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The symmetry properties of a classiddtdimensional harmonic oscillator with
rational frequency ratios are studied from a global point of viewofmensurate
oscillator possesses the same number of globally defined constants of motion as an
isotropic oscillator. In both cases invariant phase-space functions forralgebdra

su(N) with respect to the Poisson bracket. In the isotropic case, the phase-space
flows generated by the invariants can be integrated globally to a set of finite trans-
formations isomorphic to the group SNJ). For a commensurate oscillator, how-
ever, thegroup SU(N) of symmetry transformations is found to exist only on a
reducedphase space, due to unavoidable singularities of the flow in the full phase
space. It is therefore crucial to distinguish carefully between local and global defi-
nitions of symmetry transformations in phase space. This result solves the long-
standing problem of which symmetry to associate with a commensurate harmonic
oscillator. © 2002 American Institute of Physic§DOI: 10.1063/1.1488672

[. INTRODUCTION

Harmonic oscillators are ubiquitous in physics. To lowest order, motion close to a stable
equilibrium of a classical system is often described by a Hamiltonian of the form

N

H(a.p)= 3, S (P2+a2), wpeh M

n=1

Here the (appropriately rescalg¢dcanonical coordinates and momenta have Poisson brackets
{qn,Pn'}=6nn» N,n"=1,...N. If the frequencieso, are all equal,

op=w, n=1..N, 2

the Hamiltonian(1) describes aisotropic N-dimensional oscillator. This system is invariant under
a set of transformations isomorphic to the group S)(on the one hand, the quadratic fo(f)
in 2N variables is obviously invariant under proper rotations S@-on the other hand, ca-
nonical transformations need to be symplectic, hence they are elementsNyf. $ffwever, any
transformation inR?N which is both (special orthogonal and symplectic must bspecia)
unitary® SUN)=SO(2N)NSp(N). The group SUK) is represented byN?>—1) phase-space
functions which, as constants of motion, generate symmetry transformations of the Hamiltonian.
In fact, the isotropic oscillator is “maximally superintegrable” since it possesses the maximal
number of (2N — 1) functionally independent constants of motion, exceeding by far the number of
N globally defined invariants required for integrabiffty.

Suppose now that the frequency ratiog/ v, are positive rational numbers,
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®
o=, myelN,, w>0. (3
n

This property defines acommensurate harmonic oscillator, or m-oscillator, with m
=(my,...,my). As shown below, it also possessé$’(- 1) globally defined phase-space invari-
ants, apart from the Hamiltonian. Their Poisson brackets form the Lie algel¥§,sa$ for the
isotropic oscillator. It is known that in both systems all orbits are closed. Nevertheless, some
difference is to be expected, since all orbits of an isotropic oscillator have the same period, while
commensurate frequencies allow for closed orbits with different periods. This is easily seen by
exciting only individual degrees of freedom with frequencigs.

In the following, the topological and group-theoretical impact of rational frequency ratios
(different from one will be made explicit. First, various papers dealing with commensurate os-
cillators are reviewed in Sec. I, which is independent of the later developments. The technical part
starts with Sec. Ill, where, for simplicity, the class of two-dimensiomabscillators will be
studied in detail. The generalization &= 3, given in Sec. IV, iot straightforward. Finally, the
overall picture is summarized and conclusions are drawn. A studguaihtum mechanical
m-oscillators, including the classical limit to connect with the present results, will be presented
elsewheré.

IIl. SYMMETRIES OF HARMONIC OSCILLATORS

The equations of motion dil harmonic oscillators can be solved analytically for arbitrary
frequency ratios. In spite of this exceptional property many authors have wrestled wikinthe
metriesof such systems, the question being how their symmetries depend 6 Ymationality of
the frequency ratios. Most contributions are fostered by the difficulty to distinguish between local
and global properties of phase space. Two-dimensional oscillators with rational or irrational fre-
quency ratios are discussed almost exclusively. Surprising claims have been made in the attempt
to generalize properties of the isotropic oscillatoNrdimensions.

Jauch and Hift address the problem of “accidental degeneracy” of quantum-mechanical
energy eigenvalues. The obvious invariance of the three-dimensional harmonic os@kaee!|
as the hydrogen atonunder the group of rotations in configuration space is not sufficient to
explain the observed degeneracy of the energy levels. They conclude that additional constants of
motion must exist which account for extra degeneracies in the quantum mechanical energy spec-
trum. In fact, (N— 1) Hermitian operators can be specified which commute with the Hamiltonian
of the isotropic harmonic oscillator iN dimensions. Their commutation relations turn out to be
those of the algebra shj. Therefore, the oscillator is said to have theMugymmetry—which
then leads to the correct degree of degeneracies of energy levels.

PaulP and Kleirf have pointed out that there is a connection between degeneracies of energy
levels and the existence of further constants of motion in the assodkat&sicalsystem. There-
fore, the result also should be manifest in the corresponding classical isotropic oscillator. Upon
“dequantizing” the quantum invariants, one obtains indedd 1) constants of motion which
constitute the su{) algebra with respect to the Poisson bracket. Hence, the classical isotropic
oscillator possesses indeed constants of motion other than the angular momentum. Its components
generate obviougeometricalsymmetry transformations while the additional constants are said to
generatedynamicalsymmetry transformations. They cannot be visualized in configuration space
because they mix coordinates and momenta.

However, to exhibit a set of conserved phase-space functions which form a particular algebra
is not sufficient in order to prove invariance of the physical system in a global sense, i.e., in the
entire phase space. Jauch and Hill assert that the “system of orbits” of a classical
(my,m,)-oscillator be invariant under a group of transformations isomorphic to the three-
dimensional group of proper rotations &). However, this claim cannot be justified by local
considerations only. In other words, global invariance under a particular group of transformations
does not follow from specifying phase-space functions forming the corresponding algebra.
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Mclintosh reviews accidental degeneracy in classical and quantum mechanics in Ref. 7. He
notes that the phase space of the isotropic harmonic oscillator in two dimensions foliates into
hyperspheres, being surfaces of constant energy. A discussion of the canonical transformations
generated by three constants of the motion quadratic in the coordinates and momenta follows. It
becomes obvious that the group of symmetry transformations is the special unitary group in two
dimensions, S(®)—not the group of proper three-dimensional rotations,($Q asJauch and
Hill suggested.

Dulock and MclIntosh devote a paper to the two-dimensional harmonic oscillator with arbi-
trary frequency ratio. Using classical variables which mimic quantum mechanical creation and
annihilation operators, they write down three constants of motion with Poisson brackets isomor-
phic to the s(3) algebra relations. A Hopf mapping is performed in order to visualize “how the
rotational symmetry o&2, which is the three-dimensional rotation group, chances also to be the
symmetry group of the harmonic oscillatof Formally, this method can be applied to oscillators
with arbitrary frequency ratio. However, one of the transformations, which is one-to-one in the
isotropic case, becomes a multiple-valued map. For rational frequency ratios there is a finite
ambiguity, turning to infinite multiple-valuedness if the frequencies ratios are irrationally. In spite
of this result, the authors claim that the set of symmetry transformatiorad! ftypes of oscillators
investigated is isomorphic to the group @W—irrespective of the multiple-valuedness. Once
more, the possibility to write down formal expressions which constitute particular algebraic rela-
tions is taken as a proof of the existence of an assoc@ieuab of transformations.

Maiella and Vitalé react to the claim that “every classical system should possess a ‘dynami-
cal’ symmetry larger than the ‘geometrical’ oné.'Using action-angle variables, they provide
three constants of motion for the two-dimensional oscillator which form tk2) sugebra. How-
ever, for irrational frequency ratio the invariants are not single-valued—hence they consider the
“su(2) symmetry” to be of “formal value” only. It is claimed to acquire physical relevance only
for commensurate and fortiori, isotropic oscillators. At the same time, no argument is given
which would forbid the existence of the group &VUfor the irrational oscillator. The authors do
not investigate whether, in the commensurate case, the invariants generate indeed finite single-
valued phase-space transformations in3U

Maiellal® extends this discussion to tié-dimensional oscillator and emphasizes that only
single-valued constants of the motion generate actual symmetry transformations. Initially, the
group of all contact transformations for a given dynamical system is considered. Any subgroup of
transformations which is generated by single-valued constants of motion and leaves the Hamil-
tonian invariant is called an “invariance group.” The classical degree of degeneracy determines
the number of its generators: each linear relation between the classical frequencies of the system
with rational coefficients is accompanied by the appearance of a single-valued constant of motion.
Subsequently, phase-space functions are given in action-angle variables which realize the algebra
su(N) for an isotropic oscillator and the algebra s} 2<n<N, for smaller degeneracy. How-
ever, it is again not proven explicitly that the generators actually give rise to globally well-defined
transformations.

In the late 1960s, successful application of group theoretical concepts in elementary particle
physics renewed the interest in symmetries of classical Hamiltonian systems and stimulated more
general approaches. The invariance of the three-dimensional Kepler problem under the group of
four-dimensional rotations, S@), was explicitly shown by Mosét in 1970 for the first time.
Already in 1965 Bacry, Ruegg and Souriaproved that there exists a set of global symmetry
transformations for the Kepler problem being isomorphic to the grou@S®he transformations
presented, however, do not act on variables in phase-space. The transformations of phase-space
manifolds are parametrized by the components of angular momentum and of the Runge—Lenz
vector. Representing only five independent constants of motion, thettahevhich the particle
passes the perihelion of the orbit is taken as sixth parameter.

Dulock and Mcintosf? claim that the Kepler problem has not only the symmetry4®ut
SU(3). Two papers by Bacry, Ruegg and Soutfaand by Fradkifi* generalize this statement: all
classical central potential problems should possess the dynamic symmé#jiem@®SU(3). This
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surprising statement is subject to the same criticism as the following, even more general claim by
Mukunda®®1® all classical Hamiltonian systems witN degrees of freedom have ®Y and

SU(N) symmetries. If this statement were true, then there would exist just one and only one global
phase-space structure for systems vithdegrees of freedom—the well-established distinction
between regular and chaotic systems would have no meaning at all.

Mukunda argues on the basis of a theorem by Eisedh&utnsider, in a Hamiltonian system
with N degrees of freedorm<<N independent functions of canonically conjugate variakéed-
jected to weak conditionsThey can always be supplemented byN(2n) phase-space functions
such thatN pairs of canonically conjugate variables result which define a symplectic basis of
phase space. Hence, starting with the Hamiltonian of the system under consideration one can find
(i) a variable being canonically conjugate to the Hamiltonian and((N— 1) additional pairs of
phase-space functions with Poisson brackets equal to one, all commuting with the first pair and
therefore with the Hamiltonian. Consequently, this theorem is a blueprint to constidet 12
independent constants of motion in any Hamiltonian system Witdegrees of freedom. The
particular form of the Hamiltonian does not even enter into the construction. Next, two different
sets of phase-space functions are defined in terms of te-(©) functions of this particular basis.

Their Poisson brackets realize the relations characteristic of the algebkgsanfl SUN), re-
spectively. In a footnote, the author restricts the applicability of the results: “We concern ourselves
only with constructing realizations of Lie algebras, not of Lie groups. Even when we talk of
invariance under the O(4) group, for example, we really intend invariance under the alg@bra.”
Consequently, “invariance under the algebra” imaal concept only, so that Mukunda’s construc-

tion has formal value only. Actually, the phase-space functions written down by Mukunda do not
neatly map phase space onto itself: the functions become imaginary if the range of the canonical
variables is not restricted artificially. The lesson to be learned is obvious: in order to establish the
invariance of a system undergaoup of phase-space transformations it is not sufficient to realize
specific Poisson-bracket relations with invariants.

A related position is put forward by Stehle and H&A? To identify a particular algebra by
constants of motion does not guarantee the presence of a “higher symmetry”—a single-valued, or
at most finitely many-valued, realization of the group must exist in phase-space. To show this, they
show that a system is classically degenerate if the Hamilton—Jacobi equation of a particular
system is separable in a continuous family of coordinate systems. This property is observable.
Compare the Fourier series representation of one specific orbit described with respect to two
different (continuously connectgdoordinate systems. For consistency, the frequencies appearing
in its Fourier decomposition must be rationally related, which corresponds to a classical degen-
eracy. It is important to note that the transformation from one coordinate system to the other be
single-valued, otherwise the argument does not hold. Any phase-space function and, consequently,
any constant of motion generates a transformation of phase-space onto itself; alternatively, it can
be viewed as the generator for a transition to another coordinate system such that the Hamiltonian
remains invariant. Only single-valued constants of motion generate global single-valued
transformations—infinitely many-valued “constants of motion” represent formal expressions only,
not necessarily related to the existence of classical degeneracy. Therefore, thatyedtablish a
higher symmetry group of the system.

To sum up, the construction of an algebra from constants of motion is only the first step in the
proof of the existence of a potential higher symmetry group. It needs to be supplemented by a
global investigation of the generated transformations.

Ill. THE TWO-DIMENSIONAL COMMENSURATE OSCILLATOR
This section deals with the symmetry properties of a two-dimensional commensurate har-

monic or (M, ,m,)-oscillator described by the Hamiltonian

_ofl oo 5
H(d1,92,P1,P2) ars (p1+Q1)+m (p2+03) |, my,myeN,, (4)
1 2
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where the integersn; and m, have no common divisor. Two pairs of canonical variables,
On,Pne(—=,2),n=1,2, label points in phase spade~R* the only nonvanishing Poisson
brackets being given by

191,p1}={d2,p2}=1. 5

It will be useful to introduce two other sets of canonical variables. First, combine each pair into a
complex variable

1 _
an=5(qn+lpn), n=1,2, (6)

with nonvanishing brackets

{ag, aif={ay,as}=1, (7)

where @ denotes the complex conjugate @f Second, action-angle variablese[0,0) and ¢,
€[0,2m), n=1,2, are determined through modulus and phase,sf \1 ,exfie,]. Their nonzero
brackets read

{1, o1} ={l2, 02} =1. 8

These coordinates provide alternative forms of the Hamiltonian,

Elal Ezaz
H=w + =w
my ms

ET P
_+_
m; my

: ©)

A. Constants of motion and Lie algebras

Commensurate harmonic oscillators possess a large number of constants of motion. The
Hamiltonian itself is an invariant gd4,H} = 0. Motion of the system with given ener@yis thus
restricted to a three-dimensional hyper-surface, an ellip§tt in phase spac€. Further, the
actionsl; andl,, having zero Poisson brackets with the Hamiltonian and among themselves,
render the n;,m,)-oscillator integrable. For fixed values of the actions, Arnold’s thedrstates
that the motion takes place on a two-dimensional tdfids,|,). In fact, theentire phase space is
foliated by tori with radiiyI; and \l,, respectively. According t¢9) the HamiltonianH is a
linear function of these invariants.

A third, functionally independer{icomplex constant of the motion is given by the expression

K=a)?(a;)™. (10

As mentioned in Ref. 4, both its real and complex parts are invariant which implies that the phase
x of the functionK,

X=Myp,—Myp1€[0,27), (11

is a constant of the motion, too. Considered as a generator of transformations in phase space, it
connects energetically degenerate pairs of tori. The existence of a third invariant is expected to
reduce the dimensionality of the accessible manifold. Indeed, fixing the values of the three invari-
antsl,, |,, andK (or, equivalently,y) singles out a one-dimensional orbit on the tofukthe two
frequencies are rationally related. Generic orhitg(t) = \/I ,exp(—iwt/m,+¢,(0)), N=1,2, retrace
themselves after a characteristic titpe= 27rm;m,/w, with winding numbersn, for a4, andm;

for a,. However, if the frequency ratio of the motion on the tori waodrational, an orbit would

cover the torug/ densely—the functio® would represent &érmal constant of the motion only,
without any physical impact on the motion of the system. An important difference to the isotropic
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oscillator is due to the fact that am-oscillator has different types of orbits with frequencies
wl/(27mm;) and w/(27m,), respectively. This allows one to distinguish experimentally the two
cases.

The phase space of an-oscillator has a particulatiscretesymmetry. Combine the variables
a, into a column: now the Hamiltonian is obviously invariant undeym, finite rotations,«
—R'RYa, r,=0,..m,— 1, or, explicitly,

aq 1 0 aq
ay] 0 e izmaim||a,

These transformations map the phase-sdade itself. They form a cyclic groun, m,= Cm,
X Crn,y» the direct product of two cyclic groups with, andm, elements, respectively. In Ref. 20,
lemz has been calledmbiguity group

The Poisson bracket of two invariants results in a third invariant. Therefore, the collection of
all invariants is a Lie algebra. Typically, it will contain an infinite number of elements, all of which
depend functionally on a smaller number of invariants. By an appropriate choice of the invariants,
however, algebras with a finite number of elements can be found. The simplest example is given
by the three invariantk,;, I,, K giving rise to the following brackets:

e*iZ‘rrrl/ml 0
( ) . (12

0 1

{1, K}=—imK, {I,,K}=im,K, {I,I,}=0. (13)

The algebra contains three independent elements—it is not possible to find an algebra with fewer
elements since thm-oscillator has three invariants. It also contains two elements with vanishing
Poisson bracket which, in a system with two degrees of freedom, is the maximum number of
“commuting” functionally independent invariants.

There is an alternative set of four invariarjtS(Jo,j),

Jomak 42 = Ly 14
0_2m1+2_mz_5 , (14

J;= — cosy, (15
- FIPI 16
2= Vimm, SN (16)
JmaL L2 1

72m; 2my,’ (7

Only three of these invariants are functionally independent because
J2—J%=0. (18
This constraint is conveniently rephrased by saying that the “four vecias’ “null” or “light

like.” The functions J are particularly interesting since they form the basis of a Lie algebra
isomorphic to (2),

3
{30,3;}=0, {Jj,Jk}zglejlil, j k=1,2,3, (19
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which has s(2) as a subalgebra, generated by the componenis Bfjuations(19) have been at
the origin of many attempts to associate a grougZWf symmetry transformations with the
two-dimensionaim-oscillator.
B. Reduced phase space and space of invariants

Consider the complex variables

ap \™ In .
Tt = m—exmmncpn], n=1,2, (20
n n

. | vy

= T

which satisfy

{Enugn’}:iénn’ . (22)

In spite of these relations, the variabl@s do not define pairs of canonical coordinateslosince
the mapa— B is not a one-to-one transformation. The variabgs are, however, canonical
coordinates in theeducedphase spacE,,. The reduced space is obtained from identifying those
mym, points of I' which satisfy B(R!R;2a) = B(a), R"e Cp, . The definition of the variables
(20) is motivated by the invariance of the constants of motiol#)—(17) under the ambiguity
grouplemz.

The invariantg14)—(17) take a simple form when expressed in terms of the reduced variables,

Jo%@ﬁﬁﬁzﬁz), (22
h%(ﬁlﬁz%ﬂn, (23
J2=%<Elﬁz—ﬁzﬁl), (24
Jf%(ﬁlﬂrﬁzﬁz)- (25

Using the two-component “Weyl spinorB3=(81,8>), these invariants can be written
1
J,,=§,8~0'VB, r=0,...,3, (26)

whereoy=1,, and the Pauli matrices, , k=1,2,3, generate the algebra2u Consequently, the
invariants, which span the space of invariantsturn intosesquilineaexpressions on the reduced
phase spacE,,. Their structure is similar to those of the isotropic(trl)-oscillator: in this case,

the reduced phase space and the original one coincide,=1I". In some sense, the non-bijective

map a— B “linearizes” the invariants at the expense of accounting for a fraction of phase space
only. It will be shown later that the concept of the reduced sdagdas natural in the present
context as it provides appropriate setting to derive global statements about symmetry transforma-
tions.

C. Topological aspects

Turn now briefly to the topology of the spaces involved. Consider the nontrivial transforma-
tions introduced so far: first, the original phase space has been mapped to the reduced phase space,

y:T—T a—Ba); (27)

second, introducing the invarianismaps the reduced variables to the space of invariants,
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¢:I'n—Y:B—=>I(B), (28)

which is an upper cone iR* sinceJy=|J].

The reduced phase spatg, has the structure of a well-known fiber bundle. To see this,
consider an orbitx(t) in phase spacé. Its image in the reduced spatg, is given by 5(t)
=e '“'8(0). The maps S—¢€'?8 form a group W1) which leaves invariant the mag,
J(e'”B)=J(B), since the phase drops out from the sesquilinear expressions given i(2BQs.
Therefore,I',, is indeed dfiber bundle(Y,¢,0): the invariantsY form the base, each orbﬁiﬂﬁo
={e'"By|ye[0,2m)} is a fiber, and the mag is the projection. The global structure of the
bundle follows from the fact that the restriction bf, to the submanifold”,(E) with points 8
- B=Elw is isomorphic to the spher§®—as is obvious from the quadratic fortd). Thus, the
restriction of the mapp to I',(E) defines theHopf fibration of S*. To each orbitO in S3
corresponds a poini(ﬂ) of the sphere of radiud,=E/(2w) and a circle in the tangent space at
this point.

It is interesting to look at the spadéof invariants and the transformations among them from
a general perspective. To do so, consider the complex instead of the real Lie alg@pratsch
also leaves invariant the Hamiltonidh~J, in (22) invariant. This is the Lie algebra sIQ)
associated with the group SL@), the universal covering of the Lorentz group. The Lorentz
group induced by SL(Z) in Y is the transitivity group of the uppéhalf-) cone.

The elements of SL(Z) can be written asi( 7, y) =exdg(r,7y)], wherer and y are two real
parameters, and eachis a traceless complex matrix,

g(r,y)=3(yv-a+imi-5). (29

The matricesu(,0) belong to the group S@). Thus, they generate rotations and infinitesimal
transformations which can be written in terms of a Poisson bracket:

di(n) . L.
= 0J(r)={J,A-J}. (30)

The subsetsi(0,y) represent Lorentz boosts mapping a pgraccording to

u(0,y) B=(cosk y/2) +sinh(y/2)v- 7) B=B(7y). (3D

On the invariants, the transformation

3,=B-0,p>3(B)=B()-7,B(y) (32
is induced. Hence, the sphef& of radiusJo=H/(2w) is mapped to a sphere of radidg(y)
with

Wo_;.3 dJ =Joi 33
d_y_ v-Jd, d_’)/_ oV ( )

This is an infinitesimal Lorentz transformation which maps the upper dbaé* to itself as is
obvious fromd(Jy(y)2—J(y)?)/dy=0 andJ, remaining positive. Contrary t630), it is not
possible to express the right-hand sides(88) by means of Poisson brackets. This can be
understood from a quantum mechanical point of view. A classical theory can only manage Boltz-
mann statistics whereas in quant(field) theory, due to thenticommutativity of Weyl spinors,

it would be possible to find a commutator to express the derivatidesdy.
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IV. GLOBAL INVARIANT VECTOR FIELDS

Each phase-space function generates a flow in phase Epasewell as in the reduced phase
spacd’,,,, and in the space of invarian¥s The invariants generate flows which commute with the
Hamiltonian vector field. To be more specific, consider any eleignt=0...3, of the Lie algebra
u(2). When acting on an observabiehrough the Poisson bracket,

V,={f,J,}, v=0,..3, (34)

it defines a vector field/, in I'. Its integral lines satisfy the differential equation

ai =V 35
E_ V- ( )
The solution of this differential equation is a méfr) which will be written in the form
f(n=Bxpl73,1(F)= 2 {f. . b (36)
where
{9.h}1={{g.h}.h}, k=1.2,.., {g.h}o=g, 37
with smooth phase-space functiamandh. In a simplified notation, the solutior{86) are written
as
S,[71=Exf7J,], v=0,.,3, Si7]=Exp-J], |A|=1, (38)

each unit vectori being associated with a point of the unit sphére

The crucial question now is to investigate whether the {84 and hence the mag88) are
defined everywhere in the space under consideration. Only in this casggéieaformed by the
closed set of Poisson brackets among the invariants integrategrtmp of symmetry transfor-
mations. More specifically, one needs to find out whether the invarigits-(17) of the
m-oscillator generate a set of transformations isomorphic to the groug) $ar U(2)]. This is
only possible if the associated vector fields are well-defined everywhere in the space where they
act. The fields will be studied separately for functidnsom the space$’, I',,, or Y.

A. Vector fields in the space of invariants

The simplest case to look at is the orbits generated by the first componéntwdfich is a
multiple of the HamiltonianJy=H/(2w). Not surprisingly, one has

Sol 71(3)=1, (39

that is, all components af are invariant under the action df. Rotations about the 3-axis, i.e.,
with an axis passing through the polés=*+J,, are generated by the invariabj=1,/(2m;)
—13/(2my),

Sy 71(3)=(Jo,Rs(7)J). (40

Each possible orbit ifY is generated by a linear combination of invariarits,

Si 71(3)=(Jo,Ra(7)J), (41)
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where the matribR;(7) represents a rotation by an anglebout an axis parallel to the vectdr

In other words, every point of the sphdrﬁzJo is mapped to another point of the same sphere,
the energyE=2wJ, being conserved.
These results are conveniently summarized by a group theoretical statement. The set

Ry={Si 7]|0=7<2m,ieS?} (42)

of maps acting irY is a representation of the group &D In other words, there is a subset of all
phase-space functions, such that its elements transform according to the gr@ipMEhemati-
cally, this group is the integrated form of the adjoint representation of the alg&®raConse-
quently, one can attribute this group asyanmetry grougo the reducedrf,,m,)-oscillator, for
any frequency ratio. Note, however, that this symmetry does not act on points in phas€ space
on points of the space of invarianys

B. Vector fields in the reduced phase space

Again, the action of the generatadg,J;, andfi-J will be studied, now with respect to the
variablesB=(81,8,). It is straightforward to see that

Sl 71(B)=e """, (43

which is just the time evolution witr=2wt. Similarly, the invariantl; generates a flow

e*iT/Z 0
SIAB=| o ge] B (44
Comparison with(20) shows that the functioly =m,¢,—m; ¢, is left invariant. Transformation
(44) is a special case of the map

Si 71(B)= (o cost/2—in- g sinT/2) B=B(7). (45)

No ambiguities arise when mapping poiisinderS;[ 7], for whatever values of the parameter
and the directionsi. Therefore, the set

RB={Sﬁ[T]|OsT<47T,ﬁeSZ} (46)

of maps faithfully represents the group SU(2)1ip,. Consequently, am-oscillator admits as
symmetry not only the three-dimensional rotation groug®@n Y but also the special unitary
group SU2) inI'y,.

In this restricted sense, and only in this ong, (m,)-oscillators are seen to possess both
SO3) and SU2) as symmetry groups. This statement agrees with the fact that the alget8gas so
and su2) are isomorphic. The next section deals with the question which groups, if any, are
represented on the original phase spBce

C. Vector fields acting in phase space

It will be shown in this section that the vector fields associated with the invardaate not
defined globally when they act on the variablesvhich span phase spate Consequently, it is
not possible to implement the group &) on phase spadé. More explicitly, it will be shown that
the actionS;[ 7](«@) = (a1(7),a(7)) onT is nonlinear, and that it is inevitably singular for some
parametersi,7) and initial pointsa. Contrary to one’s intuition the flows can be defined only
locally, and they cannot be extended to defingr@up of symmetry transformations.

To begin with, consider the flows generated yand J;, respectively. The resulting orbits
are well-defined for all initial points: they are given by
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e~i7(2my) 0
SO[T](Q)Z( 0 eif/(zmz))av (47)
and by
e*iT/(Zml) 0
83[ 7'](a):( 0 ei T/(Zmz)) a, (48)

respectively. Equatiof47) describes the time evolution of the poiut I', hence both the energy
E=2wJ, and the torug/(l1,I,) are left invariant. Since the values of the actions change accord-
ing to 1,(0)—1,(7)=|an(7)|?, the flow in(48) also conserves the energy while it maps a torus
7(14,1,) to a different oneZ(1(7),l5(7)).

Now consider fields which are generated dnpitrary linear combinations of the invariants,
fi-J. Denote potential solutions of the differential equation

da L=
E={a,n~J}EVﬁ(a) (49

by «@;i(7)=Si[ 7]1(«(0)), with some initial point «(0)eI’. Explicitly, the complex two-
component fieldv; reads

>

im,(A0J) 3+ nsdo)/ay

R . (50
|m2(nDJ)3_ n3\]0)/a2

1/(A-J+
Vﬁ=—. R
20\ (A-J+
It is finite but ill-defined on the hyperplaneB,={a|a;=0,a,#0} and P,={a|a;#0,a,
=0)}. There are points which, when transported by the fgjvr], hit the planesP; or P, for

some value ofr. The associated orbits will be callesingular since they cannot be continued
unambiguously across the planes. This is due to the terrf®0)nwhich containd; andJ,,

|011||C“2|

mexdilx],

while all other terms are zero dR, andP,. Here is a toy example to illustrate the underlying
problem. Consider a one-dimensional system with variabte\/l exdi¢], satisfying{l,¢}=1.
The flow generated byl is ill-defined at the origin,

Ji*id,= (51)

. .
&= Vlal= zexiiel, 52

as its value depends on the way the pain$ approached. If a trajectory were reaching the origin,

it would be impossible to continue it unambiguously beyond this point. It is important to realize
that this singularity as well as the one encountered in the singular planes is not due to a choice of
coordinates but an intrinsic property of the flow.

To visualize the entire set of singular orbits, look at their image¥ ,jrthat is, the orbits
Sﬁ[T](j), TeR. For given energyE=2wJ,, the points ofP; correspond to the north pole
(0,0J0=|a1|?%/2m,) of the sphereS?(J,), while those ofP, are mapped to its south pole, (0,0,
—Jo=—|ay?/(2m,)). By ¢, an orbitSi 7](«) goes to a circleR;(7)J(a). Singularorbits
thus correspond to circles going through either one or both poles of the sphere reghilar
orbits hit neither of them: for almost all flows, associated with a given veattdhere exist two
“critical” circles passing through the north pole and the south pole, respectively. These circles
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coalesce into a single one passing throbgith poles if the axis of rotation is in the equatorial
plane,i=(n;,n,,0). They degenerate to points located at the pole$=€;=(0,0,=1). Two
conclusions can be drawn from this picture:

(1) for any given unit vecton# +&;, the mapS;[ 7] has at least one singular orbit Ify
(2) any pointa eI’ can be sent to a singular hyperplane by a r8gjpr] with an appropriately
chosen vectoni.

In fact, the vectorgi, can be chosen frortwo continuous sets: they only need to be in a plane

(passing through the originwhich is perpendicular to either of the vectal&r) = Jo()&;, or,
explicitly,

_ cd(a) £ 3g(@)8) £ cpd(a) U8 53
|e1(3( ) = Jo( @) 3) = c3(e) U&g|

]

9+

Regularorbits of S;[ 7] are easily computed without solving the differential equati49).
One needs to determine modulus and phase of the variahlgs=1,2, as a function of. It is
useful to write down the orbits in the reduced phase space and in the space of the invariants.
According to(45), the reduced variables evolve linearly,

B1(7)=(cos7t/2—ingsin7/2) B1—(iny+n,)sin(7/2) B, (54
Bo(7)=(cos7/2+in3sin7/2) Bo—(iny—n,)siN(7/2) B4, (55

while the invariant§=5(,8) evolve inY as
J(7)=cosrJ+(1—cosr)fefi- ] —sinrAJ. (56)

2 n=1,2, ther~dependence of the moduli is simply

Using |an|2:mn|ﬁn
laa(D)P=my(jo+ia(7), laan)]*P=my(jo—j3(7)). (57)
For the evolution of the phases, plug E¢84) into

an(T) )mn: Bn(T1)
an(7)| |ﬂn(7')| ,

ex;{imlcpl(r)]:(| n=1,2, (58)

giving
) _ (cos7/2—ingsinT/2) B~ ((iny+ny)sinT/2) B,
XM @1 (7)1= 12 —in, sinm12) B, ((in, 7 1,)sin772) ]

=exdi® (7], (59

and a similar equation for ekipn,¢,(7)]. The two phases,(7)=®,(7)/m,,n=1,2, must be
continuous whenever reaches the value They will both have a value which is a multiple of
27 when the parameter takes the value #mym,. This result seems to suggest that
S m- 5](a) might be arm;m,-fold covering of the subgrouf[ rﬁ-j](ﬁ), 0<r<4m,ieS? of

the special unitary group, SP). Due to the existence of singular orbits, however, this is not
possible. Further, it is well-known that the only universal covering of 35 this group itself.
Nevertheless, one might describe the situation aanaified coveringof SU(2) since the maps
S[rﬁ-j] combine according to a group product law.

To visualize the obstruction of a global action of the group(BUlifferently, recall that a
given mapS| 7i-J] sends a torug(l,,l,) eI to a torusZ(l},15) such thatm,l;+m,l,=m;l}
+mj,l; holds. For soméi and 7 it happens that one of the actions vanishgs,say. This means
that the initial two-dimensional torusS¢ X S*) is mapped to @ne-dimensional torys.e., a circle
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S1, and, therefore, one of the angle variables has lost its meaning. Once this has happened, it is
impossible to unambiguously continue the trajectory which has hit the singular plane, as the
missing angle could take any value. The phenomenon is similar to the passage of a spherical wave
through a focus.

It will be useful to give a name to the situation encountered here. A system with phase space
I" will be said to have daint G symmetnjf it admits a set of globally defined invariants which
form an algebrad while the groupG associated with it cannot be realized Brbut only on a
smaller part of it. Thus, all two-dimensional commensunat@scillators have a faint SQ)
symmetry.

V. THE N-DIMENSIONAL COMMENSURATE OSCILLATOR

To describe a commensurate harmonic oscillatoNidimensions, the present notation is
straightforward to adapt. Let the labelrun from 1 toN: the Hamiltonian of a commensurate
m-oscillator withm=(my,...,my), m,eN,, reads

N Nooq o1

w 1 [0} _
H(q,p)= Engl E(Pﬁﬂﬁ): Engl m, &= Enzl m

I. (60)
The complex canonical variables are givendyy= (g,+ip,)/v2, n=1,...N, while actiond , and
anglese,, are defined through,,= I , exfli@,]. Thus there are three setsMfpairs of canonical
variables to choose from, with brackets

1_
{qn vpn'}: i_{an van'}:{ln v‘Pn’}: Onn’ » n,n"=1,..N. (61)

It will be assumed that the positive integer numbexsdo not have an overall common divisor.

For the discussion to follow, two cases will be distinguished: a commensurate oscillator is said to
be canonicalif no pair of numbersm, andm,,, n#n’, admits a common divisor but one. This
class will be studied first. The presence of common divisors among subsets of the frequgncies
gives rise to interesting additional complications which will be considered later on.

A. Constants of motion and Lie algebras

In analogy to Eq(10), each function
Ko =a,"(a@y)™',  n,n'=1,..N, (62

is seen to be an invariant for the commensuhtescillator,{H,K,,, }=0. TheseN? constants of
motion depend on onlWN(N+ 1)/2 real invariants, namel) independent actionk, ,n=1,...N,
andN(N—1)/2 relative angles

Xon=Maen—Myen,  1s=n<n’<N. (63

As in the two-dimensional case, the range of the functipfs must be restricted to the interval
[0,27) because two valueg,, and (y,.+2), respectively, correspond to tisameorbit. The
anglesy,,, satisfy N—1)(N—2)/2 linear relations,

Xon' + Xnrr+ Xnn=0, n,n’,n" all different. (64)

Therefore, there are no more thanN2 1) functionally independent constants of motion, the
maximum number of possibly independent invariants. As independent invariants, one may choose,
for example, theN actionsl,, and N—1) relative anglesy n+1,n=1,...N—1.

The (2N—1)- dimensional surface of constant eneidyE is an ellipsoid£(E) in phase
spacd’. It contains theN-dimensional torug(l 4, . . . ,I\) of constant actionk, as a submanifold.
Lines of constant actions and angles aredhdts of the motion, winding around a tords Each
orbit is a one-dimensional closed loop given by
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an(t) =1, exp(—iwt/my+ ¢,(0)), (65)

where mpen(0)—my10,:1(0)=xnn+1(0). One revolution is completed after a time
=27M/w, with the numbeM taking a value such that theinding numbers w=M/m, of each
subsystem are integer without overall common divisor. In the canonical dhsis, equal to
H?mn. Here is an example foN=3 which illustrates the noncanonical case: et
= (kmy ,km;,m3). The numbemM would then take the valukem;mj;ms=m;m,ms/k.

It is important to note that in a canonicdut not isotropi¢ m-oscillator (i.e., all m,# 1),
there exist orbits with (¥3— 1) different periods. There af¢ orbits corresponding to motion of a
single oscillator only; there ar®l(N—1)/2 orbits winding around two-dimensional tori with
frequencies Ih, and 1m,, ,1I<sn<n’<N, etc.

As in the two-dimensional case, the maRsa=(ay,...,e%"™a,, ... ay) generate a
cyclic groupCp,={R}*- - -R\|r,e Z}, the ambiguity group of the magp:

(R R\a)=(a). (66)

B. Reduced phase space and space of invariants

The (2N—1) phase-space functioms and y,, .1 form a basis of a Lie algebra commuting
with the HamiltoniarH. Since the functiong,,» are not continuous on phase spdcé is natural
to look at appropriate periodic functions of them. Introduce, in analogy to(#i, the set of

invariants
8 =M(ﬁ)m"= VAT exfimpen], n=1,..N (67)
" Jm, \al My e T
They provide canonical coordinates on th-gimensional reduced phase spd&g, now with
m=(mq,...,my),
{Enalgn’}:iénn’ . (68)

As before,(67) is a non-bijective maps: a— B(«). It is not a projection of the phase space on
a subspace but should be thought of asmified cover of the reduced spadg, .

Not surprisingly, Eqs(26) have a straightforward generalization. Wigh=(81,...,8y), One
defines N?>—1) invariants sesquilinear in the coordinaj@sby

1 1 —
‘]infzz ,8‘(Enn’+En’n)B:§(Ban’+Bn’Bn): 1sn<n'sN, (69)
a 11 1 — —
‘]nn’ziIB'i_(Enn’_En’n),B:Z(,Bnlgn’_ﬂn’ﬁn)v 1$n<n,$N! (70)
g 1= o )
Jnn=§ B'(Enn_En+ln+1):8:§(ﬂn:8n_ﬁn+lﬁn+l)a n=1,.N-1 (71)

The matrices,,, are of sizeNX N with elements
(Ennl)kkrzankénrkr, n,n,,k,k’:].,...N, (72)

i.e., the only nonzero elements are equal to one at positign’), and they generate the Lie
algebrau(n) with respect to the matrix commutafdr.This property is inherited by thé&l?
phase-space functions

Jnn’:E’ Enn’ﬁEEn,Bn’ ; (73

their Poisson brackets,
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{Jnn’ kak’}:i(gnk’Jkn’_5n’k‘]nk’)- (74)

also realize the algebraic relationsfN).

It is possible to find I?— 1) linear combinations of the matric&s, which are traceless and
Hermitian—hence they provide a basis of the algebrd\N¥u(n fact, these combinations have
been introduced already in E9) when definingd® ,,J% ,, andJd,. Therefore, these functions

form a basis of the algebra Su) with respect to the Poisson bracket. When supplementdd by
multiple of) the Hamiltonian

1 18- 2
Jo=5B b= 2 Bb=_H, (79)

wherely, is the N-dimensional unit matrix, the algebten) can be recovered.

C. Vector fields

There is a first group of transformations which acts in the space of invaiamts before, it
is the set of finite transformations on the space generated by the real invé@@ris1). In other
words, it arises from integrating the adjoint representation of the algebra formed by the invariants.
As this group will play no role in the following, its discussion is suppressed.

Next, the invariants]in, andJﬁn, generate canonical linear maps in the reduced spage

dBx s 4 | s
dT _{ﬁk!‘]nn’}_E((Sknﬂn/—’_5kn/ﬁn)=(‘]nn’l[g)kl (76)
dBk a ,_ 1 o
dr _{Bk!‘]nn'}_E(gknﬂn’_5kn’ﬁn)=(‘]nnf:8)kv (77)

and similar ones follow when takinif , as generator. These linear equations can be integrated in
the spacd’,, for arbitrary initial valuesB(0)=pBoe I,

B(r)=expq7J; )Bo, €£=4a,s. (78)

The solutions are unitary maps bf, to itself. In analogy to the two-dimensional case, they will
be denoted by

,B(T)=EX{{TJ§n,](,8), £=a,s, (79

and similarly for finite transformations generated by the invariaﬂqs Due to the linearity of the
equations, no ambiguities arise upon integration. Therefore, the set of transformations in the
reduced spacE,, is isomorphic to the group SB). In this restricted sense, time-oscillator has
the special unitary group iN dimensions as a symmetry group. This group of symmetry trans-
formations isnot defined in the phase spateof the m-oscillator but only inl",.

Finally, a genuine “pullback” of SUN) in phase spacE does not exist, for the same reasons
as in the cas&l=2. In fact, it is sufficient to consider a pair of oscillators with frequenciés,
andw/m,,,, say, in order to see that there are obstructions which prevent the existengobéh
symmetry group in phase spade This pair of degrees of freedom is equivalent to a two-
dimensional (n,,m,)-oscillator, and no set of transformations acting on it can be found which
would be isomorphic to S2). If, however, theN-dimensional oscillator would have the full
symmetry SUN), a subgroup S(2) should be associated with this pair of oscillators. Conse-
quently, the group SW{) cannot be identified as a symmetry group of the canonical
N-dimensional commensurate oscillator. In analogy to the two-dimensional commensurate oscil-
lator it is seen to have f&int SU(N) symmetry only.

D. The m-oscillator with common divisors

The canonicam-oscillator has been shown to be invariant under transformations isomorphic
to the group SUN) in the reduced spadg,,. For canonical and isotropid-dimensional oscil-
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lators, subsystems of dimensibli<N are invariant only with respect to a subalgebtg of the
algebraA,,=su(N). If the oscillator is neither isotropic nor canonical, other possibilities arise.

A noncanonical oscillator is characterized by frequenoies(mg, . .. ,my) with at least one pair
(my,m;) having a common integer divisor different from one. It<N frequencies have a
common divisor. Then, for then’-oscillator corresponding to these frequencies, constants of
motion do exist which form an algebrd,,,=su(N"). This algebra, however, isot a subalgebra

of A,, as follows immediately from considering tine’ -oscillator as arN’-dimensional commen-
surate oscillator in its own right. Suppose that, after removing the common divisor, the resulting
oscillator, characterized by’ = (mi,...,m,’\l,), is a canonical one. Then one can construct a group
of symmetry transformations SN() in the reduced phase spakg, andl',, is nota subspace

of I',. The Poisson brackets of the generators of I$U(acting inI",,; and those of SUY)

acting inT", will not be linear combinations of the initial ones. Hence, the combination of these
two algebras will not close under the Lie product—the resulting algebra wilhfieite. This
property will be important for quantum mechanical commensurate oscillators since it entails
additional degeneracies of energy which otherwise appear to be accidental.

Turn these results around: there is no finite algebra to account for all the symmetries of a nonca-
nonicalm-oscillator. Obviously, this situation can arise onl\Ni& 3 (if N=2 any common divisor

can be factored out immediatelyin fact, if m;,=1, n'=1,..N’, the subsystem is even an
isotropic oscillator, and it has a group SWU() of symmetry transformations on phase sphce

It is helpful to illustrate this discussion by an exhaustive list of “classes” for small valués. of

& N=2: A commensurate oscillator is either isotropic or canonigatommon divisor of the
frequenciesn; #m, can be factored out

& N=3: Five classes of commensurate oscillators can be identifiednAscillator is either
isotropic or canonical, or it belongs to one of the three following classes:

(1) a single pair of two frequencies have a common divigos (jm;,jm,,mg), say;
(2) two pairs have common but different divisora= (jmy,jkmj,km3), say;
(3) all three pairs have common but different divisarss (jkmy,klmj,1jm3), say.

For N>3 the number of different classes increases rapidly With

Consider an example of type 1 fof=3 in detail. The three coordinatgs, of the spacd’,
allow one to define eight constants of motidnin addition, introduce coordinates of the reduced
phase spack, ,

By |a“|<a”)mé 1,2 (80)
=—|—| , n=1,2.
¥ vm;, ||
The four functions
Jnv=BLBn, nn'=12, (81

are a different set of constants of motion because the Hamiltonian of the subg{s2eimas an
overall factor 1k. The constantd’ are the basis of a Lie algeby,, isomorphic to s(R) (setting
aside the fourth commuting invarigntas the subsystem is am’-oscillator with N=2. The
resulting algebrad,,,, gives rise to another faint 3B) symmetry. It is, howevemneithera subal-
gebra of the faint SU{) symmetry(as it it implemented on a different reduced phase spage

nor do the generators ofl,, and A,,,, commute. Consequently, the union of both algebras gives
rise to an infinite algebra. Finally, iih;=m,=1, three of the functions’ would generate the
group SU2) on the original phase spadé In other words, the faint SU) symmetry of an
m-oscillator with common divisors is compatible with the existence of smaller groups acting
globally in phase spacE.
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VI. SUMMARY AND OUTLOOK

This article deals with the problem which symmetry group to associate with-dimensional
commensuraténarmonic oscillator. Historically, structural similarities to the isotopic oscillator
seemed to indicate that the introduction of rational frequency ratjgsn,, would not affect the
existence of the group SBI) of symmetry transformations. This suggestion was based on the
following observations. Arbitrary rational frequency ratimg/m,,, are still compatible with the
existence of (Rl—1) globally defined invariants. In both cases, the invariants confine trajectories
to a one-dimensional manifold in phase space, the orbit. Furthermore, the invariants form an
algebra sull) with respect to the Poisson bracket. There is, however, a subtle difference between
an isotropic and a commensurate oscillator: isotropy forces all orbits to haveatheperiod
whereas commensurate frequencies allow for orbits witferent periods. Consequently, these
systemare distinguishable from an experimental point of view.

It has been shown that the algebraNy(f the commensurate oscillator cannot be extended
globally to a representation of the group $(in phase space. Strictly speaking, it is thus not
possible to attribute this group as a symmetry group to the commensurate harmonic oscillator. The
group SUQ) is associated with commensurate oscillators in a restricted sense only: to do so, the
action of the invariants must be considered ireducedphase space the points of which are no
longer in a one-to-one correspondence with the states of the system. The commensurate oscillator
is said to have daint SU(N) symmetry Furthermore, if the rationally related frequencies have
common divisors, additional sets of symmetry transformations can be found. They are not sub-
groups of the faint group SW), which acts in reduced phase, but they act in different reduced
phase spaces.

To conclude, it has been shown that the symmetries of commensurate harmonic oscillators
come in a surprisingly rich variety and depend in a subtle way on the frequency ratios. Classical
and quantum mechanical oscillators are closely related. Therefore, it will be promising to study the
impact of faint symmetries on the Hilbert-space structure of quantum mechanical commensurate
oscillators® In particular, a systematic group-theoretical account of their degenerate energy levels
is expected to benefit from the concept of faint symmetry.
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