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Abstract. Consider a spin prepared in @urestate. It is shown that, generically, the moduli of

the (2s + 1) spin components along three directions in space determine the state unambiguously.
These probabilities are accessible experimentally by means of a standard Stern—Gerlach apparatus.
It is therefore possible to reconstruct a generic pure state on the basigwdEpendent measured
intensities.

1. Introduction

The reconstruction of a particle density operator is possible, in principle, through repeated
measurements on an ensemble of identically prepared systems [1,2]. Quantum states of
vibrating molecules [3], of trapped ions [4], as well as the state of atoms in motion [5] have
been reconstructed successfully in the laboratory. Similarly, quantum optical experiments have
been performed to reconstruct the quantum state of a light wave [6].

For a spin of length, this question arises for states in a Hilbert space of finite dimension.
There is an explicit expression for the density matpixn terms of the moduli of spin
components alon@ds + 1) appropriate directions in space [7]t. A standard Stern—Gerlach
apparatus with variable orientation in space provides the corresponding probabilities in an
experiment. Alternatively, a Wigner function defined on the discrete phase space associated
with a finite-dimensional Hilbert space allows one to reconstruct quantum states [9]. This
method has been adapted in [10] in order to determine a quantized electromagnetic mode of a
cavity. Every proposed method of state reconstruction is bound to reflect on the link between
the relative frequencies—the outcomes dirdate number of measurements obtained in an
actual experiment—and the calculated probabilities associated wittiiaite ensemble (see
[11], for example).

Suppose now that the spin state to be reconstructed is known to be preparpdrn a
state which is determined by fewer parameters than a mixed state. How should we exploit this
additional knowledge in the most efficient way? Fquaaticle, the problem of reconstructing
a pure state had been raised by Pauli [12] as early as 1933 but he did not provide an answer.
One solution of the spin version of the problem [13] makes usdefjaman filter This is an
advanced version of a Stern—Gerlach apparatus which is assumed to reveal the relative phases
of the expansion coefficients of a pure spin state. Other approaches relate expectation values
of spin multipoles to the parameters which define the quantum state [7, 14].

T As it stands, the reduction t@s + 1) directions proposed in [8] is erroneous.
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As shown in this paper, the pure state of a spis fixed unambiguously if the@s + 1)
intensitiesof the spin components are measured alttmgeaxest. Compared to thds + 1)
axes required for a mixed state [7], the experimental effort to perform state reconstruction is thus
reduced considerably for large spins. Further, this result is satisfactory from a mathematical
point of view since it generalizes an earlier result: the intensities alongrtfivotesimally
closeaxes spanning a plane define a unique pure state when complemented by the expectation
value of a spin component ‘out of plane’ [15]. Effectively, this means measy#ng 1)
probabilities along a third direction.

2. Result

The purpose of this section is twofold. First, the setting of the problem is introduced
and secondly, the result is stated. The states of a spin of magnitlide in a Hilbert
spaceH® of dimension(2s + 1), which carries an irreducible representation of the group
SU(2). The components of the spin operaﬁ‘)rz hs with standard commutation relations

[sx, sy] = is;, ..., generate rotations about the corresponding axes. The standard basis
of the spaceH® is given by the eigenvectors of thecomponent of the spin, denoted by

Is, ), —s < u, < s. The transformation under the anti-unitary time reversal oper&tor
fixes their phased,|s, u.) = (—1)**|s, —u,). When expanded in thebasis,

s
W)= > Yuls, u) €N
Ho=—8§
a pure state is seen to be determined(By+ 1) complex coefficients),. = (s, u |¥).
If normalized, a rayjy) is thus specified by #Areal parameters. Two other bases of the
spaceH*® will be used to expandl/) as in equation (1): the sefs, )} and{]s, u,)} with
—s < Wy, ny < s, made up from the eigenvectors of the spin componghts= 7, - S
andS, = n, - S, respectively, with unit vectors, andn, pointing along ther andy axes.
Rotations about appropriate axes by an angl2 map them to the basis:
Is, pz) = €77 2s, ) = €72 s, o). 2
A measurement of the intensiti¢s, «.|v)|?} does not fix a single state ), since the
phases of the coefficientg,. remain undetermined. Measuring with respectvio axes
provides 22s + 1) intensities which are usually compatible with a huge number of isolated
states, in agreement with the result of [15]: the parameters fulfil nonlinear relations which may
have multiple solutions. Enumerating the ensemble of possible ‘partner’ states is complicated,
so a distinctive third measurement is included from the very beginning. It will be shown in the
following that:
A generic spin statg/) € H* is fixed unambiguously if @s + 1) probabilities

o) =Wul?  k=xyz2 €)
are measured with a Stern—Gerlach apparatus alornfbecoordinate axes.

This result holds foalmost allpure states (the ‘genericity’ will be defined below): there
exist exceptional states of measure zero in Hilbert spdseich that the associated probabilities
p(ur) are compatible simultaneously with a finite number of other states.

As it stands, statement (3) refers to three orthogonal axes, and, for simplicity, the proof
will be carried out in this setting. The generalization to arbitrary axes not in a plane is possible
as will be pointed out in the final section.

T Due to the normalization condition of the states ontyoRit of the(2s + 1) intensities with respect to a given

axis are independent. Thus, only idependent numbers are obtained from measurements along three axes. These
constraints should be kept in mind in the following.
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Itis useful to rephrase the statement at stake differently. According to (3) aﬁstag'wes
rise to thesameintensities as doeg) if its coefficientsy,, = (s, w|y) differ from ¢, by
phase factors only. The indéxs understood to take the valuesy andz from now on. Using
(1) one writes

D Y @5 Ms, ) = explix(sol1¥) 4)
Hk=—5
with three polynomialgy (1) of order 2 in i at most.The coefficients in (4) thus define three
stategyi) = W), whereW; = exp [ix«(sx)] is a unitary operator diagonal in tikebasis.
Consequently, a stat¢’) compatible with (3) exists if and only if there are nontrivial unitary
operators, such that
W) = Wily) = Wl ly) = [¥). )
It will turn out that—for almost all statels/)—this relation is satisfied only if the operators
W, are multiples of the identity, implying tha) and|y ) represent theameray in Hilbert
space.
Before turning to the proof, the intensitipgu,) in (3) are represented in a more compact
way. Define three functions, («) of a complex variable: € C by

mie) = (WU @) = ) € p(up) (6)
Hk=—s
where the operatol/; («) = explias;) rotates a statg¢y) about thek axis if « € R.
Equation (6) is inverted easily using the orthogonality of the functions-exple] on the
interval 0< a < 27.

3. Proof

The proof that the data (3) are sufficient to characterize a unique state is divided into five steps:

(@) A 2>-dimensional ‘parent’ spack® is introduced which contains the Hilbert spade
of the spins as a subspace.

(b) To each state)) € H* an equivalence class of product stafiels) € H*} is associated.

(c) A natural definition ofyenericstates emerges f@roduct states irn+* and,a fortiori, in
H*.

(d) An appropriate set of expectation values of the parent spdtess shown to fix them
uniquely. _

(e) Finally, it is shown that all stateg ) satisfying (5) have parents in tkameequivalence
class as the originaly). Consequently, the (generic) stage) is the only one giving rise
to the intensities (3).

Let us now turn to the individual steps.
(@) The Z-dimensional ‘parent’ spack® of H* is obtained from tensoringsZopies of
the Hilbert space? of a spini:

2s
H = (gl) c?. (7)

A basis of C? is given by the eigenstates) = |s = 3, uz = 30),0 = =1, of the third
component of the spié: o3lo) = olo). This choice induces a basis &f formed by all
product states

2s
lior}) = @) lov). ®)
r=1
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The parent spack’ decomposes into a subspdeg,,, and its complement,

s s s L
H = Hiym @ (Hiym) 9)
whereHy, ., is spanned by the2s + 1) states obtained from completely symmetrizing those in

(8):

|5, u3) = Sasl{or})
=N, ) 801+ +o05 — 2ur)l{or) (10)

where s < uz < s, using a symmetrizer ofs2objects,Sy;, and the normalization factor

= ((s — ua)!(s + ua)!/(25)HY2. The spacéisym is important here because it carries
a (2s + 1)-dimensional irreducible representation of the group of rotatiSbg2), obtained
upon reducing the product representation [16]

2s

Ullo) =@ D o)) o) lurloy) (12)

r=1o0/=%1

whereu, is therth copy of a rotation: € SU(2) of the fundamental representation acting
on C?, and/ is an operator defined ol°. Since Hilbert spaces of the same dimension are
isomorphic Heym andH* can and will be identified from now on.

(b) There is a one-to-one relation between stafgse Mg, and equivalence classes of
productstateg W) € H*:

25
W) = [{W'}) = ®<Z w;,|ar>). (12)
r=1 [of

The equivalence relatior is defined as follows: the projection of a st@de) in (12) onto a
basis statgs, us) € Hgym, must equal the corresponding expansion coefficiemy¢fin thez
basis, i.e.

(s, u3[W) = Ny (s, pu:|¥) =S S p3 = <8 (13)

and the factov, > 0 may depend on the stai¢) under consideration buipt on the index
u.. Thus,|W) ~ |W’) means that for a fixefd/), equations (13) hold for both product states,
|W) ~ |W’). The association of spin statpg) with product or ‘parent’ statesl) is essential
for the following.

In order to determine the class of states satisfying equation (13) for a prescribed vector
|¥) (with definite phase), multiply by the factoy &%, by powers(—z)#** and sum all terms.
Then, the right-hand side defines an analytic function

(= Z)’“S

fr(x) =Ny Z Y ]"[(zr ~2) (14)

n=—s

specified by the location of itss2Zzerosz, in the complex plane. The left-hand side of (13)
yields a second analytic function of

fr(@) = Z Z( 8oy + -+ op — 20 WL L WE

u==s {o,}

= 1‘[(\111 —z W) vo=wl (15)
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The (2s + 1) equations (13) are satisfiedff (z) and fz (z) coincide. Being two polynomials
of degree 2, this requires them to have identical zeros,

\p;:zr I":l,...,ZS (16)

in addition, f; (0) = f&(0) musthold. Due to the normalizatiod” | W) = |V |2+ ¥ |2 = 1,
one can write

v\ ooes 1
(\I/r) = W (Zr> K, € [O, 27'[) (17)

Thus, there ares2undetermined phase factor$ ewith a product equal to 1|¢) denotes a
vector, not a ray). However, the overall ambiguity is even larger: when comparing the zeros
of the functionsf; (z) and f&(z), there is no rule which would indicate what order to choose
when writing down the product statel’}). In other words, the equivalence class of states
defined by (13) consists of all states with coefficients (17) distributed in any order over the 2
spinors in (12). All these states are parents of the sgmesince they satisfy equation (13).

A givenproduct state¥) with components

2s
({0} 1W) = Wiy =[] W, (18)
r=1

has a unique ‘daughteri/) to be read off directly. Upon parametrizing each fa¢tst) by a
complex numbet,,

<$) N ﬁ C) (19)

one sees that the ensemipfe} = (z1, ..., z2,) (noorder implied) defines the daughtelr)
completely, while a maximum af2s)! different parent stategl) is associated with a given
set{z,}.

(c) Suppose that three ensembles ofr2al numbers eachix,}, {y,} and {|z,|} =
(Izal, ..., lz2s]) with z, = x, + iy, are given in disorder. If one is able to construct the
disordered ensemble of Zomplex number$z, = x, +iy.} upon using the £ conditions
lz,|? = x2 + y?, the equivalence class with representanitis calledgeneric In other words,
it must be possible to combine unambiguously real and imaginary parts into complex numbers
z,. In this spirit, a daughtely) € H,, will be calledgenericif it has generic parentsl).
The procedure does not work if equalities suchras- +y,, r # r’ exist; hencexceptional
states have measure zero.

(d) Itis shown now that the expectation values of rotatigj(e) about the axes, y andz,
fix generic product statg¥) = [{¥"}) up to a permutation of the factorg”) and an overall
phase factor. A generia) € H* leads to three expectation values

2s
Mi(@) = (W|Up()|W) = [ [0 [uf ()7 (20)
r=1
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whereu, () = 1cosa/2) + ioy Sin(a/2) represents a rotation about akis» C2. Using the
parametrization of equation (19), the functiovfg(«) defined in (20) read explicitly

2s
o 2x, . a
M, = COS— +1i sin— 21a
« 1_!( S e os) (212
M, (o) = ﬁ cos> + 2y sin (21b)
AL T T e 2
2s 2
_ o 1—|z° . «
M (o) = H(COSE +i 1712 S'”E) (21c)

where again, = x, +iy,. Denote by]@) = |{¥"}) another product state with expectations
My (@)
~ ~ ~ 2S ~ ~
Mi(@) = (WU ()W) = [ [0 fug ()| 97). (22)
r=1
Upon describing the staﬂ@) by the sequencg, }, the three functionﬂk(a) are given by
equations (21) after replacing eaghby z,. It is shown now that the conditions

(U] U ()| 0) = (W] Uy () | W) k=x,y,z2 (23)

n~ecessitat¢\ff) ~ |W). Being analytic in the complex plane, the functiong/;(«) and
M; () are equal if they have same zeros. The equaditye) = M, () requires|z,| = |z,|.
T~he conditionM, () = M,(«) in turn impliesx, = x,; finally, y, = y, follows from
M,(x) = M,(x). However, this procedure determines the ensempigs {y.} and{|z.|}
withoutany order of its members. Nevertheless, one can reconstruct the engepifteo
order implied) according to (c) if¥’) is genericproviding thus auniqueequivalence class.
For exceptional states, the 2omplex numbers cannot be reconstructed unambiguously since
they might allow for parents contained in different equivalence classes.

(e) Results (a)—(d) imply that the probabilitips.c;) for three directions:, y andz as
given in equation (3) determine a generic stgtpunambiguously. According to equation (5),
a statgyr) gives rise to the same probabilities as dpgsif one has

V) = [Wy) = [Y) = |¥). (24)
For parent statelsl; ) of |yy) this relation says that
W) ~ W) ~ W) ~ [B). (25)

This implies that the mean valuég, | U/, («)| ¥, ) of the operatot/, (o) = ®, explieo, /2] are
equal fork = x, y, z: as products they are invariant under a permutation of their factors. This
also holds for expectation values of the operatérgr) andi/, (). Write the parent states
[Wy) in the formW, | W) with operatorsV, ({ax. - }) = ®, expliox o /2] defined on the parent
spacet® such that they hav#;’ as component acting iy, Contrary to the rotatiorig («)
which depend linearly on the generatags the operatordV, arenonlinearfunctionsy (si)

of them, cf equation (4). Therefore, the operatdig{«, }) depend on a set ofsAifferent

angles{«; ,}. Using (25) one concludes that
(O] U | B) = (W Uy | W)
= (WIW UWW) = (W] Uy | D). (26)

The third equality follows because#); andl4, do commute, both being functions sf only.
Equation (26) comes down to saying that the functidfiga) and M, («) coincide for allk
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anda. One concludes thus with (d) that the stake, a parent of@), is necessarily a member
of the sameequivalence class as the parght of |v). In other words, the application of the
operators/V, on a parent¥) does not map it into another equivalence class. In the generic
case, there is thus no state different frofm with the same data (3) which was to be shown.

4. Discussion

The characterization of a pure state) by the probabilites (3) is almost always possible. If

one deals with an exceptional state as defined in (c), different scenarios are possible. First, the
set of data (3) might nevertheless be sufficient to fix the underlying state unambiguously. This
is due to the fact that the original conditions on the moduli are stronger than those formulated
in the parent space. Suppose that the numbgisare associated with a parent st@de

and{z’} with another one|¥’), where both sets of complex numbers are obtained from the
ensemblegx, } and{y,} through|z,|? = x?+y2. This does not necessarily imply the existence

of an independent)’) # |) since it is the basic conditiorig, | = [v,,| which must be
satisfied. Secondly, a numerical coincidence of parameter values might indeed destroy the
one-to-one relation between daughter states and (equivalence classes of) parent states. This
case fits the result of [15] where intensities are measured along three infinitesimally close axes:
in this situation, one can write down explicitly non-generic states for which the reconstruction
scheme does not work.

Since the ambiguities are due to thamericalvalues of expansion coefficients, it is
expected that they do not persist if one were to measure intensities with respect to another
set of orthogonal axes close to the original ones. Although plausible, there seems to be no
straightforward way to prove this statement. The difficulty here is due to the nonlinearity of
the underlying equations leading to nearly unpredictable behaviour of solutions even if the
parameter values (orientation of the axes) are modified only slightly. If, however, the state
at hand does possess a particular ‘symmetry’, the ambiguity is not automatically removed
by a slight reorientation of the axes. As explicit calculations for low values of sphow,
the ambiguity persists, for instance,#f, = v , corresponding tqw|s;’,"1|1/f) = 0 with
1 < n < [2]. Similar ambiguities exist with respect to theandz axes.

It is worthwhile to point out that the reasoning of the previous section remains valid if one
measures the intensities along directions characterized by non-orthogonal unit mgcteys
andn,: the derivation does not make use of the fact that the three hageg = x, y, z, of
Hilbert space are associated witfthogonalaxes. It is essential, however, that the vectors be
linearly independent, that is, they have to spaolamein spacemn, - n, x ng # 0. For each
choice of directions in space—be they orthogonal or not—there will be a set of exceptional
states such that the data (3) do not single out one individual state. If two tfiples,, n;)
and(n., n,, ng) can be mapped onto each other by arigid rotation, the respective ensembles
of exceptional states will also be mapped onto each other.

To sum up, the pure state of a spifis generically fixed by the 6independent moduli
of the spin components with respect to three spatial directions not in a plane. Compared
with a constructive method for which the number of intensities is quadratidire number of
experimentally determined parameters is considerably smaller for the non-constructive method
presented here, growing only linearlysn
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