interference at the point P on the screen M . The
complete two-dimensional interference pattern on the screen M has threefold symmetry, and
the maximum at P moves continuously away from the symmetry axis if the magnetic fields
are turned on [11]. Complete destructive interference shows up for parameter values satisfying
eq. (9) with dn = 1 if the Euclidean actions σn are replaced by actions calculated from eq. (2)
with V (q) ≡ 0. The dimensions of the holes in the shield, the distances travelled by the
electrons and their energy can be chosen similarly to those for standard Aharonov-Bohm
experiments [13].

Finally, the structure of the carambola CN emerges naturally for a spin in an environ-
ment allowing for tunneling [14]. A phase-space calculation takes into account N different
instantons connecting the two equivalent minima for the spin. The magnetic monopole at the
center, however, does not allow for independent variation of the (N − 1) fluxes through the
individual areas.

In summary, the influence of topology on interference has been discussed for systems with
N paths connecting two points. If three or more paths exist, they do not have to be equivalent
to achieve topologically induced destructive interference. Physical systems have been proposed
which realize the topology required to observe modifications of both free-particle propagation
and tunneling.
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