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Abstract. Consider a spins prepared in apurestate. It is shown that, generically, the moduli of
the (2s + 1) spin components along three directions in space determine the state unambiguously.
These probabilities are accessible experimentally by means of a standard Stern–Gerlach apparatus.
It is therefore possible to reconstruct a generic pure state on the basis of 6s independent measured
intensities.

1. Introduction

The reconstruction of a particle density operator is possible, in principle, through repeated
measurements on an ensemble of identically prepared systems [1, 2]. Quantum states of
vibrating molecules [3], of trapped ions [4], as well as the state of atoms in motion [5] have
been reconstructed successfully in the laboratory. Similarly, quantum optical experiments have
been performed to reconstruct the quantum state of a light wave [6].

For a spin of lengths, this question arises for states in a Hilbert space of finite dimension.
There is an explicit expression for the density matrixρ in terms of the moduli of spin
components along(4s + 1) appropriate directions in space [7]†. A standard Stern–Gerlach
apparatus with variable orientation in space provides the corresponding probabilities in an
experiment. Alternatively, a Wigner function defined on the discrete phase space associated
with a finite-dimensional Hilbert space allows one to reconstruct quantum states [9]. This
method has been adapted in [10] in order to determine a quantized electromagnetic mode of a
cavity. Every proposed method of state reconstruction is bound to reflect on the link between
the relative frequencies—the outcomes of afinite number of measurements obtained in an
actual experiment—and the calculated probabilities associated with aninfinite ensemble (see
[11], for example).

Suppose now that the spin state to be reconstructed is known to be prepared in apure
state which is determined by fewer parameters than a mixed state. How should we exploit this
additional knowledge in the most efficient way? For aparticle, the problem of reconstructing
a pure state had been raised by Pauli [12] as early as 1933 but he did not provide an answer.
One solution of the spin version of the problem [13] makes use of aFeynman filter. This is an
advanced version of a Stern–Gerlach apparatus which is assumed to reveal the relative phases
of the expansion coefficients of a pure spin state. Other approaches relate expectation values
of spin multipoles to the parameters which define the quantum state [7, 14].

† As it stands, the reduction to(2s + 1) directions proposed in [8] is erroneous.
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As shown in this paper, the pure state of a spins is fixed unambiguously if the 3(2s + 1)
intensitiesof the spin components are measured alongthreeaxes†. Compared to the(4s + 1)
axes required for a mixed state [7], the experimental effort to perform state reconstruction is thus
reduced considerably for large spins. Further, this result is satisfactory from a mathematical
point of view since it generalizes an earlier result: the intensities along twoinfinitesimally
closeaxes spanning a plane define a unique pure state when complemented by the expectation
value of a spin component ‘out of plane’ [15]. Effectively, this means measuring(2s + 1)
probabilities along a third direction.

2. Result

The purpose of this section is twofold. First, the setting of the problem is introduced
and secondly, the result is stated. The states of a spin of magnitudes live in a Hilbert
spaceHs of dimension(2s + 1), which carries an irreducible representation of the group
SU(2). The components of the spin operatorES ≡ h̄Es with standard commutation relations
[sx, sy ] = isz, . . . , generate rotations about the corresponding axes. The standard basis
of the spaceHs is given by the eigenvectors of thez component of the spin, denoted by
|s, µz〉,−s 6 µz 6 s. The transformation under the anti-unitary time reversal operatorT

fixes their phases,T |s, µz〉 = (−1)s−µz |s,−µz〉. When expanded in thez basis,

|ψ〉 =
s∑

µz=−s
ψµz |s, µz〉 (1)

a pure state is seen to be determined by(2s + 1) complex coefficientsψµz ≡ 〈s, µz|ψ〉.
If normalized, a ray|ψ〉 is thus specified by 4s real parameters. Two other bases of the
spaceHs will be used to expand|ψ〉 as in equation (1): the sets{|s, µx〉} and{|s, µy〉} with
−s 6 µx, µy 6 s, made up from the eigenvectors of the spin componentsSx = Enx · ES
andSy = Eny · ES, respectively, with unit vectorsEnx and Eny pointing along thex andy axes.
Rotations about appropriate axes by an angleπ/2 map them to thez basis:

|s, µz〉 = e−iπsy/2|s, µx〉 = eiπsx/2|s, µy〉. (2)

A measurement of the intensities{|〈s, µz|ψ〉|2} does not fix a single state|ψ〉, since the
phases of the coefficientsψµz remain undetermined. Measuring with respect totwo axes
provides 2(2s + 1) intensities which are usually compatible with a huge number of isolated
states, in agreement with the result of [15]: the parameters fulfil nonlinear relations which may
have multiple solutions. Enumerating the ensemble of possible ‘partner’ states is complicated,
so a distinctive third measurement is included from the very beginning. It will be shown in the
following that:

A generic spin state|ψ〉 ∈ Hs is fixed unambiguously if 3(2s + 1) probabilities

p(µk) = |ψµk |2 k = x, y, z (3)

are measured with a Stern–Gerlach apparatus along thethreecoordinate axes.
This result holds foralmost allpure states (the ‘genericity’ will be defined below): there

exist exceptional states of measure zero in Hilbert spaceHs such that the associated probabilities
p(µk) are compatible simultaneously with a finite number of other states.

As it stands, statement (3) refers to three orthogonal axes, and, for simplicity, the proof
will be carried out in this setting. The generalization to arbitrary axes not in a plane is possible
as will be pointed out in the final section.

† Due to the normalization condition of the states only 2s out of the(2s + 1) intensities with respect to a given
axis are independent. Thus, only 6s independent numbers are obtained from measurements along three axes. These
constraints should be kept in mind in the following.
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It is useful to rephrase the statement at stake differently. According to (3) a state|ψ̃〉 gives
rise to thesameintensities as does|ψ〉 if its coefficientsψ̃µk = 〈s, µk|ψ̃〉 differ fromψµk by
phase factors only. The indexk is understood to take the valuesx, y andz from now on. Using
(1) one writes

s∑
µk=−s

ψµke
iχk(µk)|s, µk〉 = exp[iχk(sk)]|ψ〉 (4)

with three polynomialsχk(µ) of order 2s in µ at most.The coefficients in (4) thus define three
states|ψk〉 = Ws

k |ψ〉, whereWs
k = exp [iχk(sk)] is a unitary operator diagonal in thek basis.

Consequently, a state|ψ̃〉 compatible with (3) exists if and only if there are nontrivial unitary
operatorsWs

k such that

Ws
x |ψ〉 = Ws

y |ψ〉 = Ws
z |ψ〉 ≡ |ψ̃〉. (5)

It will turn out that—for almost all states|ψ〉—this relation is satisfied only if the operators
Ws
k are multiples of the identity, implying that|ψ̃〉 and|ψ〉 represent thesameray in Hilbert

space.
Before turning to the proof, the intensitiesp(µk) in (3) are represented in a more compact

way. Define three functionsmk(α) of a complex variableα ∈ C by

mk(α) = 〈ψ |Us
k (α)|ψ〉 ≡

s∑
µk=−s

eiµkαp(µk) (6)

where the operatorUs
k (α) = exp(iαsk) rotates a state|ψ〉 about thek axis if α ∈ R.

Equation (6) is inverted easily using the orthogonality of the functions exp[−iµkα] on the
interval 06 α < 2π .

3. Proof

The proof that the data (3) are sufficient to characterize a unique state is divided into five steps:

(a) A 22s-dimensional ‘parent’ spaceHs is introduced which contains the Hilbert spaceHs

of the spins as a subspace.
(b) To each state|ψ〉 ∈ Hs an equivalence class of product states{|9〉 ∈ Hs} is associated.
(c) A natural definition ofgenericstates emerges forproduct states inHs and,a fortiori, in

Hs .
(d) An appropriate set of expectation values of the parent states|9〉 is shown to fix them

uniquely.
(e) Finally, it is shown that all states|ψ̃〉 satisfying (5) have parents in thesameequivalence

class as the original|ψ〉. Consequently, the (generic) state|ψ〉 is the only one giving rise
to the intensities (3).

Let us now turn to the individual steps.
(a) The 22s-dimensional ‘parent’ spaceHs of Hs is obtained from tensoring 2s copies of

the Hilbert spaceC2 of a spin1
2:

Hs =
2s⊗
r=1

C2
r . (7)

A basis ofC2 is given by the eigenstates|σ 〉 ≡ |s = 1
2, µ3 = 1

2σ 〉, σ = ±1, of the third
component of the spin12: σ3|σ 〉 = σ |σ 〉. This choice induces a basis ofHs formed by all
product states

|{σr}〉 =
2s⊗
r=1

|σr〉. (8)
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The parent spaceHs decomposes into a subspaceHssym and its complement,

Hs = Hssym⊕
(
Hssym

)⊥
(9)

whereHssym is spanned by the(2s + 1) states obtained from completely symmetrizing those in
(8):

|s, µ3〉 = S2s |{σr}〉
≡ Ns

µ3

∑
{σr }

δ(σ1 + · · · + σ2s − 2µ3)|{σr}〉 (10)

where−s 6 µ3 6 s, using a symmetrizer of 2s objects,S2s , and the normalization factor
Ns
µ3
= ((s − µ3)!(s + µ3)!/(2s)!)1/2. The spaceHssym is important here because it carries

a (2s + 1)-dimensional irreducible representation of the group of rotations,SU(2), obtained
upon reducing the product representation [16]

U |{σr}〉 =
2s⊗
r=1

∑
σ ′r=±1

|σ ′r〉〈σ ′r |ur |σr〉 (11)

whereur is therth copy of a rotationu ∈ SU(2) of the fundamental representation acting
onC2, andU is an operator defined onHs . Since Hilbert spaces of the same dimension are
isomorphic,Hssym andHs can and will be identified from now on.

(b) There is a one-to-one relation between states|ψ〉 ∈ Hssym and equivalence classes of
productstates|9〉 ∈ Hs :

|9〉 ≡ |{9r}〉 =
2s⊗
r=1

(∑
σr

9r
σr
|σr〉

)
. (12)

The equivalence relation∼ is defined as follows: the projection of a state|9〉 in (12) onto a
basis state|s, µ3〉 ∈ Hssym must equal the corresponding expansion coefficient of|ψ〉 in thez
basis, i.e.

〈s, µ3|9〉 = Nψ 〈s, µz|ψ〉 −s 6 µ3 = µz 6 s (13)

and the factorNψ > 0 may depend on the state|ψ〉 under consideration butnot on the index
µz. Thus,|9〉 ∼ |9 ′〉 means that for a fixed|ψ〉, equations (13) hold for both product states,
|9〉 ∼ |9 ′〉. The association of spin states|ψ〉 with product or ‘parent’ states|9〉 is essential
for the following.

In order to determine the class of states satisfying equation (13) for a prescribed vector
|ψ〉 (with definite phase), multiply by the factor 1/Ns

µ, by powers(−z)µ+s and sum all terms.
Then, the right-hand side defines an analytic function

fR(z) = Nψ
s∑

µ=−s

(−z)µ+s

Ns
µ

ψµ ∝
2s∏
r=1

(zr − z) (14)

specified by the location of its 2s zeroszr in the complex plane. The left-hand side of (13)
yields a second analytic function ofz,

fL(z) =
s∑

µ=−s

∑
{σr }
(−z)µ+sδ(σ1 + · · · + σ2s − 2µ)91

σ1
. . . 92s

σ2s

≡
2s∏
r=1

(9r
− − z9r

+) 9r
± ≡ 9r

±1. (15)
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The(2s + 1) equations (13) are satisfied iffL(z) andfR(z) coincide. Being two polynomials
of degree 2s, this requires them to have identical zeros,

9r
−
9r

+

= zr r = 1, . . . ,2s (16)

in addition,fL(0) = fR(0)must hold. Due to the normalization〈9r |9r〉 = |9r
+|2+|9r

−|2 = 1,
one can write(

9r
+

9r
−

)
= eiκr√

1 + |zr |2
(

1
zr

)
κr ∈ [0, 2π). (17)

Thus, there are 2s undetermined phase factors eiκr with a product equal to 1 (|ψ〉 denotes a
vector, not a ray). However, the overall ambiguity is even larger: when comparing the zeros
of the functionsfL(z) andfR(z), there is no rule which would indicate what order to choose
when writing down the product state|{9r}〉. In other words, the equivalence class of states
defined by (13) consists of all states with coefficients (17) distributed in any order over the 2s

spinors in (12). All these states are parents of the same|ψ〉 since they satisfy equation (13).
A givenproduct state|9〉 with components

〈{σr}|9〉 = 9{σr } =
2s∏
r=1

9r
σr

(18)

has a unique ‘daughter’|ψ〉 to be read off directly. Upon parametrizing each factor|9r〉 by a
complex numberzr ,(

9r
+

9r
−

)
= 1√

1 + |zr |2
(

1
zr

)
(19)

one sees that the ensemble{zr} ≡ (z1, . . . , z2s) (no order implied) defines the daughter|ψ〉
completely, while a maximum of(2s)! different parent states|9〉 is associated with a given
set{zr}.

(c) Suppose that three ensembles of 2s real numbers each,{xr}, {yr} and {|zr |} ≡
(|z1|, . . . , |z2s |) with zr = xr + iyr are given in disorder. If one is able to construct the
disordered ensemble of 2s complex numbers{zr = xr + iyr} upon using the 2s conditions
|zr |2 = x2

r + y2
r , the equivalence class with representant|9〉 is calledgeneric. In other words,

it must be possible to combine unambiguously real and imaginary parts into complex numbers
zr . In this spirit, a daughter|ψ〉 ∈ Hssym will be calledgenericif it has generic parents|9〉.
The procedure does not work if equalities such asxr = ±yr ′ , r 6= r ′ exist; henceexceptional
states have measure zero.

(d) It is shown now that the expectation values of rotationsUk(α) about the axesx, y andz,
fix generic product states|9〉 = |{9r}〉 up to a permutation of the factors|9r〉 and an overall
phase factor. A generic|9〉 ∈ Hs leads to three expectation values

Mk(α) = 〈9|Uk(α)|9〉 ≡
2s∏
r=1

〈9r |urk(α)|9r〉 (20)
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whereuk(α) = 1cos(α/2) + iσk sin(α/2) represents a rotation about axisk in C2. Using the
parametrization of equation (19), the functionsMk(α) defined in (20) read explicitly

Mx(α) =
2s∏
r=1

(
cos

α

2
+ i

2xr
1 + |zr |2 sin

α

2

)
(21a)

My(α) =
2s∏
r=1

(
cos

α

2
+

2yr
1 + |zr |2 sin

α

2

)
(21b)

Mz(α) =
2s∏
r=1

(
cos

α

2
+ i

1− |zr |2
1 + |zr |2 sin

α

2

)
(21c)

where againzr = xr + iyr . Denote by|9̃〉 ≡ |{9̃r}〉 another product state with expectations
M̃k(α)

M̃k(α) = 〈9̃|Uk(α)|9̃〉 ≡
2s∏
r=1

〈9̃r |urk(α)|9̃r〉. (22)

Upon describing the state|9̃〉 by the sequence{z̃r}, the three functions̃Mk(α) are given by
equations (21) after replacing eachzr by z̃r . It is shown now that the conditions

〈9̃|Uk(α)|9̃〉 = 〈9|Uk(α)|9〉 k = x, y, z (23)

necessitate|9̃〉 ∼ |9〉. Being analytic in the complexα plane, the functionsMk(α) and
M̃k(α) are equal if they have same zeros. The equalityM̃z(α) = Mz(α) requires|z̃r | = |zr |.
The conditionM̃x(α) = Mx(α) in turn implies x̃r = xr ; finally, ỹr = yr follows from
M̃y(α) = My(α). However, this procedure determines the ensembles{xr}, {yr} and {|zr |}
without any order of its members. Nevertheless, one can reconstruct the ensemble{zr} (no
order implied) according to (c) if|9〉 is genericproviding thus auniqueequivalence class.
For exceptional states, the 2s complex numbers cannot be reconstructed unambiguously since
they might allow for parents contained in different equivalence classes.

(e) Results (a)–(d) imply that the probabilitiesp(µk) for three directionsx, y andz as
given in equation (3) determine a generic state|ψ〉 unambiguously. According to equation (5),
a state|ψ̃〉 gives rise to the same probabilities as does|ψ〉 if one has

|ψx〉 = |ψy〉 = |ψz〉 = |ψ̃〉. (24)

For parent states|9k〉 of |ψk〉 this relation says that

|9x〉 ∼ |9y〉 ∼ |9z〉 ∼ |9̃〉. (25)

This implies that the mean values〈9k|Ux(α)|9k〉 of the operatorUx(α) =⊗r exp[iασx/2] are
equal fork = x, y, z: as products they are invariant under a permutation of their factors. This
also holds for expectation values of the operatorsUy(α) andUz(α). Write the parent states
|9k〉 in the formWk|9〉 with operatorsWk({αk,r}) = ⊗r exp[iαk,rσk/2] defined on the parent
spaceHs such that they haveWs

k as component acting inHssym. Contrary to the rotationsUk(α)
which depend linearly on the generatorssk, the operatorsWs

k arenonlinearfunctionsχ(sk)
of them, cf equation (4). Therefore, the operatorsWk({αk,r}) depend on a set of 2s different
angles{αk,r}. Using (25) one concludes that

〈9̃|Uk|9̃〉 = 〈9k|Uk|9k〉
= 〈9|W†

k UkWk|9〉 = 〈9|Uk|9〉. (26)

The third equality follows becauseWk andUk do commute, both being functions ofsk only.
Equation (26) comes down to saying that the functionsMk(α) andM̃k(α) coincide for allk
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andα. One concludes thus with (d) that the state|9̃〉, a parent of|ψ̃〉, is necessarily a member
of thesameequivalence class as the parent|9〉 of |ψ〉. In other words, the application of the
operatorsWk on a parent|9〉 does not map it into another equivalence class. In the generic
case, there is thus no state different from|ψ〉 with the same data (3) which was to be shown.

4. Discussion

The characterization of a pure state|ψ〉 by the probabilites (3) is almost always possible. If
one deals with an exceptional state as defined in (c), different scenarios are possible. First, the
set of data (3) might nevertheless be sufficient to fix the underlying state unambiguously. This
is due to the fact that the original conditions on the moduli are stronger than those formulated
in the parent space. Suppose that the numbers{zr} are associated with a parent state|9〉
and{z′r} with another one,|9 ′〉, where both sets of complex numbers are obtained from the
ensembles{xr} and{yr} through|zr |2 = x2

r +y2
r . This does not necessarily imply the existence

of an independent|ψ ′〉 6= |ψ〉 since it is the basic conditions|ψ ′µk | = |ψµk | which must be
satisfied. Secondly, a numerical coincidence of parameter values might indeed destroy the
one-to-one relation between daughter states and (equivalence classes of) parent states. This
case fits the result of [15] where intensities are measured along three infinitesimally close axes:
in this situation, one can write down explicitly non-generic states for which the reconstruction
scheme does not work.

Since the ambiguities are due to thenumericalvalues of expansion coefficients, it is
expected that they do not persist if one were to measure intensities with respect to another
set of orthogonal axes close to the original ones. Although plausible, there seems to be no
straightforward way to prove this statement. The difficulty here is due to the nonlinearity of
the underlying equations leading to nearly unpredictable behaviour of solutions even if the
parameter values (orientation of the axes) are modified only slightly. If, however, the state
at hand does possess a particular ‘symmetry’, the ambiguity is not automatically removed
by a slight reorientation of the axes. As explicit calculations for low values of spins show,
the ambiguity persists, for instance, ifψ ′µk = ψ∗µk , corresponding to〈ψ |sn+1

y |ψ〉 = 0 with
16 n 6 [2]. Similar ambiguities exist with respect to thex andz axes.

It is worthwhile to point out that the reasoning of the previous section remains valid if one
measures the intensities along directions characterized by non-orthogonal unit vectorsnζ ,nη,
andnξ : the derivation does not make use of the fact that the three bases|µk〉, k = x, y, z, of
Hilbert space are associated withorthogonalaxes. It is essential, however, that the vectors be
linearly independent, that is, they have to span avolumein space:nζ ·nη×nξ 6= 0. For each
choice of directions in space—be they orthogonal or not—there will be a set of exceptional
states such that the data (3) do not single out one individual state. If two triples(nζ ,nη,nξ )

and(nζ ′ ,nη′ ,nξ ′) can be mapped onto each other by a rigid rotation, the respective ensembles
of exceptional states will also be mapped onto each other.

To sum up, the pure state of a spins is generically fixed by the 6s independent moduli
of the spin components with respect to three spatial directions not in a plane. Compared
with a constructive method for which the number of intensities is quadratic ins, the number of
experimentally determined parameters is considerably smaller for the non-constructive method
presented here, growing only linearly ins.
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