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Abstract
To measure an observable of a quantum mechanical system leaves it in one
of its eigenstates and the result of the measurement is one of its eigenvalues.
This process is shown to be a computational resource: Hermitean (N × N)

matrices can be diagonalized, in principle, by performing appropriate quantum
mechanical measurements. To do so, one considers the given matrix as an
observable of a single spin with appropriate length s which can be measured
using a generalized Stern–Gerlach apparatus. Then, each run provides one
eigenvalue of the observable. As the underlying working principle is the
‘collapse of the wavefunction’ associated with a measurement, the procedure
is neither a digital nor an analogue calculation—it defines thus a new example
of a quantum mechanical method of computation.

PACS numbers: 0367, 0365

Non-classical features of quantum mechanics such as Heisenberg’s uncertainty relation and
entanglement have intrigued physicists for several decades. From a classical point of view,
quantum mechanics imposes constraints on the ways to talk about nature. An electron does
not ‘have’ position and momentum as does a billiard ball. Similarly, if a photon is entangled
with a second one—possibly very far away—one cannot ascribe properties to it as is done for
an individual classical particle. The lesson to be learned is that classical intuition about the
macroscopic world simply does not extrapolate into the microscopic world.

In recent years, an entirely different attitude towards quantum theory has been put
forward. The focus is no longer on attempts to come to terms with its strange features but
to capitalize on its counter-intuitive but well-established properties. In this way, surprising
methods have been uncovered to solve specific problems by means which have no classical
equivalent: quantum cryptography, for example, allows one to establish secure keys for
secret transmission of information [1]; entanglement [2] is used as a tool to set up powerful
quantum algorithms which factor large integers much more efficiently than any presently
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known classical algorithm [3]. Throughout, these techniques make use of the measurement
of quantum mechanical observables as an unquestioned tool. This is also true for many (but
not all [4]) proposals of quantum error correction schemes [5, 6], necessary to let a potential
algorithm run.

Here the purpose is to point out that the bare ‘projection’ [2] effected by a quantum
mechanical measurement does possess computational power. As shown below, it can be used
to solve explicitly at least one specific computational task, namely to determine eigenvalues
and, a fortiori, eigenstates of Hermitean (N × N) matrices.

The diagonalization of Hermitean matrices is a recurrent problem in mathematics, physics,
and related fields. Using the notation of a quantum physicist the problem reads as follows.
Given a self-adjoint operator Â acting on a Hilbert space H of dimension N , one needs
to determine its eigenstates |an〉, n = 1, . . . , N , and its N real eigenvalues an, satisfying
Â |an〉 = an|an〉. If normalized to one, the eigenstates constitute a complete orthonormal
basis of the space H:

∑N
n=1 |an〉〈an| = 1, 〈an|an′ 〉 = δnn′ . The standard solution from linear

algebra [7] is to write down the eigenvalue equation with respect to a given orthonormal basis
|k〉, k = 1, . . . , N , say. The N2 matrix elements Akk′ = 〈k|Â|k′〉 determine the operator Â

uniquely and its eigenstates are characterized by the coefficients ( �An)k = Ank in the expansion
|an〉 = ∑

k Ank|k〉. The number λ is an eigenvalue of Â if the characteristic polynomial PA(λ)

of the matrix A vanishes, PA(λ) = det (A − λI) = 0, where I is the (N ×N) unit matrix. Once
the N roots an of the polynomial PA are known, the non-zero solutions of the equation

(A − anI) �An = 0 n = 1, . . . , N (1)

provide the eigenvectors |an〉 in the basis |k〉. Analytic expressions for the eigenvalues an in
terms of the matrix elements Akk′ exist only if N � 4. In general, numerical methods are
required to determine approximately the roots of PA(λ).

The quantum diagonalization of Hermitean matrices is based on the assumption that
the behaviour of a spin s (of a particle) is described correctly by non-relativistic quantum
mechanics. This method exploits the ‘collapse of the wavefunction’ as a computational
resource. Note that the procedure does not depend on a particular interpretation of quantum
mechanics. Five steps are necessary to achieve the diagonalization of a given matrix A
(supposed for simplicity not to have degenerate eigenvalues). The individual steps will be
described in a condensed form first; subsequently, five comments explain various technical
details.

Step 1. Standard form of A. Write the Hermitean (N × N ) matrix A as a combination of
linearly independent Hermitean multipole operators Tν, ν = 0, . . . , N2 − 1,

A =
N2−1∑

ν=0

aνTν aν = 1

N
Tr [A Tν] ∈ R. (2)

Step 2. Identification of an observable. Interpret the matrix A as an observable HA for a single
quantum spin S with quantum number s = (N − 1)/2,

HA(S) =
N2−1∑

ν=0

aνTν(S) (3)

using the expression of the multipoles Tν(S) in terms of the components of a spin.

Step 3. Setting up a measuring device. Identify and construct an apparatus app(HA) suitable
to measure the observable HA.

Step 4. Determination of the eigenvalues. Carry out measurements with the apparatus app(HA)
on a spin s prepared in a homogeneous mixture ρ̂ = Is/(2s + 1). The output of each individual
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measurement will be one of the eigenvalues an of the matrix A. After sufficiently many
repetitions, all eigenvalues will be known.

Step 5. Determination of the eigenstates. Calculate the eigenstates |an〉 of the matrix A
by means of equation (1) and the experimentally determined eigenvalues an. Alternatively,
determine the eigenstates |an〉 experimentally by methods of state reconstruction.

Thus, the matrix A has been diagonalized without calculating the zeros of its characteristic
polynomial by traditional means. The fourth step solves the hard part of the eigenvalue problem
since it provides the eigenvalues an of the matrix A. The comments to follow expand on the
background necessary to perform steps 1–5. Emphasis will be both on the construction of
a device measuring a given Hermitean operator (step 3) and on the working of a quantum
mechanical measurement (step 4).

Ad 1. Consider a Hilbert space Hs of dimension N = (2s + 1) which carries an irreducible
representation of the group SU(2) with the spin components (S1, S2, S3) as generators.
Multipole operators Tj1j2···jσ

, are defined as the symmetrized products Sj1 Sj2 · · · Sjσ
, ji =

1, 2, 3, and σ = 0, 1, . . . , 2s, after subtracting off the trace, except for T0 ≡ T(0) = Is , the
(N ×N) unit matrix. The index σ labels (2s + 1) classes with (2σ + 1) elements transforming
among themselves under rotations. Explicitly, the lowest multipoles read

T(1)
j = Sj T(2)

j1j2
= 1

2

(
Sj1 Sj2 + Sj2 Sj1

) − δi1j2

3
Sj1 Sj2 . (4)

For the sake of brevity, a collective index ν ≡ (σ ; j1, . . . , jk) is introduced now, taking on the
values ν = 0, 1, . . . , N2 − 1. The N2 self-adjoint multipole operators Tν = T†

ν form a basis
in the space of Hermitean operators acting on the N -dimensional Hilbert space Hs [8]. Two
multipoles are orthogonal with respect to a scalar product defined as the trace of their product:
(1/N) Tr [TνTν ′ ] = δνν ′ .

Ad 2. Since the multipoles are expressed explicitly as a function of the spin components not
exceeding the power 2s, it is justified to consider them and, a fortiori, the quantity HA as an
observable for a spin s.

Ad 3. It is natural to expect that every self-adjoint operator B̂ comes along with an apparatus
app(B̂) capable of measuring it [9]. For particle systems, setting up such a device remains a
challenging task for an experimenter while the situation is more favourable for spin systems.

Swift and Wright [8] have shown how to devise, in principle, a generalized Stern–
Gerlach apparatus which measures any observable HA(S)—just as a traditional Stern–Gerlach
apparatus measures the spin component n · S along the direction n. The construction requires
that arbitrary static electric and magnetic fields, consistent with Maxwell’s equations, can
be created in the laboratory. To construct an apparatus app(HA) means to identify a spin
Hamiltonian H(r, S) which splits an incoming beam of particles with spin s into subbeams
corresponding to the eigenvalues an. The most general Hamiltonian acting on the Hilbert space
Hs of a spin s reads

H(r, S) =
N2−1∑

ν=0

�ν(r)Tν (5)

with traceless mutltipoles (except for ν = 0), and totally symmetric expansion coefficients
�ν(r)(≡ �

(σ)
j1j2...jσ

(r)) which vary in space. Tune the electric and magnetic fields in such a
way that the coefficients �ν(r) and their first derivatives with respect to some spatial direction,
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r1, say, satisfy (in appropriately chosen units)

�ν(r)|r=0 = aν and
∂�ν(r)

∂r1

∣∣∣∣
r=0

= aν . (6)

As shown explicitly in [8], this is always possible with realistic fields satisfying Maxwell’s
equations. Then, the Hamiltonian in (5) has two important properties. (i) At the origin, r = 0,
it coincides with the matrix HA in equation (3). (ii) Suppose that a beam of particles with spin s

enters the generalized Stern–Gerlach apparatus app(HA) just described. At its centre, particles
in an eigenstate |an〉, say, will experience a force in the r1 direction given (up to second order
in distance from the centre) by

F1(r)|r=0 = − ∂〈an|H(r, S)|an〉
∂r1

∣∣∣∣
r=0

= −an n = 1, . . . , 2s + 1. (7)

Consequently, this apparatus can spatially separate particles with a spin projected onto one of
the eigenstates |an〉 of the operator HA, with a separation proportional to the eigenvalue an.
The working principle is entirely analogous to that of a familiar Stern–Gerlach apparatus for
a spin 1/2 (see [8] for more details).

Ad 4. The ‘projection postulate’ of quantum mechanics describes the effect of measuring
an observable B̂ on a system S by means of an apparatus app(B̂). If the system is prepared
initially in a state with density matrix ρ̂ the impact of measuring B̂ is:

app(B̂) : ρ̂
pn−→ (

bn; ρ̂n

)
pn = Tr

[
ρ̂ρ̂n

]
. (8)

In words, the action of the apparatus is, with probability pn, to throw the system prepared in
state ρ̂ into an eigenstate ρ̂n ≡ |bn〉〈bn| of the observable B̂; the outcome of the measurement
will be the associated eigenvalue bn. As a matter of fact, the notion of ‘collapse’ or
‘projection’ can be avoided if one characterizes the process indirectly by referring to ‘repeatable
measurements’ [10].

As is well known, the outcome of an individual measurement cannot be predicted due to
the probabilistic character of quantum mechanics, and it is necessary to repeat the experiment
a number of times until all values an have been obtained. If the spin s is prepared initially
in a homogeneous mixture, ρ̂ = Is/(2s + 1), the (2s + 1) possible outcomes will occur with
equal probability. The probability not to have obtained one specific value an after N0 � N

measurements equals (2s/2s + 1)N0 � exp[−N0/2s], decreasing exponentially with N0.

Ad 5. It would be convenient to ‘read out’ directly the quantum state ρ̂n obtained from a single
measurement with result an. However, due to the no-cloning theorem [11, 12], an unknown
state cannot be determined if only one copy is available. Upon repeating the measurement a
large number of times and keeping only those states with the same eigenvalue an, one produces
an ensemble of systems prepared in the state ρ̂n. This is sufficient to experimentally reconstruct
an unknown state since a density matrix ρ̂ can be written as

ρ̂ = 1

N

N2∑

µ=1

PµQ̂µ N = 2s + 1 (9)

where the coefficient Pµ ≡ 〈nµ|ρ̂|nµ〉 is the probability to find the system in a coherent
spin state |nµ〉. As shown in [13], the operators [13] Q̂µ, µ = 1, . . . , N2, form a basis
for Hermitean operators, similar to but different from the multipoles Tν . Thus, equation (9)
parametrizes ρ̂ by expectation values Pµ which can be measured by a standard Stern–Gerlach
apparatus.

Let us turn to the discussion of the idea underlying quantum diagonalization. Traditionally,
a measurement is thought to confirm or reveal some information about the state of the system.
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The probabilities pn provide information about the state of the system conditioned by the
selected observable. Thus, a measurement reveals (or confirms) properties of the state ρ̂ of
the system while the observable B̂ at hand is assumed to be known, including its eigenstates
and eigenvalues. To put it differently, the observable defines the scope of the possible results
of a measurement: the only possible outcomes are its eigenvalues bn, and, directly after the
measurement the system necessarily resides in the corresponding state |bn〉.

In the present context, however, the idea is to extract information about the measured
observable—not about the state ρ̂. Why is this possible at all? It is fundamental to realize that
the input needed to set up a measurement of Â and to actually measure it is different from the
output of the experiment. In order to measure the observable Â, the construction of an apparatus
app(Â) is sufficient—and its construction is indeed possible without knowing eigenvalues
and eigenstates of Â beforehand. After a measurement, however, partial information about
the spectral properties of the observable Â is available according to (8). This is due to the
constraints (i) that the possible outcomes of measuring Â are its eigenvalues and (ii) that the
system subsequently will reside in the corresponding eigenstate. Thus, if the eigenstates and
eigenvalues of Â are not known initially, information about them indeed emerges by measuring
Â.

The quantum mechanical diagonalization appears to be neither an analogue nor a digital
calculation. It is not based on the representation of a mathematical equation in terms of
a physical system which then would ‘simulate’ it, even though the outcome will be read
on an analogue scale. Further, no ‘software program’ is executed which would implement a
diagonalization algorithm. One might best describe the measuring device app(HA) as a ‘special
purpose machine’ based on the projection postulate.

For the time being, the method introduced here is important from a conceptual but not
necessarily from a technological point of view. On the one hand, the diagonalization of matrices
is not a hard problem such as factorization of large integer numbers; on the other, the actual
implementation in the laboratory is challenging just as it is to set up a full-fledged quantum
computer. It must be stressed, however, that there is no physical principle which would forbid
to build such machines.

Further, quantum diagonalization is expected to be fruitful from a conceptual point of
view since it provides a different perspective on the projection postulate [16]. It shows that—
in an unexpected way—standard quantum mechanics attributes computational power to the
measurement of an observable. The fact that one can use a measurement to perform calculations
might turn into an argument in favour of the ‘reality’ of the quantum mechanical projection
postulate.

What is the relation of quantum diagonalization to other research in quantum computing?
Various well-established quantum algorithms can be cast in a form which asks for the
determination of eigenvalues of unitary operators [14] representing the action of a network on
some initial state. The result of the calculation is encoded in the phase of the output state.
Subsequently, measurements are necessary to read off the result but their role in the algorithm
is different: the calculation has already been performed—and the measurement itself is not
the working principle. Further, it has been pointed out in [15] how to use an ideal quantum
computer to effectively simulate another quantum system. As indicated briefly, such a device
would be a useful tool to measure arbitrary observables, in a spirit somewhat similar to the
method presented here.

In sum, the basic ingredient of quantum diagonalization, the ‘collapse’ of the wave function
projecting any state onto a randomly selected eigenstate of the measured observable, has been
shown to posses computational power. Generalizations of this approach are expected to include
the diagonalization of unitary matrices and the determination of roots of polynomials.
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