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Contracting the Wigner kernel of a spin to the Wigner kernel of a particle
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A general relation between the Moyal formalisms for a spin and a particle is established. Once the formalism
has been set up for a spin, the phase-space description of a particle is obtained from contracting the group of
rotations to the oscillator group. In this process, turn into a spin Wigner kernel turns into the Wigner kernel of
a particle. In fact, onlyone out of 2%° different possible kernels for a spin shows this behavior.
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I. INTRODUCTION R 1
Ala)=2T(a)IIT (@), a=-=(q+ip)el'=C, (1)

To represent quantum mechanics in termscaefumber V2
valued functions has various appealing properties. It be-
comes possible to situate the quantum-mechanical descrig¢hich has an interpretation asparity operatordisplaced by
tion of a system in a familiar frame, namely the phase space. The unitary[4]
of its classical analog. Similarities and differences of the two
descriptions can be visualized particularly well in such an
approach. Further, from a structural point of view, to calcu-
late expectation values of operators by means of “quasiprob-
abilities” in phase space is strongly analogous to the detereffects translations in phase spdce
mination of mean values in classical statistical mechanics
[1]. The basic ingredient to set up suchyanbolic calculuss
a one-to-one correspondence betwessif-adjoin} operators

A acting on a Hilbert spacg( and (rea) functionsW, de- o

fined on the phase spafeof the classical system. wherea”=a=(q—ip)/\2 anda®=a' are the standard an-
The quantum mechanics of spin and particle systems cahihilation and creation operatorsi £1). At the origin

be represented faithfully in terms of functions defined on the=0, the kernel equalétwo timeg the unitary, involutive

surface of a sphere with radiiss and on a plane, respec- parity operatorﬂ,

tively. Intuitively, one expects these phase-space formula-

tions to approach each other for increasing values of the spin .~ .

guantum number since the surface of a sphere is then ap- lall'=—a, 4

proximated by a plane with increasing accuracy. Therefore,

appropriate Wigner functions of a spin, say, should go ovegorresponding to a reflection at the origin Bf Using the

smoothly into particle Wigner functions in the limit of large number operatofxl=a+a and its eigenstates

s. It will be shown how this transition can be performed in a ’

rigorous and general way. The derivation is based on the R

group-theoretical technique abntraction The group W2) Nln)=n|n), n=0,12..., 5

[containing the subgroup $P)] is contracted to the oscilla-

tor group having the Heisenberg-Weyl group H&SSoci- ity can be given a simple form which will be useful later,

ated with the particle, as a subgroup. In this procedure, rota-

tions go over into translations. Subsequently, the operator "

kernel which defines the spin Wigner formalism in a con- ~ N

densed manner will be sh(fwn, ingthe limit of infinige to H:exq'WN]:Z‘O (=)"n)nl. )

contract to the operator kernel for a particle.

T(a)=exgaa® —a*a] 2

a—T(a)aT (a)=a—a, 3

Il. WIGNER KERNEL FOR A PARTICLE The kernelA (@) can be derived from thStratonovich-Wey!
postulateg 6] which are natural conditions on a quantum-
Consider a particle on the real lié}, with position and mechanical phase-space representation. The correspondence
momentum  operators  satisfying [q,p]=i%. The between aself-adjoin} operatorA and a(rea) function is
Stratonovich-Weyl correspondence, associating operatorgefined by
with functions in phase space, can be characterized elegantly

by means of &ernel[2,3], WA(a)=Tr[&(a)A] @)

*Email address: stefan.weigert@unine.ch while its inverse reads
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A A Introduce canonical coordinates],p)=(¢,cosd) on the
A= frd“WA(“)A(“)- ®) sphere. Then, “parity” would correspond to the map
(@,c089)—(—¢,—c0osV), of (¢,3)— (27— ¢, 7— ). This

If A is the density operator of a pure staﬁe=,|¢//)<¢|, the Iisjusta rotation byr about thex axis. Since all points o.f the
symbol defined in Eq(7) is the Wigner functionof the state sphere are equivalent, one could also ChOOS? a rotatian by
[ ), about thez axis as candidate for parity. Second; might be
considered to generate reflections about the center of the
sphere,n— —n, that is, (,9)—(¢+ 7, 7— 7). It can be
shown thatboth possibilities donot give rise to a symbolic
calculus on the spheié], violating bijectivity between op-
It is important to note that the kern& @) is entirely defined ~ erators and phase-space functions, for example.

in terms of the operatom™ andN, forming a closed algebra ~ Nevetheless, acceptable operator keriglgn) do exist

2
W¢(p,q)=Hfrdxw*(qﬂ)t/f(q—x)exrﬂipx/ﬁ]- 9

under commutation if the identity is included as shown by Stratonovich7], Agarwal [8], Varilly and
Gracia-Bonda [9], and by Amiet and Cibil§10]. For ex-
[a,a"]=1, [N,a*]==*a". (100  ample, the condition that the kernel should satisfy appropri-

ate Stratonovich-Weyl postulates impligH that
The operator&™ and the unity 1 generate théeisenberg-
S

Weyl group HW. The kernelA (a) in Eq. (1) is—apart from " S
the factor of two— an element of thescillator group[5]
spanned by the generatorstéiV; plusthe operatoN.

Z; »(n)]s,my(s,m’|. (15

The coefficients
Il. WIGNER KERNEL FOR A SPIN 25

For a quantum spin, the symbol associated with an opera-  Zmm (N = 5s7 1
tor is a continuous function defined on teghereS?, being

the phase space of the classical spin. When setting up a XY mr—m(N), (16)
phase-space formalism, rotations take over the role of trans-
lations. The group S(2) is generated by the components of wheregy=1 ande;==*=1,1=1,...,2s, are linear combina-
the spin operato8. The three operator§* = ($+iSY) and  tions of Clebsch-Gordan coefficients multiplied by spherical
22 . . . harmonicsY, (n),I=0,1,...,%, m=—I, ... |. Note that
S, satisfy the commutation relations Eq. (16) does not provide a unique kernel but, due to the

[87,8 1=2%, [&.8]=+5", (11) factorse,, one can define 2 different Stratonovich-Weyl

correspondence rules.
while the algebrai(2) contains the identity , in addition. ~ Unfortunatley, the expressioifl5) does not admit a
The standard basis simple interpretation of the operator in analogy to Eq. It
R follows from an independent derivati¢phl] of A(n) that Eq.
n,-Ss,my=mls,m), m=-s,...s, (120 (15 can be written in the forn13) where

is given by the eigenstates of taeomponent? of the spin. >

For a quantum spin, it is natural to expect that the ele- HS:As(nz):m;S A (m)[s,m)(s,m|, (17)
ments of the Wigner kernel will be labeled by points of the
sphere S2, corresponding to unit vectors n  with coefficients
=(sinY cose,sinyd sing,cosd), parametrized here by stan-

dard spherical coordinates. Replacing intuitively translations 2 21+1/s ||s
in Eq. (1) by rotations leads to the expression As(m)=|20 ®15s71\m olm/- (18
A(n)=0(n)I1,0%(n), (13)

Still, the operatonﬁS does not have an obvious interpretation
but a new strategy to render plausible its form emerges. Con-
sider a plane tangent to the sphere at its north pole. For
O(m=exd —i9k-S 14 increasing radius, the sphere is approximated locally better
() 1 | a4 and better by the plane. Therefore, one might expect that for
with a unit vectork = (— sin¢,cose,0) in thexy plane. Thus, S— objects defined on the sphere turn into objects defined

U(n) represents a finite rotation which maps the operatof" the.plane. It has been qonjecturecﬂm] that in this limit

F—n..Sint 3 What wral choi p the Wigner kernel of a spin goes over into the kernel for a
— Nz >nto n-5, 1.€., N —n. What areé hatural CNOICES 101 4 icle. 1t is the purpose of this paper to show that

the operatod1.?

Two possibilities come to one’s mind. First, try to transfer lim U(n)A(n,)0T(n)=A(a) (19
the concept of reflection about some point in phase space. —

where
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is indeed true for the kernaﬁs(nz) with parameterse;
=g,=---=g,5=1, denoted byA(n,) for short. Thus, while
the rotationsU(n) go over into translations, the operator

A(n,) corresponds, in one way or another, to parity for a

spin. A convenient framework to prove E@.9) is the con-
traction of groups[5] as is explained in the next section.

IV. CONTRACTING U(2)

We introduce three new operatoks’ and A? defined as
linear combinations of the elements of the algeb(a) in
polar form,

A= &y =

*=cS7, ,
2¢c?

(20

while leaving the identity 1unchanged. This transformation
is invertible for each value of the parameter 0. The non-
zero commutators of these operators are given by

[A=,At]=1-2c%A%, [ALAT]=xA", (21
and the identity 1 commutes withA* and AZ These rela-
tions have a well-defined limit ifE— 0, nonwithstanding that
the transformation(20) is not invertible forc=0. In fact,
they reproduce the commutation relations of the algebra i
(10 after identifying

lim A?=N,

c—0

lim A*=a~,
c—0

lim1,=1.

c—0

(22

How do rotations behave in this limit? Any finite rotation
U(n) e SU(2) in Eq.(14) can be written in the form

O=exifé S -¢£,8"], ¢ =5€% &=¢,
(23
or, expressed in terms of the operat(§),
U(n=exd (§ A*—&,A7)/c]. (24)

Let the coefficientg.. shrink with the parameteraccording
to

(29

which requires ever smaller rotation$ decreasing linearly
with ¢) on an ever larger spheres (Qoing to infinity) as

detailed in[5]. Then, a rotatiorJ (n) tends to a well-defined
element of the Heisenberg-Weyl group, E8):

imU(n)=T(a).

c—0

(26)

For consistency, the limit— 0 must correctly reproduce the
eigenvalues of the operatdt, given by the non-negative
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integers. This is achieved if the limits—0 ands—x are
performed simultaneously in such a way that

lim[1—2c?s(c)]=0.

c—0

(27)

Consequently, the radius of the sphermcreases with de-
creasing values ot. Let us now look at the fate of the
eigenvalue equatiofil2) which implies

o s
-8 +F S,S—n
C

lim
c—0
. 1 .
=lim| (s—m)+ —2—3) lim|s,s—n).
c—0 2c c—0
(28
This gives
N|n)=n|n), (29)
using Eq.(22) and a relation fronj5],
lim|s,m)=lim|s,s—n)=|n), n=s—meN,. (30

c—0 c—0

I:l'hus, the statgs,s) turns into the “ground state” associated
with the operatoN, and it becomes obvious why one needs

to associate thereation operatorS™ with the annihilation
operatora [cf. (20)]: the eigenstates wittmaximal sare
linked to the oscillator ground state withinimal n=0. In

[5], the opposite convention has been used. Nevertheless, it
remains true that not only spin eigenstates are mapped into
number eigenstates but many other expressions related to the
group U2) turn into an equivalent expression for the oscil-
lator group.

This is good news for the present purpose to establish a
relation between the Moyal formalism of a particle and a
spin. Consider the limit of the kernél3) under contraction
using Eq.(26),

lim A(n)=T(a)(lim 19T (). (31)
c—0 c—0
The middle term can be written &sf. (30)]
lim IT;=lim >, A,(m)|s,m)(s,m|
c—0 c—0MmM=-s
=2 [lim A,(s=m)]In)n]. (32)
n= c—0

Upon comparison with Eq6), the Wigner kernel of a spin is
seen to turn into the Wigner kernel of the patrticle if

ool

2s

lim >, &

s =0

21+1

2s+1

S S

2

(33

S—Nn n—s
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holds for all non-negative integens In the next section, this  The value of the term?, in Eq. (37) can be determined in

will be shown to be true for the choice;=+1, |  the following way. Ifsis large, one has for each finite
=1,...,%.
2s+1

~exd —k], (40

k
1—
V. SUMMING THE SERIES 2s+1

Evaluating the sun@3) in the limit s— proceeds in two  which leads to the approximation
steps. First, the asymptotic form of the terms

oS 21+1\"/s sl
12 = —
s _ 21+1 S s | (34) 1,0 2s+1 s —gs|0
ln12s+1/ \s—n n-s/0

2141 (2s)! (2s)! |12
to be summed is determined with the help of a recurrence = 2s+1\ (25— 1)l (2s+1+1)!
formula for Clebsch-Gordan coefficients. Then, the sums are ' '
transformed into integrals which can be evaluated. All ap- ! 2
proximations drop terms of the ordersldt least, hence the [1-k/(25+1)]
result isexactin the limit of infinite s. _2+1 o

Clebsch-Gordan coefficients satisfy the following recur- 2s+1| !
sion relation[12]; IT [1+k/(2s+1)]
k=0
[(1+1)—2 1)+ 2m?2 S s 21+1 11(1+1)
+1)—2s(s+1)+2m

[I( ) ( ) ] m —m(0 ~ exg ———|. (42

2s+1 2 2s+1

S S I
=[s(s+1)—m(m+1)] m+1 —(m+1)0 Collecting the results, one has
| 2s 2s
S . s : —x/2
o lim > A ~(—)"lim X, AxL,(x)e ™72 (42
+[s(s+1)—m(m 1)]<m_1 —(m—l)‘0>’ =) I.n =) n

(39 where Ax;=(X+1—%)= (21 +1)/(2s+ 1)+ O(1/s). Trans-
forming now the Riemann sum into an integral, one obtains

implying that the result announced in E33),
+1)|1—- ——]AS ., +[2n+1 n’rantl) z =
(N+ D L= o At 20 2s+1 |°0n lim > Afn=(—)“f dxL (x)e X2=2, (43
sooo I=0 0
s I(1+1)
+n{1- 2541217 5511 Sl (36) using the formula
For any finiten the terms subtracted on the left-hand side fwde (x)e ¥t=t(1—t)" (44)
become less and less importantsif>. Assume now that 0 "

one can factorize the terms with large valuesaf the form S _
for t=2. This identity is proven easily by means of the ex-

[(1+1) pansion in Eq(39).
Pa(X)=An(x)AYo,  Ao(x)=1, x= 2ol
(37 VI. DISCUSSION
Due to Eq.(36), the polynomialA ,(x,) of ordern in x, must Starting from a new form of the kernel defining the famil-
satisfy a three-term recursion relation, iar Wigner formalism for a spin, its limit for infinite values
of shas been shown to be the Wigner kernel of a particle. As
(N+D)A L 1(x)+(2n+ )AL (X) +NnA - 1(X) =X A (X)), the kernel defines entirely a phase-space representation, this

(39) result guarantees that the Moyal formalism for a particle is
) reproduced automatically amal toto, if the limit s— oo of the
where terms of order 4/have been dropped in E@B8). Its  gpin Moyal formalism is taken. 1fil4], a similar idea has
solutions[13] are proportional to the Laguerre polynomials, heen worked out leading to an equivalent result.
Ln(x)), and the “normalization” conditionAq(x)=1 im- In fact, slightly more has been shown in the present paper.
plies that for alln=0,1,2,..., The result removes an ambiguity of the Moyal formalism for
. a spin: the Stratonovich-Weyl postulates are compatible with
Ayx)=(=)"Ly(x)=(—)"> (E) (_k)l(l) . (39 a discretefamily of 22° distinct_kernels&s(q). However,
k=0 ' only oneof these kernels turns into the particle kernel. This
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