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The symmetry properties of a classicalN-dimensional harmonic oscillator with
rational frequency ratios are studied from a global point of view. Acommensurate
oscillator possesses the same number of globally defined constants of motion as an
isotropicoscillator. In both cases invariant phase-space functions form thealgebra
su(N) with respect to the Poisson bracket. In the isotropic case, the phase-space
flows generated by the invariants can be integrated globally to a set of finite trans-
formations isomorphic to the group SU(N). For a commensurate oscillator, how-
ever, thegroup SU(N) of symmetry transformations is found to exist only on a
reducedphase space, due to unavoidable singularities of the flow in the full phase
space. It is therefore crucial to distinguish carefully between local and global defi-
nitions of symmetry transformations in phase space. This result solves the long-
standing problem of which symmetry to associate with a commensurate harmonic
oscillator. © 2002 American Institute of Physics.@DOI: 10.1063/1.1488672#

I. INTRODUCTION

Harmonic oscillators are ubiquitous in physics. To lowest order, motion close to a s
equilibrium of a classical system is often described by a Hamiltonian of the form

H~q,p!5 (
n51

N
vn

2
~pn

21qn
2!, vnPR. ~1!

Here the ~appropriately rescaled! canonical coordinates and momenta have Poisson brac
$qn ,pn8%5dnn8 , n,n851,...,N. If the frequenciesvn are all equal,

vn5v, n51,...,N, ~2!

the Hamiltonian~1! describes anisotropic N-dimensional oscillator. This system is invariant und
a set of transformations isomorphic to the group SU(N): on the one hand, the quadratic form~1!
in 2N variables is obviously invariant under proper rotations SO(2N)—on the other hand, ca
nonical transformations need to be symplectic, hence they are elements of Sp(N). However, any
transformation inR2N which is both ~special! orthogonal and symplectic must be~special!
unitary:1 SU(N)5SO(2N)ùSp(N). The group SU(N) is represented by (N221) phase-space
functions which, as constants of motion, generate symmetry transformations of the Hamilt
In fact, the isotropic oscillator is ‘‘maximally superintegrable’’ since it possesses the max
number of (2N21) functionally independent constants of motion, exceeding by far the numb
N globally defined invariants required for integrability.2

Suppose now that the frequency ratiosvn /vn8 are positive rational numbers,
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vn5
v

mn
, mnPN1 , v.0. ~3!

This property defines acommensurateharmonic oscillator, or m-oscillator, with m
5(m1 ,...,mN). As shown below, it also possesses (N221) globally defined phase-space inva
ants, apart from the Hamiltonian. Their Poisson brackets form the Lie algebra su(N), as for the
isotropic oscillator. It is known that in both systems all orbits are closed. Nevertheless,
difference is to be expected, since all orbits of an isotropic oscillator have the same period,
commensurate frequencies allow for closed orbits with different periods. This is easily se
exciting only individual degrees of freedom with frequenciesvn .

In the following, the topological and group-theoretical impact of rational frequency ra
~different from one! will be made explicit. First, various papers dealing with commensurate
cillators are reviewed in Sec. II, which is independent of the later developments. The technic
starts with Sec. III, where, for simplicity, the class of two-dimensionalm-oscillators will be
studied in detail. The generalization toN>3, given in Sec. IV, isnot straightforward. Finally, the
overall picture is summarized and conclusions are drawn. A study ofquantum mechanica
m-oscillators, including the classical limit to connect with the present results, will be prese
elsewhere.3

II. SYMMETRIES OF HARMONIC OSCILLATORS

The equations of motion ofN harmonic oscillators can be solved analytically for arbitra
frequency ratios. In spite of this exceptional property many authors have wrestled with thesym-
metriesof such systems, the question being how their symmetries depend on the~ir-! rationality of
the frequency ratios. Most contributions are fostered by the difficulty to distinguish between
and global properties of phase space. Two-dimensional oscillators with rational or irrationa
quency ratios are discussed almost exclusively. Surprising claims have been made in the
to generalize properties of the isotropic oscillator inN dimensions.

Jauch and Hill4 address the problem of ‘‘accidental degeneracy’’ of quantum-mechan
energy eigenvalues. The obvious invariance of the three-dimensional harmonic oscillator~as well
as the hydrogen atom! under the group of rotations in configuration space is not sufficien
explain the observed degeneracy of the energy levels. They conclude that additional cons
motion must exist which account for extra degeneracies in the quantum mechanical energ
trum. In fact, (N221) Hermitian operators can be specified which commute with the Hamilto
of the isotropic harmonic oscillator inN dimensions. Their commutation relations turn out to
those of the algebra su(N). Therefore, the oscillator is said to have the su(N) symmetry—which
then leads to the correct degree of degeneracies of energy levels.

Pauli5 and Klein6 have pointed out that there is a connection between degeneracies of e
levels and the existence of further constants of motion in the associatedclassicalsystem. There-
fore, the result also should be manifest in the corresponding classical isotropic oscillator.
‘‘dequantizing’’ the quantum invariants, one obtains indeed (N221) constants of motion which
constitute the su(N) algebra with respect to the Poisson bracket. Hence, the classical iso
oscillator possesses indeed constants of motion other than the angular momentum. Its com
generate obviousgeometricalsymmetry transformations while the additional constants are sa
generatedynamicalsymmetry transformations. They cannot be visualized in configuration s
because they mix coordinates and momenta.

However, to exhibit a set of conserved phase-space functions which form a particular a
is not sufficient in order to prove invariance of the physical system in a global sense, i.e.,
entire phase space. Jauch and Hill assert that the ‘‘system of orbits’’ of a clas
(m1 ,m2)-oscillator be invariant under a group of transformations isomorphic to the th
dimensional group of proper rotations SO(3). However, this claim cannot be justified by loc
considerations only. In other words, global invariance under a particular group of transform
does not follow from specifying phase-space functions forming the corresponding algebra.
17 Oct 2005 to 144.32.128.73. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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McIntosh reviews accidental degeneracy in classical and quantum mechanics in Ref.
notes that the phase space of the isotropic harmonic oscillator in two dimensions foliate
hyperspheres, being surfaces of constant energy. A discussion of the canonical transform
generated by three constants of the motion quadratic in the coordinates and momenta foll
becomes obvious that the group of symmetry transformations is the special unitary group
dimensions, SU~2!—not the group of proper three-dimensional rotations, SO(3), asJauch and
Hill suggested.

Dulock and McIntosh8 devote a paper to the two-dimensional harmonic oscillator with a
trary frequency ratio. Using classical variables which mimic quantum mechanical creatio
annihilation operators, they write down three constants of motion with Poisson brackets is
phic to the so~3! algebra relations. A Hopf mapping is performed in order to visualize ‘‘how
rotational symmetry ofS 2, which is the three-dimensional rotation group, chances also to be
symmetry group of the harmonic oscillator.’’8 Formally, this method can be applied to oscillato
with arbitrary frequency ratio. However, one of the transformations, which is one-to-one in
isotropic case, becomes a multiple-valued map. For rational frequency ratios there is a
ambiguity, turning to infinite multiple-valuedness if the frequencies ratios are irrationally. In
of this result, the authors claim that the set of symmetry transformations forall types of oscillators
investigated is isomorphic to the group SU~2!—irrespective of the multiple-valuedness. On
more, the possibility to write down formal expressions which constitute particular algebraic
tions is taken as a proof of the existence of an associatedgroup of transformations.

Maiella and Vitale9 react to the claim that ‘‘every classical system should possess a ‘dyn
cal’ symmetry larger than the ‘geometrical’ one.’’9 Using action-angle variables, they provid
three constants of motion for the two-dimensional oscillator which form the su~2! algebra. How-
ever, for irrational frequency ratio the invariants are not single-valued—hence they consid
‘‘su~2! symmetry’’ to be of ‘‘formal value’’ only. It is claimed to acquire physical relevance o
for commensurate and,a fortiori, isotropic oscillators. At the same time, no argument is giv
which would forbid the existence of the group SU~2! for the irrational oscillator. The authors d
not investigate whether, in the commensurate case, the invariants generate indeed finite
valued phase-space transformations in SU~2!.

Maiella10 extends this discussion to theN-dimensional oscillator and emphasizes that o
single-valued constants of the motion generate actual symmetry transformations. Initiall
group of all contact transformations for a given dynamical system is considered. Any subgro
transformations which is generated by single-valued constants of motion and leaves the
tonian invariant is called an ‘‘invariance group.’’ The classical degree of degeneracy deter
the number of its generators: each linear relation between the classical frequencies of the
with rational coefficients is accompanied by the appearance of a single-valued constant of m
Subsequently, phase-space functions are given in action-angle variables which realize the
su(N) for an isotropic oscillator and the algebra su(n), 2<n,N, for smaller degeneracy. How
ever, it is again not proven explicitly that the generators actually give rise to globally well-de
transformations.

In the late 1960s, successful application of group theoretical concepts in elementary p
physics renewed the interest in symmetries of classical Hamiltonian systems and stimulate
general approaches. The invariance of the three-dimensional Kepler problem under the g
four-dimensional rotations, SO~4!, was explicitly shown by Moser11 in 1970 for the first time.
Already in 1965 Bacry, Ruegg and Souriau12 proved that there exists a set of global symme
transformations for the Kepler problem being isomorphic to the group SO~4!. The transformations
presented, however, do not act on variables in phase-space. The transformations of phas
manifolds are parametrized by the components of angular momentum and of the Runge
vector. Representing only five independent constants of motion, the timet at which the particle
passes the perihelion of the orbit is taken as sixth parameter.

Dulock and McIntosh13 claim that the Kepler problem has not only the symmetry SO~4! but
SU~3!. Two papers by Bacry, Ruegg and Souriau12 and by Fradkin14 generalize this statement: a
classical central potential problems should possess the dynamic symmetries O~4! andSU~3!. This
17 Oct 2005 to 144.32.128.73. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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surprising statement is subject to the same criticism as the following, even more general cla
Mukunda:15,16 all classical Hamiltonian systems withN degrees of freedom have O(N) and
SU(N) symmetries. If this statement were true, then there would exist just one and only one
phase-space structure for systems withN degrees of freedom—the well-established distinct
between regular and chaotic systems would have no meaning at all.

Mukunda argues on the basis of a theorem by Eisenhart.17 Consider, in a Hamiltonian system
with N degrees of freedom,n,N independent functions of canonically conjugate variables~sub-
jected to weak conditions!. They can always be supplemented by (2N2n) phase-space function
such thatN pairs of canonically conjugate variables result which define a symplectic bas
phase space. Hence, starting with the Hamiltonian of the system under consideration one c
( i ) a variable being canonically conjugate to the Hamiltonian and (i i ) (N21) additional pairs of
phase-space functions with Poisson brackets equal to one, all commuting with the first pa
therefore with the Hamiltonian. Consequently, this theorem is a blueprint to construct (2N21)
independent constants of motion in any Hamiltonian system withN degrees of freedom. The
particular form of the Hamiltonian does not even enter into the construction. Next, two diff
sets of phase-space functions are defined in terms of the (2N21) functions of this particular basis
Their Poisson brackets realize the relations characteristic of the algebras O(N) and SU(N), re-
spectively. In a footnote, the author restricts the applicability of the results: ‘‘We concern ours
only with constructing realizations of Lie algebras, not of Lie groups. Even when we ta
invariance under the O(4) group, for example, we really intend invariance under the algeb15

Consequently, ‘‘invariance under the algebra’’ is alocal concept only, so that Mukunda’s constru
tion has formal value only. Actually, the phase-space functions written down by Mukunda d
neatly map phase space onto itself: the functions become imaginary if the range of the can
variables is not restricted artificially. The lesson to be learned is obvious: in order to establi
invariance of a system under agroup of phase-space transformations it is not sufficient to rea
specific Poisson-bracket relations with invariants.

A related position is put forward by Stehle and Han.18,19 To identify a particular algebra by
constants of motion does not guarantee the presence of a ‘‘higher symmetry’’—a single-valu
at most finitely many-valued, realization of the group must exist in phase-space. To show thi
show that a system is classically degenerate if the Hamilton–Jacobi equation of a par
system is separable in a continuous family of coordinate systems. This property is obse
Compare the Fourier series representation of one specific orbit described with respect
different ~continuously connected! coordinate systems. For consistency, the frequencies appe
in its Fourier decomposition must be rationally related, which corresponds to a classical d
eracy. It is important to note that the transformation from one coordinate system to the oth
single-valued, otherwise the argument does not hold. Any phase-space function and, conse
any constant of motion generates a transformation of phase-space onto itself; alternatively
be viewed as the generator for a transition to another coordinate system such that the Ham
remains invariant. Only single-valued constants of motion generate global single-v
transformations—infinitely many-valued ‘‘constants of motion’’ represent formal expressions
not necessarily related to the existence of classical degeneracy. Therefore, they donot establish a
higher symmetry group of the system.

To sum up, the construction of an algebra from constants of motion is only the first step
proof of the existence of a potential higher symmetry group. It needs to be supplemente
global investigation of the generated transformations.

III. THE TWO-DIMENSIONAL COMMENSURATE OSCILLATOR

This section deals with the symmetry properties of a two-dimensional commensurat
monic or (m1 ,m2)-oscillator described by the Hamiltonian

H~q1 ,q2 ,p1 ,p2!5
v

2 S 1

m1
~p1

21q1
2!1

1

m2
~p2

21q2
2! D , m1 ,m2PN1 , ~4!
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where the integersm1 and m2 have no common divisor. Two pairs of canonical variabl
qn ,pnP(2`,`),n51,2, label points in phase spaceG;R4, the only nonvanishing Poisso
brackets being given by

$q1 ,p1%5$q2 ,p2%51. ~5!

It will be useful to introduce two other sets of canonical variables. First, combine each pair
complex variable

an5
1

&
~qn1 ipn!, n51,2, ~6!

with nonvanishing brackets

$ā1 ,a1%5$ā2 ,a2%5 i , ~7!

whereā denotes the complex conjugate ofa. Second, action-angle variablesI nP@0,̀ ) and wn

P@0,2p), n51,2, are determined through modulus and phase ofan5AI nexp@iwn#. Their nonzero
brackets read

$I 1 ,w1%5$I 2 ,w2%51. ~8!

These coordinates provide alternative forms of the Hamiltonian,

H5vS ā1a1

m1
1

ā2a2

m2
D5vS I 1

m1
1

I 2

m2
D . ~9!

A. Constants of motion and Lie algebras

Commensurate harmonic oscillators possess a large number of constants of motio
Hamiltonian itself is an invariant as$H,H%50. Motion of the system with given energyE is thus
restricted to a three-dimensional hyper-surface, an ellipsoidE(E) in phase spaceG. Further, the
actions I 1 and I 2 , having zero Poisson brackets with the Hamiltonian and among themse
render the (m1 ,m2)-oscillator integrable. For fixed values of the actions, Arnold’s theorem2 states
that the motion takes place on a two-dimensional torusT(I 1 ,I 2). In fact, theentirephase space is
foliated by tori with radiiAI 1 and AI 2 , respectively. According to~9! the HamiltonianH is a
linear function of these invariants.

A third, functionally independent~complex! constant of the motion is given by the expressi

K5a2
m2~ ā1!m1. ~10!

As mentioned in Ref. 4, both its real and complex parts are invariant which implies that the
x of the functionK,

x5m2w22m1w1P@0,2p!, ~11!

is a constant of the motion, too. Considered as a generator of transformations in phase s
connects energetically degenerate pairs of tori. The existence of a third invariant is expec
reduce the dimensionality of the accessible manifold. Indeed, fixing the values of the three
antsI 1 , I 2 , andK ~or, equivalently,x! singles out a one-dimensional orbit on the torusT if the two
frequencies are rationally related. Generic orbits,an(t)5AI nexp(2ivt/mn1wn(0)), n51,2, retrace
themselves after a characteristic timetm52pm1m2 /v, with winding numbersm2 for a1 andm1

for a2 . However, if the frequency ratio of the motion on the tori werenot rational, an orbit would
cover the torusT densely—the functionK would represent aformal constant of the motion only
without any physical impact on the motion of the system. An important difference to the isot
17 Oct 2005 to 144.32.128.73. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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oscillator is due to the fact that anm-oscillator has different types of orbits with frequenci
v/(2pm1) and v/(2pm2), respectively. This allows one to distinguish experimentally the t
cases.

The phase space of anm-oscillator has a particulardiscretesymmetry. Combine the variable
an into a column: now the Hamiltonian is obviously invariant underm1m2 finite rotations,a
→R1

r 1R2
r 2a, r n50,...,mn21, or, explicitly,

S a1

a2
D→S e2 i2pr 1 /m1 0

0 1D S 1 0

0 e2 i2pr 2 /m2
D S a1

a2
D . ~12!

These transformations map the phase-spaceG to itself. They form a cyclic groupCm1m2
5Cm1

3Cm2
, the direct product of two cyclic groups withm1 andm2 elements, respectively. In Ref. 20

Cm1m2
has been calledambiguity group.

The Poisson bracket of two invariants results in a third invariant. Therefore, the collecti
all invariants is a Lie algebra. Typically, it will contain an infinite number of elements, all of wh
depend functionally on a smaller number of invariants. By an appropriate choice of the inva
however, algebras with a finite number of elements can be found. The simplest example is
by the three invariantsI 1 , I 2 , K giving rise to the following brackets:

$I 1 ,K%52 im1K, $I 2 ,K%5 im2K, $I 1 ,I 2%50. ~13!

The algebra contains three independent elements—it is not possible to find an algebra with
elements since them-oscillator has three invariants. It also contains two elements with vanis
Poisson bracket which, in a system with two degrees of freedom, is the maximum num
‘‘commuting’’ functionally independent invariants.

There is an alternative set of four invariantsJ5(J0 ,JW ),

J05
I 1

2m1
1

I 2

2m2
5

1

2v
H, ~14!

J15A I 1I 2

m1m2
cosx, ~15!

J25A I 1I 2

m1m2
sinx, ~16!

J35
I 1

2m1
2

I 2

2m2
. ~17!

Only three of these invariants are functionally independent because

J0
22JW250. ~18!

This constraint is conveniently rephrased by saying that the ‘‘four vector’’J is ‘‘null’’ or ‘‘light
like.’’ The functions J are particularly interesting since they form the basis of a Lie alge
isomorphic to u~2!,

$J0 ,Jj%50, $Jj ,Jk%5(
l 51

3

e jklJl , j ,k51,2,3, ~19!
17 Oct 2005 to 144.32.128.73. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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which has su~2! as a subalgebra, generated by the components ofJW . Equations~19! have been at
the origin of many attempts to associate a group SU~2! of symmetry transformations with th
two-dimensionalm-oscillator.

B. Reduced phase space and space of invariants

Consider the complex variables

bn5
uanu

Amn
S an

uanu D
mn

5A I n

mn
exp@ imnwn#, n51,2, ~20!

which satisfy

$b̄n ,bn8%5 idnn8 . ~21!

In spite of these relations, the variablesbn do not define pairs of canonical coordinates ofG since
the mapa→b is not a one-to-one transformation. The variablesbn are, however, canonica
coordinates in thereducedphase spaceGm . The reduced space is obtained from identifying tho
m1m2 points of G which satisfyb(R1

r 1R2
r 2a)5b(a), Rn

r nPCmn
. The definition of the variables

~20! is motivated by the invariance of the constants of motion in~14!–~17! under the ambiguity
groupCm1m2

.
The invariants~14!–~17! take a simple form when expressed in terms of the reduced varia

J05
1

2
~ b̄1b11b̄2b2!, ~22!

J15
1

2
~ b̄1b21b̄2b1!, ~23!

J25
1

2i
~ b̄1b22b̄2b1!, ~24!

J35
1

2
~ b̄1b12b̄2b2!. ~25!

Using the two-component ‘‘Weyl spinor’’b5(b1 ,b2), these invariants can be written

Jn5
1

2
b̄•snb, n50,...,3, ~26!

wheres0512, and the Pauli matricessk , k51,2,3, generate the algebra su~2!. Consequently, the
invariants, which span the space of invariants,Y, turn intosesquilinearexpressions on the reduce
phase spaceGm . Their structure is similar to those of the isotropic or~1,1!-oscillator: in this case,
the reduced phase space and the original one coincide,G (1,1)5G. In some sense, the non-bijectiv
mapa→b ‘‘linearizes’’ the invariants at the expense of accounting for a fraction of phase s
only. It will be shown later that the concept of the reduced spaceGm is natural in the presen
context as it provides appropriate setting to derive global statements about symmetry trans
tions.

C. Topological aspects

Turn now briefly to the topology of the spaces involved. Consider the nontrivial transfo
tions introduced so far: first, the original phase space has been mapped to the reduced phas

c:G→Gm :a°b~a!; ~27!

second, introducing the invariantsJ maps the reduced variables to the space of invariants,Y,
17 Oct 2005 to 144.32.128.73. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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f:Gm→Y:b°J~b!, ~28!

which is an upper cone inR4 sinceJ05uJW u.
The reduced phase spaceGm has the structure of a well-known fiber bundle. To see th

consider an orbita(t) in phase spaceG. Its image in the reduced spaceGm is given byb(t)
5e2 ivtb(0). The maps b→eigb form a group U~1! which leaves invariant the mapf,
J(eigb)5J(b), since the phase drops out from the sesquilinear expressions given in Eqs~26!.
Therefore,Gm is indeed afiber bundle~Y,f,O!: the invariantsY form the base, each orbitOb0

5$eigb0 ugP@0,2p)% is a fiber, and the mapf is the projection. The global structure of th
bundle follows from the fact that the restriction ofGm to the submanifoldGm(E) with points b̄
•b5E/v is isomorphic to the sphereS 3—as is obvious from the quadratic form~4!. Thus, the
restriction of the mapf to Gm(E) defines theHopf fibration of S 3. To each orbitOb in S 3

corresponds a pointJW (b) of the sphere of radiusJ05E/(2v) and a circle in the tangent space
this point.

It is interesting to look at the spaceY of invariants and the transformations among them fr
a general perspective. To do so, consider the complex instead of the real Lie algebra su~2! which
also leaves invariant the HamiltonianH;J0 in ~22! invariant. This is the Lie algebra sl(2,C)
associated with the group SL(2,C), the universal covering of the Lorentz group. The Loren
group induced by SL(2,C) in Y is the transitivity group of the upper~half-! cone.

The elements of SL(2,C) can be written asu(t,g)5exp@g(t,g)#, wheret andg are two real
parameters, and eachg is a traceless complex matrix,

g~t,g!5 1
2 ~gnW •sW 1 i tnW •sW !. ~29!

The matricesu(t,0) belong to the group SU~2!. Thus, they generate rotations and infinitesim
transformations which can be written in terms of a Poisson bracket:

dJW~t!

dt
5nW ∧JW~t![$JW ,nW •JW%. ~30!

The subsetsu(0,g) represent Lorentz boosts mapping a pointb according to

u~0,g!b5~cosh~g/2!1sinh~g/2!nW •sW !b[b~g!. ~31!

On the invariants, the transformation

Jn5b̄•snb°Jn~b!5b̄~g!•snb~g! ~32!

is induced. Hence, the sphereS 3 of radiusJ05H/(2v) is mapped to a sphere of radiusJ0(g)
with

dJ0

dg
5nW •JW ,

dJW

dg
5J0nW . ~33!

This is an infinitesimal Lorentz transformation which maps the upper coneYPR4 to itself as is
obvious fromd(J0(g)22JW (g)2)/dg50 and J0 remaining positive. Contrary to~30!, it is not
possible to express the right-hand sides of~33! by means of Poisson brackets. This can
understood from a quantum mechanical point of view. A classical theory can only manage
mann statistics whereas in quantum~field! theory, due to theanticommutativity of Weyl spinors,
it would be possible to find a commutator to express the derivativesdJn /dg.
17 Oct 2005 to 144.32.128.73. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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IV. GLOBAL INVARIANT VECTOR FIELDS

Each phase-space function generates a flow in phase spaceG, as well as in the reduced phas
spaceGm , and in the space of invariantsY. The invariants generate flows which commute with t
Hamiltonian vector field. To be more specific, consider any elementJn ,n50...3, of the Lie algebra
u~2!. When acting on an observablef through the Poisson bracket,

Vn5$ f ,Jn%, n50,...,3, ~34!

it defines a vector fieldVn in G. Its integral lines satisfy the differential equation

d f

dt
5Vn . ~35!

The solution of this differential equation is a mapf (t) which will be written in the form

f ~t!5Exp@tJn#~ f !5 (
k50

`

$ f ,Jn%k

tk

k!
, ~36!

where

$g,h%k115$$g,h%k ,h%, k51,2,..., $g,h%05g, ~37!

with smooth phase-space functionsg andh. In a simplified notation, the solutions~36! are written
as

Sn@t#[Exp@tJn#, n50,...,3, SnW@t#[ Exp@tnW •JW #, unW u51, ~38!

each unit vectornW being associated with a point of the unit sphereS 2.
The crucial question now is to investigate whether the flow~34! and hence the maps~38! are

defined everywhere in the space under consideration. Only in this case, thealgebraformed by the
closed set of Poisson brackets among the invariants integrates to agroup of symmetry transfor-
mations. More specifically, one needs to find out whether the invariants~14!–~17! of the
m-oscillator generate a set of transformations isomorphic to the group SU~2! @or U~2!#. This is
only possible if the associated vector fields are well-defined everywhere in the space whe
act. The fields will be studied separately for functionsf from the spacesG, Gm , or Y.

A. Vector fields in the space of invariants

The simplest case to look at is the orbits generated by the first component ofJ, which is a
multiple of the Hamiltonian,J05H/(2v). Not surprisingly, one has

S0@t#~J!5J, ~39!

that is, all components ofJ are invariant under the action ofJ0 . Rotations about the 3-axis, i.e
with an axis passing through the polesJ356J0 , are generated by the invariantJ35I 1 /(2m1)
2I 2 /(2m2),

S3@t#~J!5~J0 ,R3~t!JW !. ~40!

Each possible orbit inY is generated by a linear combination of invariantsnW •JW ,

SnW@t#~J!5~J0 ,RnW~t!JW !, ~41!
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where the matrixRnW(t) represents a rotation by an anglet about an axis parallel to the vectornW .
In other words, every point of the sphereuJW u5J0 is mapped to another point of the same sphe
the energyE52vJ0 being conserved.

These results are conveniently summarized by a group theoretical statement. The set

RJ5$SnW@t# u0<t,2p,nW PS 2% ~42!

of maps acting inY is a representation of the group SO~3!. In other words, there is a subset of a
phase-space functions, such that its elements transform according to the group SO~3!. Mathemati-
cally, this group is the integrated form of the adjoint representation of the algebra~19!. Conse-
quently, one can attribute this group as asymmetry groupto the reduced (m1 ,m2)-oscillator, for
any frequency ratio. Note, however, that this symmetry does not act on points in phase spacG but
on points of the space of invariantsY.

B. Vector fields in the reduced phase space

Again, the action of the generatorsJ0 ,J3 , andnW •JW will be studied, now with respect to th
variablesb5(b1 ,b2). It is straightforward to see that

S0@t#~b!5e2 i t/2b, ~43!

which is just the time evolution witht52vt. Similarly, the invariantJ3 generates a flow

S3@t#~b!5S e2 i t/2 0

0 ei t/2Db. ~44!

Comparison with~20! shows that the functionx5m2w22m1w1 is left invariant. Transformation
~44! is a special case of the map

SnW@t#~b!5~s0 cost/22 inW •sW sint/2!b[b~t!. ~45!

No ambiguities arise when mapping pointsb underSnW@t#, for whatever values of the parametert
and the directionsnW . Therefore, the set

Rb5$SnW@t#u0<t,4p,nW PS 2% ~46!

of maps faithfully represents the group SU(2) inGm . Consequently, anm-oscillator admits as
symmetry not only the three-dimensional rotation group SO~3! in Y but also the special unitary
group SU~2! in Gm .

In this restricted sense, and only in this one, (m1 ,m2)-oscillators are seen to possess bo
SO~3! and SU~2! as symmetry groups. This statement agrees with the fact that the algebras~3!
and su~2! are isomorphic. The next section deals with the question which groups, if any
represented on the original phase spaceG.

C. Vector fields acting in phase space

It will be shown in this section that the vector fields associated with the invariantsJ are not
defined globally when they act on the variablesa which span phase spaceG. Consequently, it is
not possible to implement the group SU~2! on phase spaceG. More explicitly, it will be shown that
the actionSnW@t#(a)5(a1(t),a2(t)) on G is nonlinear, and that it is inevitably singular for som
parameters (nW ,t) and initial pointsa. Contrary to one’s intuition the flows can be defined on
locally, and they cannot be extended to define agroup of symmetry transformations.

To begin with, consider the flows generated byJ0 andJ3 , respectively. The resulting orbit
are well-defined for all initial points: they are given by
17 Oct 2005 to 144.32.128.73. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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S0@t#~a!5S e2 i t/(2m1) 0

0 e2 i t/(2m2)Da, ~47!

and by

S3@t#~a!5S e2 i t/(2m1) 0

0 ei t/(2m2)Da, ~48!

respectively. Equation~47! describes the time evolution of the pointaPG, hence both the energ
E52vJ0 and the torusT(I 1 ,I 2) are left invariant. Since the values of the actions change acc
ing to I n(0)→I n(t)5uan(t)u2, the flow in ~48! also conserves the energy while it maps a to
T(I 1 ,I 2) to a different one,T(I 1(t),I 2(t)).

Now consider fields which are generated byarbitrary linear combinations of the invariants
nW •JW . Denote potential solutions of the differential equation

da

dt
5$a,nW •JW%[VnW~a! ~49!

by anW(t)5SnW@t#(a(0)), with some initial point a(0)PG. Explicitly, the complex two-
component fieldVnW reads

VnW5
1

2i S ~nW •JW1 im1~nW ∧JW !31n3J0!/ā1

~nW •JW1 im2~nW ∧JW !32n3J0!/ā2
D . ~50!

It is finite but ill-defined on the hyperplanesP15$aua150,a2Þ0% and P25$aua1Þ0,a2

50)%. There are points which, when transported by the flowSnW@t#, hit the planesP1 or P2 for
some value oft. The associated orbits will be calledsingular since they cannot be continue
unambiguously across the planes. This is due to the terms in~50! which containJ1 andJ2 ,

J16 iJ25
ua1uua2u

Am1m2

exp@6 ix#, ~51!

while all other terms are zero onP1 andP2 . Here is a toy example to illustrate the underlyin
problem. Consider a one-dimensional system with variablea5AI exp@iw#, satisfying$I ,w%51.
The flow generated byAI is ill-defined at the origin,

da

dt
5$AI ,a%5

i

2
exp@ iw# , ~52!

as its value depends on the way the pointa is approached. If a trajectory were reaching the orig
it would be impossible to continue it unambiguously beyond this point. It is important to re
that this singularity as well as the one encountered in the singular planes is not due to a ch
coordinates but an intrinsic property of the flow.

To visualize the entire set of singular orbits, look at their images inY, that is, the orbits
SnW@t#(JW ), tPR. For given energyE52vJ0 , the points ofP1 correspond to the north pol
(0,0,J05ua1u2/2m2) of the sphereS 2(J0), while those ofP2 are mapped to its south pole, (0,
2J052ua2u2/(2m1)). By c+f, an orbitSnW@t#(a) goes to a circleRnW(t)JW (a). Singularorbits
thus correspond to circles going through either one or both poles of the sphere, whileregular
orbits hit neither of them: for almost all flows, associated with a given vectornW , there exist two
‘‘critical’’ circles passing through the north pole and the south pole, respectively. These c
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coalesce into a single one passing throughboth poles if the axis of rotation is in the equatori
plane,nW 5(n1 ,n2,0). They degenerate to points located at the poles ifnW 5eW35(0,0,61). Two
conclusions can be drawn from this picture:

~1! for any given unit vectornW Þ6eW3 , the mapSnW@t# has at least one singular orbit inG;
~2! any pointaPG can be sent to a singular hyperplane by a mapSnW@t# with an appropriately

chosen vectornW P .

In fact, the vectorsnW P can be chosen fromtwo continuous sets: they only need to be in a pla
~passing through the origin! which is perpendicular to either of the vectorsJW (a)6J0(a)eW3 , or,
explicitly,

nW P
65

c1~JW~a!6J0~a!eW3!6c2JW~a!∧eW3

uc1~JW~a!6J0~a!eW3!6c2JW~a!∧eW3u
. ~53!

Regularorbits of SnW@t# are easily computed without solving the differential equation~49!.
One needs to determine modulus and phase of the variablesan ,n51,2, as a function oft. It is
useful to write down the orbits in the reduced phase space and in the space of the inva
According to~45!, the reduced variables evolve linearly,

b1~t!5~cost/22 in3 sint/2!b12~ in11n2!sin~t/2!b2 , ~54!

b2~t!5~cost/21 in3 sint/2!b22~ in12n2!sin~t/2!b1 , ~55!

while the invariantsW5JW (b) evolve inY as

W~t!5cost W1~12cost!nW +nW •W2sint nW ∧W. ~56!

Using uanu25mnubnu2,n51,2, thet-dependence of the moduli is simply

ua1~t!u25m1~ j 01 j 3~t!!, ua2~t!u25m2~ j 02 j 3~t!!. ~57!

For the evolution of the phases, plug Eqs.~54! into

exp@ im1w1~t!#5S an~t!

uan~t!u D
mn

5
bn~t!

ubn~t!u
, n51,2, ~58!

giving

exp@ im1w1~t!#5
~cost/22 in3 sint/2!b12~~ in11n2!sint/2!b2

u~cost/22 in3 sint/2!b12~~ in11n2!sint/2!b2u
[exp@ iF1~t!#, ~59!

and a similar equation for exp@im2w2(t)#. The two phaseswn(t)5Fn(t)/mn ,n51,2, must be
continuous whenevert reaches the value 4p. They will both have a value which is a multiple o
2p when the parametert takes the value 4pm1m2 . This result seems to suggest th
S@tnW •JW #(a) might be anm1m2-fold covering of the subgroupS@tnW •JW #(b), 0<t,4p,nW PS 2, of
the special unitary group, SU~2!. Due to the existence of singular orbits, however, this is
possible. Further, it is well-known that the only universal covering of SU~2! is this group itself.
Nevertheless, one might describe the situation as aramified coveringof SU~2! since the maps
S@tnW •JW # combine according to a group product law.

To visualize the obstruction of a global action of the group SU~2! differently, recall that a
given mapS@tnW •JW # sends a torusT(I 1 ,I 2)PG to a torusT(I 18 ,I 28) such thatm1I 11m2I 25m1I 18
1m2I 28 holds. For somenW andt0 it happens that one of the actions vanishes,I 18 , say. This means
that the initial two-dimensional torus (S 13S 1) is mapped to aone-dimensional torus, i.e., a circle
17 Oct 2005 to 144.32.128.73. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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S 1, and, therefore, one of the angle variables has lost its meaning. Once this has happen
impossible to unambiguously continue the trajectory which has hit the singular plane, a
missing angle could take any value. The phenomenon is similar to the passage of a spheric
through a focus.

It will be useful to give a name to the situation encountered here. A system with phase
G will be said to have afaint G symmetryif it admits a set of globally defined invariants whic
form an algebraA while the groupG associated with it cannot be realized onG but only on a
smaller part of it. Thus, all two-dimensional commensuratem-oscillators have a faint SU~2!
symmetry.

V. THE N-DIMENSIONAL COMMENSURATE OSCILLATOR

To describe a commensurate harmonic oscillator inN dimensions, the present notation
straightforward to adapt. Let the labeln run from 1 toN: the Hamiltonian of a commensurat
m-oscillator withm5(m1 ,...,mN), mneN1, reads

H~q,p!5
v

2 (
n51

N
1

mn
~pn

21qn
2!5

v

2 (
n51

N
1

mn
ānan5

v

2 (
n51

N
1

mn
I n . ~60!

The complex canonical variables are given byan5(qn1 ipn)/&, n51,...,N, while actionsI n and
angleswn are defined throughan5AI n exp@iwn#. Thus there are three sets ofN pairs of canonical
variables to choose from, with brackets

$qn ,pn8%5
1

i
$ān ,an8%5$I n ,wn8%5dnn8 , n,n851,...,N. ~61!

It will be assumed that the positive integer numbersmn do not have an overall common diviso
For the discussion to follow, two cases will be distinguished: a commensurate oscillator is s
be canonicalif no pair of numbersmn andmn8 , nÞn8, admits a common divisor but one. Th
class will be studied first. The presence of common divisors among subsets of the frequencvn

gives rise to interesting additional complications which will be considered later on.

A. Constants of motion and Lie algebras

In analogy to Eq.~10!, each function

Knn85an
mn~ ān8!

mn8, n,n851,...,N, ~62!

is seen to be an invariant for the commensurateN-oscillator,$H,Knn8%50. TheseN2 constants of
motion depend on onlyN(N11)/2 real invariants, namelyN independent actionsI n ,n51,...,N,
andN(N21)/2 relative angles

xnn85mnwn2mn8wn8 , 1<n,n8<N. ~63!

As in the two-dimensional case, the range of the functionsxnn8 must be restricted to the interva
@0,2p! because two valuesxnn8 and (xnn812p), respectively, correspond to thesameorbit. The
anglesxnn8 satisfy (N21)(N22)/2 linear relations,

xnn81xn8n91xn9n[0, n,n8,n9 all different. ~64!

Therefore, there are no more than (2N21) functionally independent constants of motion, t
maximum number of possibly independent invariants. As independent invariants, one may c
for example, theN actionsI n and (N21) relative anglesxn n11 ,n51,...,N21.

The (2N21)- dimensional surface of constant energyH5E is an ellipsoidE(E) in phase
spaceG. It contains theN-dimensional torusT(I 1 , . . . ,I N) of constant actionsI n as a submanifold.
Lines of constant actions and angles are theorbits of the motion, winding around a torusT. Each
orbit is a one-dimensional closed loop given by
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an~ t !5AI n exp~2 ivt/mn1wn~0!!, ~65!

where mnwn(0)2mn11wn11(0)5xn,n11(0). One revolution is completed after a timet
52pM /v, with the numberM taking a value such that thewinding numbers wn5M /mn of each
subsystem are integer without overall common divisor. In the canonical case,M is equal to
P1

Nmn . Here is an example forN53 which illustrates the noncanonical case: letm
5(km18 ,km28 ,m3). The numberM would then take the valuekm18m28m35m1m2m3 /k.

It is important to note that in a canonical~but not isotropic! m-oscillator ~i.e., all mnÞ1!,
there exist orbits with (2N21) different periods. There areN orbits corresponding to motion of
single oscillator only; there areN(N21)/2 orbits winding around two-dimensional tori wit
frequencies 1/mn and 1/mn8 ,1<n,n8<N, etc.

As in the two-dimensional case, the mapsRna5(a1 , . . . ,ei2p/mnan , . . . ,aN) generate a
cyclic groupCm5$R1

r 1
•••RN

r Nur nPZ%, the ambiguity group of the mapc :

c~R1
r 1
¯RN

r Na!5c~a!. ~66!

B. Reduced phase space and space of invariants

The (2N21) phase-space functionsI n andxn n11 form a basis of a Lie algebra commutin
with the HamiltonianH. Since the functionsxnn8 are not continuous on phase spaceG, it is natural
to look at appropriate periodic functions of them. Introduce, in analogy to Eq.~20!, the set of
invariants

bn5
uanu

Amn
S an

uanu D
mn

5A I n

mn
exp@ imnwn# , n51,...,N. ~67!

They provide canonical coordinates on the 2N-dimensional reduced phase spaceGm , now with
m5(m1 , . . . ,mN),

$b̄n ,bn8%5 idnn8 . ~68!

As before,~67! is a non-bijective mapc : a→b(a). It is not a projection of the phase space
a subspace but should be thought of as aramifiedcover of the reduced spaceGm .

Not surprisingly, Eqs.~26! have a straightforward generalization. Withb5(b1 ,...,bN), one
defines (N221) invariants sesquilinear in the coordinatesbn by

Jnn8
s

5
1

2
b̄•~Enn81En8n!b5

1

2
~ b̄nbn81b̄n8bn!, 1<n,n8<N, ~69!

Jnn8
a

5
1

2
b̄•

1

i
~Enn82En8n!b5

1

2i
~ b̄nbn82b̄n8bn!, 1<n,n8<N, ~70!

Jnn
d 5

1

2
b̄•~Enn2En11 n11!b5

1

2
~ b̄nbn2b̄n11bn11! , n51,...,N21. ~71!

The matricesEnn8 are of sizeN3N with elements

~Enn8!kk85dnkdn8k8 , n,n8,k,k851,...,N, ~72!

i.e., the only nonzero elements are equal to one at position (n,n8), and they generate the Li
algebrau(n) with respect to the matrix commutator.21 This property is inherited by theN2

phase-space functions

Jnn85b̄•Enn8b[b̄nbn8 ; ~73!

their Poisson brackets,
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$Jnn8 ,Jkk8%5 i ~dnk8Jkn82dn8kJnk8!, ~74!

also realize the algebraic relations ofu(N).
It is possible to find (N221) linear combinations of the matricesEnn8 which are traceless an

Hermitian—hence they provide a basis of the algebra su(N). In fact, these combinations hav
been introduced already in Eq.~69! when definingJnn8

s ,Jnn8
a , andJnn

d . Therefore, these function
form a basis of the algebra su(N) with respect to the Poisson bracket. When supplemented b~a
multiple of! the Hamiltonian

J05
1

2
b̄•1Nb5

1

2 (
n51

N

b̄nbn[
2

v
H, ~75!

where1N is theN-dimensional unit matrix, the algebrau(n) can be recovered.

C. Vector fields

There is a first group of transformations which acts in the space of invariantsY. As before, it
is the set of finite transformations on the space generated by the real invariants~69!–~71!. In other
words, it arises from integrating the adjoint representation of the algebra formed by the inva
As this group will play no role in the following, its discussion is suppressed.

Next, the invariantsJnn8
s andJnn8

a generate canonical linear maps in the reduced spaceGm ,

dbk

dt
5$bk ,Jnn8

s %5
i

2
~dknbn81dkn8bn![~Jnn8

s b!k , ~76!

dbk

dt
5$bk ,Jnn8

a %5
1

2
~dknbn82dkn8bn![~Jnn8

a b!k , ~77!

and similar ones follow when takingJnn
d as generator. These linear equations can be integrate

the spaceGm for arbitrary initial valuesb(0)5b0PGm ,

b~t!5exp~tJnn8
«

!b0 , «5a,s. ~78!

The solutions are unitary maps ofGm to itself. In analogy to the two-dimensional case, they w
be denoted by

b~t!5Exp@tJnn8
«

#~b!, «5a,s , ~79!

and similarly for finite transformations generated by the invariantsJnn
d . Due to the linearity of the

equations, no ambiguities arise upon integration. Therefore, the set of transformations
reduced spaceGm is isomorphic to the group SU(N). In this restricted sense, them-oscillator has
the special unitary group inN dimensions as a symmetry group. This group of symmetry tra
formations isnot defined in the phase spaceG of the m-oscillator but only inGm.

Finally, a genuine ‘‘pullback’’ of SU(N) in phase spaceG does not exist, for the same reaso
as in the caseN52. In fact, it is sufficient to consider a pair of oscillators with frequenciesv/mn

andv/mn8 , say, in order to see that there are obstructions which prevent the existence of aglobal
symmetry group in phase spaceG. This pair of degrees of freedom is equivalent to a tw
dimensional (mn ,mn8)-oscillator, and no set of transformations acting on it can be found w
would be isomorphic to SU~2!. If, however, theN-dimensional oscillator would have the fu
symmetry SU(N), a subgroup SU~2! should be associated with this pair of oscillators. Con
quently, the group SU(N) cannot be identified as a symmetry group of the canon
N-dimensional commensurate oscillator. In analogy to the two-dimensional commensurate
lator it is seen to have afaint SU(N) symmetry only.

D. The m-oscillator with common divisors

The canonicalm-oscillator has been shown to be invariant under transformations isomo
to the group SU(N) in the reduced spaceGm . For canonical and isotropicN-dimensional oscil-
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lators, subsystems of dimensionN8,N are invariant only with respect to a subalgebraAm8 of the
algebraAm5su(N). If the oscillator is neither isotropic nor canonical, other possibilities aris

A noncanonical oscillator is characterized by frequenciesm5(m1 , . . . ,mN) with at least one pair
(mk ,ml) having a common integer divisor different from one. LetN8,N frequencies have a
common divisor. Then, for them8-oscillator corresponding to these frequencies, constant
motion do exist which form an algebraAm85su(N8). This algebra, however, isnot a subalgebra
of Am as follows immediately from considering them8-oscillator as anN8-dimensional commen-
surate oscillator in its own right. Suppose that, after removing the common divisor, the res
oscillator, characterized bym85(m18 ,...,mN8

8 ), is a canonical one. Then one can construct a gr
of symmetry transformations SU(N8) in the reduced phase spaceGm8 , andGm8 is not a subspace
of Gm . The Poisson brackets of the generators of SU(N8) acting in Gm8 and those of SU(N)
acting inGm will not be linear combinations of the initial ones. Hence, the combination of th
two algebras will not close under the Lie product—the resulting algebra will beinfinite. This
property will be important for quantum mechanical commensurate oscillators since it e
additional degeneracies of energy which otherwise appear to be accidental.

Turn these results around: there is no finite algebra to account for all the symmetries of a
nonicalm-oscillator. Obviously, this situation can arise only ifN>3 ~if N52 any common divisor
can be factored out immediately!. In fact, if mn8

8 51, n851,...,N8, the subsystem is even a
isotropic oscillator, and it has a group SU(N8) of symmetry transformations on phase spaceG.

It is helpful to illustrate this discussion by an exhaustive list of ‘‘classes’’ for small values oN.

L N52: A commensurate oscillator is either isotropic or canonical~a common divisor of the
frequenciesm1Þm2 can be factored out!.

L N53: Five classes of commensurate oscillators can be identified. Anm-oscillator is either
isotropic or canonical, or it belongs to one of the three following classes:

~1! a single pair of two frequencies have a common divisor,m5( jm18 , jm28 ,m3), say;
~2! two pairs have common but different divisors,m5( jm18 , jkm28 ,km38), say;
~3! all three pairs have common but different divisors,m5( jkm18 ,klm28 ,l jm38), say.

For N.3 the number of different classes increases rapidly withN.
Consider an example of type 1 forN53 in detail. The three coordinatesbn of the spaceGm

allow one to define eight constants of motionJ. In addition, introduce coordinates of the reduc
phase spaceGm8 ,

bn85
uanu

Amn8
S an

uanu D
mn8

, n51,2. ~80!

The four functions

Jnn8
8 5b̄n8bn8

8 , n,n851,2, ~81!

are a different set of constants of motion because the Hamiltonian of the subsystem~1,2! has an
overall factor 1/k. The constantsJ8 are the basis of a Lie algebraAm8 isomorphic to su~2! ~setting
aside the fourth commuting invariant!, as the subsystem is anm8-oscillator with N52. The
resulting algebraAm8 gives rise to another faint SU~2! symmetry. It is, however,neithera subal-
gebra of the faint SU(N) symmetry~as it it implemented on a different reduced phase spaceGm8!
nor do the generators ofAm andAm8 commute. Consequently, the union of both algebras gi
rise to an infinite algebra. Finally, ifm185m2851, three of the functionsJ8 would generate the
group SU~2! on the original phase spaceG. In other words, the faint SU(N) symmetry of an
m-oscillator with common divisors is compatible with the existence of smaller groups a
globally in phase spaceG.
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VI. SUMMARY AND OUTLOOK

This article deals with the problem which symmetry group to associate with anN-dimensional
commensurateharmonic oscillator. Historically, structural similarities to the isotopic oscilla
seemed to indicate that the introduction of rational frequency ratiosmn /mn8 would not affect the
existence of the group SU(N) of symmetry transformations. This suggestion was based on
following observations. Arbitrary rational frequency ratiosmn /mn8 , are still compatible with the
existence of (2N21) globally defined invariants. In both cases, the invariants confine traject
to a one-dimensional manifold in phase space, the orbit. Furthermore, the invariants fo
algebra su(N) with respect to the Poisson bracket. There is, however, a subtle difference be
an isotropic and a commensurate oscillator: isotropy forces all orbits to have thesameperiod
whereas commensurate frequencies allow for orbits withdifferent periods. Consequently, thes
systemare distinguishable from an experimental point of view.

It has been shown that the algebra su(N) of the commensurate oscillator cannot be extend
globally to a representation of the group SU(N) in phase space. Strictly speaking, it is thus n
possible to attribute this group as a symmetry group to the commensurate harmonic oscillat
group SU(N) is associated with commensurate oscillators in a restricted sense only: to do s
action of the invariants must be considered in areducedphase space the points of which are
longer in a one-to-one correspondence with the states of the system. The commensurate o
is said to have afaint SU(N) symmetry. Furthermore, if the rationally related frequencies ha
common divisors, additional sets of symmetry transformations can be found. They are no
groups of the faint group SU(N), which acts in reduced phase, but they act in different redu
phase spaces.

To conclude, it has been shown that the symmetries of commensurate harmonic osc
come in a surprisingly rich variety and depend in a subtle way on the frequency ratios. Cla
and quantum mechanical oscillators are closely related. Therefore, it will be promising to stu
impact of faint symmetries on the Hilbert-space structure of quantum mechanical commen
oscillators.3 In particular, a systematic group-theoretical account of their degenerate energy
is expected to benefit from the concept of faint symmetry.
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