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Abstract. The density matrix of a spinis fixed uniquely if the probabilites to obtain the value

s upon measuring - s are known for 4(s + 1) appropriately chosen directiofisin space. These
numbers are just the expectation values of the density operator in coherent spin states, and they
are easily obtained in an experiment carried out with a Stern—-Gerlach apparatus. Furthermore,
the experimental data is non-redundant, and it can be invextpticitly which allows for a
parametrization of the statistical operator by thés4+ 1) positive parameters.

If an infinite ensemble of identically prepared quantum systems is available, the rules of
guantum mechanics allow one to extract complete information about the quantum state. The
required inversion, expressing the statistical operator entirely in terms of measurable quantities,
is not straightforward from a mathematical point of view, and the data acquisition in the
laboratory is challenging since it is necessary to deal reliably with individual quantum systems.

The experimental verification of a state reconstruction scheme requires high standards in
the preparation of individual quantum systems. By now, these standards have been met for
gquantum systems such as an electromagnetic wave [1], vibrating molecules [2], ions caught
in a trap [3], and atoms moving freely in space after scattering from a double slit [4]. State
reconstruction is reviewed in [5, 6], for example, both from the theoretical and experimental
point of view.

State reconstruction for a quantum system with a finite humber of states appears to
be slightly easier than for particle systems living in a Hilbert space with countably infinite
dimension. Various answers to the problem have been obtained for both mixed and pure states
of spins with lengths. Pure states in two- or three-dimensional Hilbert spaces=( % 1)
have been treated in a straightforward way while the general case is more complicated [7, 8].
Using Feynman filters, a phase sensitive version of a Stern—Gerlach apparatus [9], one can
directly determine moduli and (relative) phases of the individual matrix elements of the density
operator [10] describing mixedspin state. As shown in [11], the expectations ofs4+ 1)
linearly independent spin multipoles fix a unique density operator; however, no method has
beenindicated how to experimentally determine these values. An experimentally more realistic
approach has been proposed in [12]: the density matrix is determingdifi2l) real numbers
are measured by using a Stern—Gerlach apparatus oriented along various directions in space. In
[13], areduction to the minimum number of4+1) measured probabilities has been proposed
which, as shown in the appendix, is unfortunately erroneous. Alternatively, a tomographic
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approach adapted to finite-dimensional Hilbert spaces allows for experimental reconstruction
of quantum states [14]. Asis common for methods involving Wigner functions, the information
to be extracted from experimentsredundant For an application of this approach, see [15],
where the determination of a single quantized cavity mode is treated.

In this letter, a simple and constructive reconstruction scheme for the mixed state of a spin
s is presented in accordance with the following two natural constraints taken from [13]:

(1) the measurements are performed with a standard Stern—Gerlach apparatus only;
(2) no redundant information is acquired.

These conditions guarantee that a standard experimental setting is sufficient to perform
the reconstruction of mixed spin states in the most economical way.

The states of a spin of magnituddelong to a(2s + 1)-dimensional Hilbert spacg,
carrying anirreducible representation of the gr6@f2). The components of the spin operator
S = 713 with standard commutation relations [ s,] =is,, ..., generate rotations about the
corresponding axes. The standard basis of the spadg given by the eigenvectors of the
components, = 7, - s of the spin, which are denoted Iy, 7.), —s < u < s. The phases
of the states are fixed by the transformation under the anti-unitary time reversal oferator
T\, ni;) = (—1)**| — u,ni;), and the ladder operatoes = s,+is, act as usual in this
basis:

el iz) = /s(s+ 1) — u(p £ Dlp £ 1, 7). 1)
The algebrad, of observablescting on states in the spagg has dimensiorf2s + 1)°. It
consists of all polynomials in the operatass s, ands, with real coefficients and of degree
2s at most. A monomial of a degree higher thancan always be expressed as a linear
combination of monomials of lower degree.
Consider the eigenstates of the operatos,

s\, ) = plp, n) —s<pu<s ()
where the unit vectot = (sinf cosg, sind sing, cosh), 0 < 6 < 7,0 < ¢ < 27, defines a

direction in space. Given a state with density magrjxhe probabilityp, (1) to measure the
valueu with a Stern—Gerlach apparatus oriented alanggiven by

pu(t) = TrlpP,(m)] = (u, nlp|u, 1) 3)
with the projectorP, (i) = |u,n){(u,n|. For the state with maximal weight, = s, the
probability p,(71) coincides with the expectation value pfin a (standard)toherentstate
[17],

|s, 1) = exp[=ifm(p) - 8]|s, ;) 4
wherem(¢) = (— sing, cosy, 0). In other words, the statg) is the result of rotating the state
s, 71,) about the axigi(¢) in thexy plane by an anglé. It is convenient to combing, ¢)
into a single complex variable, = tan(0/2) exp[ig]. This corresponds to a stereographic

projection of the surface of the sphere to the complex plane. In tergysafoherent state has
the expansion [18]

R 1 s 2 1/2
i = g 25, (o 2) e ©
H=—s
According to (3) the mean value pfin this state is
s 1/2 1/2 —s5—u _s—n
- 2s 2s 7"z
o (i) = ———pw 6
P u,;s<s—u’> (s—u) (L +1z2 " ©

t Other families of coherent states are obtained if a ‘fiducial’ state different firofn) is used [16].
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wherez denotes the complex conjugatezofNote that equation (6) definediaear relation
between the quantities, (1) and the unknowng, ,. Due to the hermiticity of the density
matrix, o,/ = 0, s, it contains(2s + 1)? free real parameters (the normalization condition
Tr[ p] = 1 will be suppressed for the moment). Therefore, the probabilitjés) must be
known for at least2s + 1)2 pointsz;, A = 1,2, ..., (2s + 1)2. Each of the points;, in the
complex plane corresponds to a point on the sphere or, equivalently, to one spatial direction
1, =16y, ¢2).

If the pointsz; are chosen appropriately, tts + 1)? measurable numbeys (7,) contain
all the information needed to determine the matrix elemepts and thus the quantum state.
To show this, let us rescale both the measured probabilities,

P = L +121%)% py(iiz) )
and the matrix elements of the statistical operator,

1/2 1/2
- 2s 2s
Pk = < k7> ( kv) Ps—k's—k 8

which, for convenience, have been relabelled with non-negative intégerss — u and
K =s—u, kk=0,1,...,2s. Writing down equation (6) for2s + 1) different (as yet
unspecified) directions, , one obtains

2s
pr=Y b A=12 ..., (25 +1>2 9)
k,k'=0

It it not obvious how to directly invert thé2s + 1)? x (2s + 1)2 matrix N, ) = z¢ z&, which
would provide an immediate solution of the problem. By a Fourier transform, however, one
can divide th&2s +1)? coupled equations into smaller sets of equations each of which contains
(2s + 1) unknowns. For integer spilgs + 1) such sets will emerge while for half-integer spin
their number igs + g). Select(2s + 1)2 directionsi; = 7, with

L =Z2gr = Rq exp[i(pqr] 0< q,r < 2s (10)
with positive number®, > 0, R, # R, if ¢ # ¢’, and
2
,=——(Fr+qgA 0<AKL . 11
bor = 51N 25 +1 ()

The numbersk, define(2s + 1) circles in the complex plane which correspond e + 1)
circles on the sphere about thewxis. The values of the angles,. define(2s + 1) directions
equidistant on each circle. An angle # 0 provides a shift of the directions on one circle
relative to those on the others. It turns out that a nonzeiie only necessary if one deals
with thefermionicproblem of state reconstruction (half-integer spin) while it can be dropped
in thebosoniccase (integer spin). A similar distinction has been encountered in the context of
a tomographic reconstruction scheme [14, 19].

Using
2s
] ; expliim +k — k")ggr] = Sxiem + €XPli2T G ALk ksm—25+1) 0<m<2s
12)
equation (9) turns into
25s—m 2s
Pom = Y RZ*" B +expli2rgA] Y REEW 5 g 13)

k=0 k=2s—m+1
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where the shorthand
1 2s
Pgm = 2S—+l Z(:) eXp[Wl(ﬂqr]qu (14)

has been introduced. A matrix notation will be useful here. Collect the unknowns associated
with a fixed value ofz into a vector with(2s + 1) components,

IBm = (ﬁmOa /31+ml7 ceey )52s29—m; 15029—m+lv cee I5m—12v) 0 g m < 2s (15)

(with no entry on the right-hand side of the semicolomit= 0) and similarly the data,,,
into vectors

ﬁm = (ﬁlm’ 1521117~-.,1325+1m) Ogm < 25' (16)
Then, the relations (13) take the form
ﬁm = Mmﬁm 0<m<2s (17)

where the elemeni®/,,),« of the(2s + 1) matriceam,, with dimension(2s + 1) x (2s + 1) can
be read off from (13). For each valuemf equation (17) is a closed set of equations for the
unknownsg,,. If m equals zero, there a(@s + 1) real equations for thé2s + 1) real diagonal
elementspg of the statistical operator. # equals 1, one ha®s + 1) linear complex equations
for (2s + 1) complexnumbersv;. The remaining sets of equations far= 2, 3, ..., 2s have
the same structure. However, not all of them are independent. lbadaniccase, the sets
come ins pairs: taking the complex conjugate of equation (17) with lalglone obtains the
equation with index2s — mg). Hence, the total number of real independent equations is at
most 1. (25 + 1) + 5 - 2(2s + 1) = (25 + 1) which coincides exactly with the number of real
free parameters of the density matrix In thefermioniccase, there is again one set £ 0)
of real equations for th&s + 1) set of equations with onlg2s + 1) real unknowns. This gives
atotalof 1. (2s +1) + (s — %) 225+ 1) +1- (25 +1) = (25 + 1)?, as before. Thus, it remains
to show that the matriceg,, are invertible for the relevant values mf

The choice

R, =r"1 O<r<l1 (18)

turns eachv,, into a Vandermonde-type matrix. Th@soniccase(A = 0) is particularly
simple: defining

B r2k+m if O < k < 2s —m (19)
Ty = p2etm—(2s+1) if 2s—m+1<k<2s
one obtains:
(ro)* -+ (rz)®
w=| 1 .. 1| (20)
o)™ - (rog)”?

The determinant of a Vandermonde matrix is known explicitly [20], leading here to

2s —s
detM,, = (Hrk> [T e—ro (21)

k=0 0Kk <k<2s

and it obviously vanishes if and only if two numbeysandry, say, are equal. However,
being nonzero, one ha§/r¥ = r2k=¥) £ 1if k # k', and the inverse matricés,* do exist
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for this choice of(2s + 1)? directionsii,,. An explicitform of the inverse of matrices such as
M,, has been worked out in [12].

The reconstruction of mixed states in systems with half-integersspinceeds similarly.
However, a nonzero shift is necessary:= 1/(2s + 1), say. In this case, one obtains again
matricesM,, 0 < m < s + %) of Vandermonde-type: for & k < 2s — m the entries simply
read(M,,)qx = (r)*~7, while the remaining entries are given by

(M) g = (re expl—i2m A~ expli2r s A] 2s —m+1<k<2s. (22)

These extra phases expPRr A] distinguish lines which otherwise would be identical, a
coincidence which does not occur for integer values.ofTherefore, all the matriceld,),
O<ms+ %) are invertible, too. For a spin= % the directionsigg andiig; are located in
the yz plane, whileriyp andiiy; are in thexz plane, providing thus four independent numbers
to determine the (unnormalized) density operator. With a zero Ahifine would only obtain
information related to thez plane which isot sufficient for reconstruction.

In summary, it is possible to reconstruct the density matrisom (2s + 1)? probabilities
ps(ig), 0 < ¢,r < 2s along judiciously chosen directiong, using a Fourier transform
and standard linear algebra. The Fourier transform reduces the original problem of inverting
a(2s + 1)? x (2s + 1)2 matrix to that of inverting a number @2s + 1) x (2s + 1) matrices
of Vandermonde type. The method presented here @ptimaltool for reconstructing a spin
state in the sense that a minimal number of data has to be acquired using nothing but a standard
Stern—-Gerlach apparatus.

SW acknowledges financial support from the Schweizerische Nationalfonds.

Appendix

In [13], four different approaches have been proposed to determine the coeffigjemisfined
by expanding the statistical operajofor a spins according tao = 1/(2s + 1) Y, 0/, Kim»
where thek,,, I = 0,...,2s, = < m < [, are a set of2s + 1)? orthogonal multipole
operators [21]. The reconstruction of the statistical operatisr based, throughout, on the
inversion of the relation

4 \?
H1(9,¢)=<Zlfl) > Yin®. 90, (23)

m=—1

where the functiong;,, (6, ¢) are standard spherical harmonics. The functions on the left-hand
side of this equation are linear combinations of measurable quantitiest,

M0, ¢) = V25 +1 ) (=1 *(sp, s — ull0) p, (6, 9) (24)
n=—s

where(su, su’|Im) denotes a Clebsch—Gordan coefficient, apd, ¢) is the probability to
measure the valug if the orientation of the Stern—Gerlach apparatus defii{ésy) as the

axis of quantization.

Unfortunately, the fourth method to invert equation (23) is erroneous?t. It has been

proposed to measure the probabilities at a fixed afygte 6, and angleg;, = k 2 /(25 +1),
k=0,1,...,2s, corresponding t@2s + 1) directions located on a cone about thaxis. In

T The sums in equations (11) and (13) in [13] both go fremto s, not from—/ to /.
¥ The authors would like to th&rR F Werner for pointing this out.
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contrast to what is stated just before equation (22) in [13], no orthogonality relation is available
for the the anglesy; instead one has
2s

2% +1 Z exp[l(m - m/)(pk] = Smm’ + 8mm’+(2€+l) + 8mm’7(2s+1) (25)
k=0

since—4s < m —m’ < 4s (as follows from—2s < m,m’ < 2s and not—s < m, m’ < s,
as stated incorrectly), and the inversion of (23) becomes impossible. Therefore, knowing the
valuesIl; (6, ¢x) is not sufficient to determine the coefficients, unambiguously. One way
out of this difficulty is to measure the probabilities alqdg+ 1) (instead of2s +1)) directions
distributed homogeneously on a cone. Then, relation (25) is replaced by

4s

] Z expliim — m"k27 /(4s + 1)] = S’ (26)
k=0

and the intended inversion becomes possible. However, the number of measured parameters
has been increased considerably. Effectively, one obtains a method of state reconstruction
which is equivalent to the approach developed in [12].
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