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Discrete Q - and P -symbols for spin s
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Abstract. Non-orthogonal bases of projectors on coherent states are introduced to expand
Hermitean operators acting on the Hilbert space of a spin s. It is shown that the expectation
values of a Hermitean operator Â in a family of (2s + 1)2 spin-coherent states determine the
operator unambiguously. In other words, knowing theQ-symbol of Â at (2s + 1)2 points on
the unit sphere is already sufficient in order to recover the operator. This provides a
straightforward method to reconstruct the mixed state of a spin since its density matrix is
explicitly parametrized in terms of expectation values. Furthermore, a discrete P -symbol
emerges naturally which is related to a basis dual to the original one.
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1. Introduction

Phase-space formulations of quantum systems have a long
history which starts with Wigner’s introduction of a quasi-
probability distribution to represent the state of a quantum
particle [1]. Moyal has shown that not only states but also
operators can be mapped onto functions on the phase space,
or symbols [2]. In such a representation a ‘twisted product’
of symbols keeps track of a possible noncommutativity of
the underlying operators. The inverse procedure, mapping
phase-space functions into operators, can be considered as
quantization according to Weyl [3].

A unifying approach to symbols of operators is
formulated conveniently in terms of coherent states |α〉 for a
particle defined as

a|α〉 = α|α〉, α ∈ C; (1)

here a and its adjoint a+, satisfying the commutation
relation [a, a+] = 1, are annihilation and creation operators,
respectively, of a harmonic oscillator. Three symbols are
widely used nowadays [4]. First, one can characterize a
Hermitean operator Â by its P -symbol PA(α), given by the
expansion coefficients of Â when expressing it as a linear
combination of projectors on coherent states (1):

Â =
∫

C
dµ(α)PA(α)|α〉〈α|,

dµ(α) = 1

π
dα1 dα2, α = α1 + iα2.

(2)

Explicitly, one can write

PA(α) =
∑
m,n

APmnα
mαn if Â =

∑
m,n

APmna
m(a+)n.

(3)

Thus, to obtain the P -symbol of Â, write down the anti-
normal expansion of the operator in terms of annihilation
and creation operators and replace them subsequently by α
and α, respectively. Secondly, the expectation values of Â in
the coherent states |α〉 define itsQ-symbol:

QA(α) = 〈α|Â|α〉 =
∑
m,n

AQmnα
mαn, (4)

which is closely related to the normal-ordered expansion of
the operator. Finally, the Weyl symbol of Â—providing the
Wigner function of a state |ψ〉 if Â = |ψ〉〈ψ |—can be defined
in a similar way through symmetrical ordering [4].

2. Continuous redundant symbols for spin s

Consider a spin s with Hilbert space Hs , which carries a
(2s + 1)-dimensional irreducible representation of the group
SU(2). The ensemble of observables Â for a spin s is denoted
by As , corresponding to the Hermitean (2s + 1) × (2s + 1)
matrices acting on Hs . Phase-space symbols of operators are
defined in analogy to those for a particle once spin-coherent
states have been introduced.

Denote the components of the spin operator by Ŝ ≡ h̄ŝ,
satisfying the commutation relations [ŝx , ŝy] = iŝz, . . . . The
standard basis of the space Hs is given by the eigenvectors of
the z component ŝz = nz · ŝ of the spin, which are denoted
by |µ,nz〉,−s � µ � s. The ladder operators s± = ŝx±iŝy
act as usual† in this basis:

ŝ±|µ,nz〉 =
√
s(s + 1)− µ(µ± 1)|µ± 1,nz〉. (5)

The eigenstates of the operator n · ŝ satisfy

n · ŝ|µ,n〉 = µ|µ,n〉, −s � µ � s, (6)

† The phases of the states are fixed by the transformation under the anti-
unitary time-reversal operator T : T |µ,nz〉 = (−1)s−µ| − µ,nz〉.
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where the unit vector n = (sin ϑ cosϕ, sin ϑ sin ϕ, cosϑ),
0 � ϑ � π, 0 � ϕ < 2π , defines a direction in space. The
collection of states with maximal weight, µ = s, exhausts
the coherent states [5],

|n〉 ≡ |s,n〉 = exp[−iϑm(ϕ) · ŝ]|s,nz〉, (7)

with a unit vector m(ϕ) = (− sin ϕ, cosϕ, 0) in the xy
plane. In other words, each coherent state |n〉 is obtained
from rotating the state |s,nz〉 about an axis m(ϕ) by some
angle ϑ .

For the present purpose, both the Q-symbol and the P -
symbol of an operator on Hs will be needed; the reader is
referred to [6] for an equivalent of the Weyl symbol, and
to [4, 7] for further details. The P -symbol of an operator Â
is introduced in analogy to (2) by

Â = (2s + 1)

4π

∫
S2

d2nPA(n)|n〉〈n|, (8)

where the integration is over the surface of the unit sphere,
S2. An explicit expression for the symbol PA(n) in terms of
the matrix elements 〈µ,nz|Â|µ′,nz〉 can be found in [5]. As
before, the Q-symbol equals the expectation values of Â in
the coherent states (7),

QA(n) = Tr[Â|n〉〈n|] = 〈n|Â|n〉, (9)

thus giving rise to a representation of Â as a function
on S2, the phase space of a classical spin. The explicit
inversion of (9) amounts to a straightforward method to
reconstruct experimentally a quantum state: if one measures
the expectation values (9) of the density matrix ρ̂ of a spin
in all coherent states, the data allow one to determine ρ̂
unambiguously [8, 9].

However, the data (9) are highly redundant. As any
Hermitean operator Â ∈ As acting on the space Hs , the
(unnormalized) density matrix ρ̂ of a spin s depends on
Ns = (2s + 1)2 real parameters. The symbol QA(n) though
takes values on all points of the unit sphere. Therefore, one
is urged to ask whether there are subsets of the expectation
values (9) which would permit reconstruction of an operator
Â in a more economic way. This question has been answered
in the positive: the determination of Â is possible on the basis
of exactlyNs expectation values, associated with specifically
selected directions nν, 1 � ν � Ns [10]. In other words,
an operator Â is fixed by the values of its Q-symbol at
Ns appropriately chosen points; the values of the symbol
‘in between’ can be calculated subsequently. For technical
reasons, the spatial directions nν given in [10] were restricted
to a certain class of regular configurations. From now on, a
set ofNs points—as well as the associated familily ofNs unit
vectors nν—will be referred to as a ‘constellation’ N .

3. Discrete nonredundant symbols for spin s

The purpose of this paper is to show that the restriction to
the specific constellations mentioned above is not necessary:
given a generic constellation M, the Ns values of the Q-
symbol (9) contain all the information about the operator
Â. Let us put it differently: given any constellation M of

vectors mν , then either the numbers QA(mν) determine Â,
or there is an infinitesimally close constellation M′ such that
the numbersQA(m′

ν) do the job. Two constellations M and
M′ are close if, for example, the number

d(M′,M) =
Ns∑
ν=1

|mν − m′
ν |, (10)

is small. To visualize this statement, consider the real vector
space R

3: any three unit vectors form a basis provided they
are not coplanar or collinear. Among all possibilites, the
exceptions have measure zero. At the same time, it is obvious
that arbitrarily small variations of the vectors are sufficient
to render them linearly independent.

In the proof given below, the determinant of the Gram
matrix of Ns projection operators on coherent states

Q̂ν = |mν〉〈mν |, 1 � ν � Ns, (11)

is shown to be different from zero for any desired
constellation M (or an infinitesimally close one, M′).
Equivalently, one can say that the operators Q̂ν constitute
a quorum for a spin s: they provide a basis for Hermitean
operators Â:

Â = 1

2s + 1

Ns∑
ν=1

AνQ̂ν, Aν = Tr[ÂQ̂ν]; (12)

the expansion coefficients Aν involve operators Q̂ν dual to
the elements of the original basis: Tr[Q̂νQ̂ν

′
] = δν

′
ν [11].

TheN2
s elements of the Gram matrix Gνν ′ [12] associated

with the constellation M are given by the scalar product of
the projectors on coherent states:

Gνν ′ = Tr[Q̂νQ̂ν ′ ] = |〈mν |mν ′ 〉|2 =
(

1 + mν · mν ′

2

)2s

,

1 � ν, ν ′ � Ns. (13)

It will be essential for the following that the scalar product
of two coherent states is a polynomial in the components of
the associated unit vectors mν and mν ′ .

Let us now turn to the proof that det G 
= 0 for arbitrary
M. This can be shown recursively by means of the matrices
G(µ), µ = 1, . . . , Ns , which are (µ × µ) submatrices of G
located in its upper-left corner with elements:

Gνν ′(µ) = Gνν ′ , 1 � ν, ν ′ � µ. (14)

In particular, one has G(1) ≡ 1, and G(Ns) ≡ G. Suppose
that the first (µ−1) projection operators Q̂ν, ν = 1, . . . , µ−
1, are linearly independent for a specific constellation Mµ−1

of (µ−1) vectors. It follows that the determinant of G(µ−1)
is different from zero. Since all operators on Hs do have
an expansion of the form (8), the ensemble of projectors
{|n〉〈n|,n ∈ S2} spans the entire space As . Consequently,
there is at least one projector Q̂µ characterized by a vector
m0
µ, say, which cannot be written as a linear combination of

the operators Q̂1, . . . , Q̂µ−1. Therefore, the determinant of
G(µ) is different from zero at least for this vector m0

µ. (As
it must be, this argument fails if µ exceeds Ns .) Being a
polynomial function of the µth unit vector, the determinant
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now will be shown to be different from zero for (almost) any
other choice of this vector. It will be possible to select, in
particular, the projector associated with the µth vector, mµ,
of the constellation M—or with a vector m′

µ infinitesimally
close to it: |m′

µ − mµ| < ε/Ns .
The determinant of the matrix G(µ), if conceived as a

function of the µth vector, is infinitely often differentiable
with respect to its components, according to (13). Upon
keeping the vectors m1 to mµ−1 fixed, it may be regarded
as a fictitious time-independent Hamiltonian function of a
single classical spin:

det G(nµ) = Hk(nµ) (
= 0 if nµ = m0
µ). (15)

This Hamiltonian describes an integrable system since there
is just one degree of freedom accompanied by one constant of
the motion, the Hamiltonian itself [13]. The two-dimensional
phase space S2 is foliated entirely by one-dimensional tori
of constant energy. In addition, a finite number of (elliptic
or hyperbolic) fixed points and one-dimensional separatrices
will occur. This can be seen, for example, by looking at the
flow on the unit sphere generated by Hµ(nµ):

dnµ

dt
= nµ × ∂Hµ

∂nµ
, (16)

where ∂/∂nµ is the gradient with respect to nµ [14]. The
right-hand side is a (nonzero) polynomial in the components
of nµ, implying that the integral curves of the Hamiltonian
are fixed points, separatrices, and closed orbits. This means
that Hµ(nµ) can take the value zero at a finite number of
(open or closed) curves or points at most. Consequently,
the determinant of G(µ) is different from zero for almost
all choices of nµ. Therefore, one can rotate smoothly the
vector m0

µ into any other vector, including mµ, theµth vector
of the desired constellation M, thereby passing possibly
through points with det G(µ) = 0. If, accidentally, mµ

corresponds to a point with vanishing energy (this happens
with probability zero only), one can nevertheless approach it
arbitrarily close by a vector m′

µ with |m′
µ − mµ| < ε/Ns

since levels of constant energy have a co-dimension at most
equal to one.

Working one’s way from µ = 2 to Ns , one ends up with
a constellation M′ which is infinitesimally close to M since∑
ν |m′

ν − mν | < ε can be made arbitrarily small; with
probability one, however, the constellation M is obtained
exactly. Consequently, almost all constellations M of Ns
projection operators Q̂n give rise to a basis in the space of
linear operators on Hs . In turn, the values of the discrete
Q-symbol related to a constellation M are indeed sufficient
to determine the operator Â.

4. State reconstruction and discussion

It has been shown that (almost) any distribution of Ns
points on the sphere S2 gives rise to a nonorthogonal basis
of coherent-state projectors Q̂n in the linear space As of
operators for a spin s. The collection of expectation values
of an operator Â in these states will be called its discrete
phase-space symbol, containing no redundant information.
The expansion (12) is the discrete analogue of (8) so that the

coefficients Aν correspond to the discrete P -symbol of Â,
which also represents it in a nonredundant way. A second
expansion in the basis Q̂ν dual to the basis Q̂ν requires the
discreteQ-symbol as coefficients,

Â = 1

2s + 1

Ns∑
ν=1

QA(nν)Q̂
ν, QA(nν) = Tr[ÂQ̂ν].

(17)
Therefore, discrete Q- and P -symbols can be considered
as dual to each other, providing co- and contravariant
coordinates of the operator Â. Contrary to the redundant
P -symbol (8), the discrete one is unique [15].

By means of expansion (17) one easily reconstructs the
density matrix ρ̂ of a spin s,

ρ̂ = 1

2s + 1

Ns∑
ν=1

PνQ̂
ν, Pν = Tr[ÂQ̂ν], (18)

since one can measure the Ns values of the symbol Qρ with
a Stern–Gerlach apparatus. Each coefficient is a probability
Pν ≡ 〈nν |ρ̂|nν〉, ν = 1, . . . , Ns , to measure the value s
along the direction |nν〉 if the system is prepared in the state
ρ̂.

For a particle system, it is natural to ask an analogous
question: which subsets of coherent-state projectors form a
basis in the space of operators acting on the particle Hilbert
space? Results are known for specific operators, namely the
density matrices of pure particle states. For example, the
continuous family of coherent states on a circle [16] or on
a line [17] in the complex plane still form (overcomplete)
bases for the Hilbert space (and, a forteriori, for pure-state
density matrices). Minimal, i.e. nonredundant bases of the
particle Hilbert space correspond to a countable set of points
in the complex plane, and they have already been identified
by von Neumann [4, 18]. A matrix representation of a
general operator Â with respect to an orthogonal basis of the
Hilbert space depends on a countable number of parameters
while itsQ-symbolQA is a smooth function in the complex
plane. Therefore, one might conjecture that, by analogy to
equation (18), the valuesQA on some countable subset of the
complex plane should suffice to determine Â. The expansion
coefficients of Â in such a nonredundant basis would then
correspond to its nonredundant P -symbol.
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