
nity:

,

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 44, NUMBER 12 DECEMBER 2003

Downloaded 3
Lüders theorem for coherent-state POVMs
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Lüders’ theorem states that two observables commute if measuring one of them
does not disturb the measurement outcomes of the other. We study measurements
which are described by continuous positive operator-valued measurements~or
POVMs! associated with coherent states on Lie groups. In general, operators turn
out to be invariant under theLüdersmap if theirP- andQ-symbols coincide. For
a spin corresponding to SU~2!, the identity is shown to be the only operator with
this property. For a particle, a countable family of linearly independent operators is
identified which are invariant under theLüders map generated by the coherent
states of the Heisenberg–Weyl group,H3 . TheLüdersmap is also shown to imple-
ment the anti-normal ordering of creation and annihilation operators of a
particle. © 2003 American Institute of Physics.@DOI: 10.1063/1.1623001#

I. INTRODUCTION

In this article we determine operatorsB which are invariant under a generalizedLüdersmap

B°L~B!5E
X
dm~V! E~V!BE~V! , ~1!

where eachE(V) is a projection operator labeled by a pointV of a manifoldX. These operators
constitute a continuous positive operator-valued measure, or POVM, with a resolution of u

E
X
dm~V! E~V!5I . ~2!

Any operatorB, bounded or not, will be calledLüders if it is invariant underLüders’ map,

L~B!5B . ~3!

The operatorB acts on a complex separable Hilbert spaceH, and the operatorE(V) is a member
of a ~over-! complete family of projectors on coherent statesuV& associated with an irreducible
unitary representation of a Lie groupG in the spaceH.

This setting generalizes the traditional approach to minimally disturbing~or ideal! Lüders
measurements. Given a self-adjoint operator with spectral decompositionA5( i

NaiEi , N<`, the
projectorsEi are complete and orthogonal,

(
i 51

N

Ei5I , EiEj5Eid i j , i , j 51,...,N<` . ~4!
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If a nonselective, ideal measurement ofA is performed on a quantum system with density opera
r, its state undergoes aLüders transformation:

r°L~r!5(
i 51

N

EirEi , ~5!

which extends to a linear, completely positive map. If, for some operatorB, one has

Tr @rB#5Tr @L~r!B# , for all r , ~6!

then theLüders measurement ofA does not disturb the measurement ofB. In other words, the
expectation value ofB with respect toany density operatorr is not affected by measuringA.
Introduce thedual LüdersmapLD, acting on operators defined onH, by

Tr @L~r!B#5Tr @rLD~B!# . ~7!

Since Eq.~6! is supposed to hold for anyr, one must have

LD~B!5B , ~8!

which, after dropping the superscript, is the discrete counterpart of Eq.~3!. Now we can state
Lüders’ theorem:

L~B!5B ⇔ @B,Ei #50 , for all i 51,2, . . . , ~9!

i.e., it is necessary and sufficient forA5( i
NaiEi to commute with a~bounded! operatorB if the

measurement ofA should not disturb any measurement ofB.
Originally, this theorem has been shown to hold for orthogonal projections;1 after generaliza-

tions to some discrete POVMs had been obtained,2 the theorem was expected to hold under ve
general conditions. However, the existence of a nonintuitive counterexample has been
nonconstructively in Ref. 3. It is our purpose to extend the validity ofLüders’ theorem tocon-
tinuousPOVMs which are associated with coherent states on Lie groups.

A. Outline and summary

In the following, we will consider POVMs which consist of continuous families of o
dimensional projections onto coherent states, or CS-POVMs, for short. The CS-POVMs for
and for a particle provide well-known examples, being associated with the group SU~2! and the
Heisenberg–Weyl groupH3 , respectively. However, coherent states can be defined for genera
groupsG while retaining many of their properties. We will begin to discuss theLüders map in
general terms and specialize to particular groups only later.

When consideringLüders’ map generated by coherent states of an arbitrary~simple and
simple connected! Lie groupG, a first general observation is that

• the P- and theQ-symbol of aLüdersoperator coincide for the CS-POVM associated with
Lie groupG.

Subsequently, we will derive a simple form of this constraint by expanding the symbol o
operator in terms of harmonic functions associated with the groupG. The resulting condition on
the expansion coefficients will be shown to imply that

• for the CS-POVM of aspin only multiples of the identity operator areLüders;

• for the CS-POVM of aparticle a countable family of linearly independent, unbound
Lüdersoperators exists, none of which commutes with the elements of the POVM.
1 Oct 2005 to 144.32.128.113. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Thus, for both the groups SU~2! and H3 , multiples of the identity are found to be the on
bounded Lu¨dersoperator, and they commute with the elements of the corresponding CS-PO
consequently,Lüders’ theorem also applies to these CS-POVMs.

Finally, it will be shown that theLüders map implements antinormal ordering for operato
which can be written as power series of particle annihilation and creation operators.

II. LÜDERS THEOREM FOR POVMS OF COHERENT STATES

A. Coherent states on Lie groups and harmonic functions

Given any finite-dimensional~simple and simply connected! Lie groupG, there is a canonica
way to introduce coherent statesuV& labeled by the pointsV of a well-defined manifoldX. To do
so, consider a unitary irreducible representationT(g) on a Hilbert spaceH of the elementsg
PG. Following closely the presentation given in Ref. 4, we choose a reference~or fiducial! state
uc0& and define the set of coherent states by

ucg&5T~g!uc0& , gPG . ~10!

Up to a phase, the reference state is left invariant by the elementsh of the isotropy subgroup
H,G,

T~h!uc0&5eif(h)uc0& , hPH,G . ~11!

Therefore, each group element can be written as as product

g5Vh , VPX5G/H , hPH , ~12!

whereX is the coset space obtained from dividingG by its subgroupH. As the phase of a state ha
no physical relevance, the set of coherent states is in a one-to-one correspondence with th
V(g) of the manifoldX. This suggests to denote coherent states byuV&[ucV&. A fundamental
property of the coherent statesuV& is their completeness in Hilbert spaceH,

E
X

dm~V! uV&^Vu5I , ~13!

where integration is over the coset spaceX with ~approximately normalized! invariant measure
dm(V), andI is the identity inH.

Coherent statesuV& can be used to define symbolic representations of operators, i.e.,c-number
valued functions on the manifoldX which can be understood as the phase space of a clas
system associated with the Lie groupG.5 TheQ-symbol of an operatorB acting in Hilbert space
H is given by its expectation value in coherent states,

QB~V!5^VuBuV& , VPX ; ~14!

due to analyticity properties ofQB(V), these ‘‘diagonal’’ matrix elements are sufficient
uniquely determine the operatorB. The P-symbol ofB ~Refs. 6 and 7! arises if one expressesB
as a linear combination of projection operatorsuV&^Vu:

B5E
X
dm~V! PB~V! uV&^Vu . ~15!

The existence of the symbolsQB(V) andPB(V) depends in a subtle way on the properties of
operatorB ~Ref. 5! but they are unique whenever they exist. Furthermore, one can think o
symbolsQA(V) and PA(V) as being dual to each other~cf. Ref. 5!, and, at least for particle
coherent-states, they are related to normal and anti-normal ordering of creation and annih
operators.5,8
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It is useful to introduce the harmonic functionsYn(V) associated with the manifoldX and,
hence, with the groupG. Consider the Hilbert spaceL2(X,m) of square integrable functionsu(V)
on the manifoldX, with integration measuredm(V). The eigenfunctionsYn(V) of the Laplace–
Beltrami operator onX ~Ref. 9! constitute a complete orthonormal set of functions inL2(X,m)
since they satisfy

(
n

Yn* ~V!Yn~V8!5d~V2V8! , ~16!

the right-hand side being a delta function with respect to the measurem~V!, as well as

E
X
dm~V! Yn* ~V!Yn8~V!5dnn8 . ~17!

Depending on the manifoldX being compact or not, the right-hand side of~17! must be under-
stood as a Kronecker-delta or a Dirac-delta function~or suitable combinations thereof!. There is a
simple expression for the~modulus of! the overlap of two coherent states in terms of harmo
functions:

u^V8uV&u25(
n

tnYn~V8!Yn* ~V! , tnPR , ~18!

where the numbers or functionstn depend on the actual group.

B. Lüders map for CS-POVMs

It is straightforward to generalize theLüdersmap~1! to POVMs which can be written in term
of integrals of an operator valued density with respect to a positive measurem as follows. Let
(V0 ,S,m) be a measure space. Assume that, for the Hilbert spaceH5L2(V0 ,m), there is a
family of positive linear operatorsEvPL(H), vPV0 , which provide a resolution of unity,

E
V0

dm~v! Ev5I . ~19!

Then the operators

E~s!5E
s
dm~v! Ev , sPS , ~20!

define a POVM which is of the required form.
It is natural to associate with the POVM in~20! a Lüders map L(B) of an operatorB by

defining

L~B!5E
V

dm~v! Ev
1/2B Ev

1/2 , ~21!

which is a unital, completely positive linear map onL(H). Due to the completeness relation~13!,
the self-adjoint coherent-state projectors

EV[uV&^Vu5EV
1/2 , VPX , ~22!

are seen to define a POVM in the sense just described.
Any operatorB defined onL2(X,m) is Lüderswith respect to the CS-POVMEV ,VPX, if it

satisfies the relationB5L(B) with Ev in ~21! replaced byEV ,
1 Oct 2005 to 144.32.128.113. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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B5E
X

dm~V! uV&^VuBuV&^Vu5E
X

dm~V! QB~V!uV&^Vu . ~23!

Upon comparing this equation with~15!, we observe that theLüders property has, for any CS
POVM, the following general interpretation: an operatorB is Lüders if and only if its P- and
Q-symbols coincide,

PB~V!5QB~V! . ~24!

To the best of our knowledge, this set of operators—which we will callwell-ordered—has not
been introduced before.

The constraint~23! takes a particularly simple form upon expanding theQ-symbol of B in
harmonic functions,

QB~V!5(
n

BnYn~V! , ~25!

which is possible according to~16!. The expansion coefficients are given by

Bn5E
X

dm~V! QB~V!Yn* ~V! . ~26!

Take the expectation value of~23! in the coherent stateuV8& and use the relation~18! for the
overlapu^V8uV&u2. This leads to

QB~V8!5(
n

tnF E
X

dm~V!QB~V!Yn* ~V!GYn~V8!5(
n

tnBnYn~V8! , ~27!

where ~26! has been used. Uniqueness of the expansion~25! implies that the coefficients of a
Lüdersoperator must satisfy the condition

Bn5tnBn , for all n . ~28!

As mentioned above, the actual form of the quantitiestn depend on the groupG under consider-
ation. To proceed, we therefore need to specify the system of coherent states we work with,
the groupG. Explicit conclusions aboutLüdersoperators for CS-POVMs will be derived now fo
the groups SU~2! andH3 .

III. LÜDERS OPERATORS FOR THE CS-POVM OF A SPIN

Consider a Hilbert spaceHs of dimension (2s11), carrying an irreducible representation

the groupG5SU(2). Each spaceHs is associated with a spin of lengthsP$ 1
2,1,32,...%. To intro-

duce spin-coherent states, it is convenient to select states of highest~lowest! weight u6s& as
reference states~cf. Refs. 5 and 10!. These states are invariant under a change of phase, henc
isotropy group is given byH5U(1). Therefore, the coset space is the surface of a spherX
5SU(2)/U(1)5S 2, which corresponds to the phase space of a classical spin.

The resolution of unityI in Hs using spin-coherent statesun& reads

I 5E
S 2

dm~n! un&^nu , dm~n!5
2s11

4p
sinqdq dw , ~29!

where each unit vectornPR3 denotes a point with spherical coordinates~q,w!, located on the unit
sphereS 2. The continuous family of operators
1 Oct 2005 to 144.32.128.113. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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En5un&^nu , with I 5E
S 2

dm~n! En , ~30!

defines the CS-POVM of SU~2!. Being a projector, the positive square root of each operatorEn is
equal to itself:En

1/25un&^nu. Therefore, a self-adjoint operatorBPL(Hs) is Lüderswith respect to
the POVM ~30! if

B5E
S 2

dm~n!un&^nuBun&^nu[E
S 2

dm~n!QB~n!un&^nu . ~31!

Following the strategy outlined earlier, we will show now that any operatorB satisfying~31! must
be a real multiple of unity:B5lI , so thatB commutes with all elements of the CS-POVM for
spin,

@B,En#50 , nPS 2 . ~32!

Consider the expectation value of Eq.~31! in the coherent stateun8&,

QB~n8!5E
S 2

dm~n! QB~n!u^nun8&u2 . ~33!

The functionQB(n), theQ-symbol of the operatorB, is smooth on the sphereS 2, and it can be
written as a linear combination of (2s11)2 spherical harmonicsYlm(n),

QB~n!5A 4p

2s11 (
l 50

2s

(
m52 l

l

BlmYlm~n! , ~34!

with expansion coefficients

Blm5A 4p

2s11 ES 2
dm~n! QB~n! Ylm* ~n! . ~35!

Note that these expressions are connected to the general formulas through iden
Yn(V)↔A4p/(2s11)Ylm(n). Rewrite the scalar product~33! by means of the addition theorem
for spherical harmonics,

u^nun8&u25S 11n"n8

2 D 2s

5(
l 50

2s
2l 11

2s11 K s l

s 0
Us
sL

2

Pl~n"n8!

5
4p

2s11 (
l 50

2s

(
m52 l

l K s l

s 0
Us
sL

2

Ylm* ~n!Ylm~n8! , ~36!

where the functionsPl(x) are the Legendre polynomials. Upon inserting~34! and~36!, integration
of the right-hand side of Eq.~33! gives ~after replacingn8 by n!

QB~n!5A 4p

2s11 (
l 50

2s

(
m52 l

l K s l

s 0
Us
sL

2

BlmYlm~n! . ~37!

This expansion and Eq.~34! can only hold simultaneously if the coefficients of the harmon
satisfy

Blm5K s l

s 0
Us
sL

2

Blm , ~38!
1 Oct 2005 to 144.32.128.113. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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which is~28! for the group SU~2!. Them-independent Clebsch–Gordan coefficients correspon
the numberstn introduced in~18!, and they take values

K s l

s 0
Us
sL

2

5
~2s!! ~2s11!!

~2s2 l !! ~2s111 l !!
. ~39!

Since

K s 0

s 0
Us
sL 51 , 0,K s l

s 0
Us
sL ,1 , l 51,2,...,2s, ~40!

the coefficientsBlm with lÞ0 in ~38! must vanish; thus, the expansion~34! of a Lüdersoperator
satisfying ~31! contains only one nonzero term,B00, and B is proportional toY00(n), i.e., the
identity. Hence, it commutes with any operator, including the setEn , so that Eq.~32! follows. At
the same time we have shown that the identity is the only operator inHs such that itsQ- and
P-symbols coincide.

IV. LÜDERS OPERATORS FOR THE CS-POVM OF A PARTICLE

The kinematics of a quantum particle on the real lineR is described by the creation an
annihilation operatorsa and its adjointa† which satisfy@a,a†#5I . The operatorsa, a†, and the
identity I generate the Heisenberg–Weyl algebrah3 ; finite transformations, that is, elements of th
group H3 , are given by the phase-space displacement or shift operators

D~a!5exp@aa†2a* a# , aPC . ~41!

In fact, they provide an irreducible projective representation of the groupH3 in L2(R),

D~a!D~a8!5expF i

2
~aa8* 2a* a8!I GD~a1a8! . ~42!

The ~overcomplete! family of coherent statesua& in the Hilbert spaceL2(R) is obtained by
displacing the fiducial stateu0&, say, withau0&50, by arbitrary amountsaPC:

ua&5D~a!u0& . ~43!

The isotropy subgroup ofH3 is again isomorphic to U(1);exp@igI#,gP@0,2p), so that the mani-
fold labeling coherent states is given by the complex planeX5H3 /U(1)5C, corresponding
indeed to the phase space of a classical particle on the real line.

The completeness relation for the particle-coherent states reads

I 5E
C
dm~a! ua&^au , dm~a!5

1

p
d2a , ~44!

and it can be understood as defining a POVM for the continuous family of projection opera

Ea5ua&^au5Ea
1/2 , aPC . ~45!

The operatorB on L2(R) is Lüderswith respect to the POVMEa ,aPC, if it is invariant under
the LüdersmapB°L(B), i.e.,

B5E
C

dm~a! ua&^auBua&^au5E
C

dm~a! QB~a!ua&^au , ~46!
1 Oct 2005 to 144.32.128.113. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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where^auBua&5QB(a) is theQ-symbol of the operatorB. As shown earlier, this relation force
the Q-symbol of aLüdersoperator to coincide with itsP-symbol,

B5
1

p E
C

dm~a!P~a!ua&^au , ~47!

if it exists.
We will now search forbounded Lu¨dersoperatorsB which commute the membersEa of the

CS-POVM~44! for a particle. We begin to look at simple examples ofLüdersoperators, followed
by a systematic construction of all well-orderedLüders operators. In addition to the identity,
countable family ofunbounded, linearly independentLüdersoperators will emerge, none of whic
commutes with the elements of the CS-POVM. Finally, an unexpected relation of theLüdersmap
to operator orderings is established for particle coherent states.

A. Examples of unbounded Lüders operators

It is straightforward to apply the mapL to unbounded operators such as positionQ5(a
1a†)/2 and momentumP5(a2a†)/2i . Using the equationaua&5aua& and its adjoint implies
that

L~Q!5E
C
dm~a! ua&^auQua&^au 5E

C
dm~a!

1

2
~a1a* !ua&^au

5
1

2 EC
dm~a! aua&^au1

1

2 EC
dm~a! ua&^aua†5Q , ~48!

and similarly

L~P!5P . ~49!

While being invariant underL, the operatorsQ andP are neither positive nor bounded, and th
do not commute with the projectorsEa since the expectation value of the commutator in
coherent stateub& is, in general, different from zero:

^bu@Q,Ea#ub&5 1
2 ~~a2a* !2~b2b* !!u^aub&u2 . ~50!

Using the relationD†(a)aD(a)5a2a, its adjoint, and the commutation relations ofa anda†,
one shows thatLüders’ map acts on the operatorsQ2 andP2 according to

L~Q2!5Q212^0uQ2u0&I 5Q21 1
2 I ,

~51!

L~P2!5P212^0uP2u0&I 5P21 1
2 I .

Consequently, appropriate quadratic combinations of position and momentum turn out to bLüd-
ers,

LG~Q22P2!5Q22P2 . ~52!

However, this indefinite, unbounded operator does not commute with all projectionsEa as follows
from ^0u@Q22P2,Ea# u0&5(a22a* 2) u^0ua&u2, for example. In the next section a family o
similar Lüdersoperators will be constructed.
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B. Construction of Lüders operators

Let us turn now to the problem of finding all operators which areLüderswith respect to the
CS-POVMEa of a particle, i.e, all well-ordered operators. The argument will resemble the
given in the case of a spin.

Expand theQ-symbol of an operatorB as

QB~a!5E
C

dm~j! Bj exp@aj* 2a* j# , ~53!

where the coefficientsBj are given by

Bj5E
C

dm~a! QB~a!exp@2~aj* 2a* j!# . ~54!

Here, the functions exp@aj*2a*j# are the complete orthonormal set of harmonic functions in
complex plane, corresponding toYn(V). Since theQ-symbol of a Hermitian operator is rea
QB(a)5^auBua&* 5QB* (a), the coefficients must satisfy the relation

Bj* 5E
C

dm~a! QB* ~a!exp@2~a* j2aj* !#

5E
C

dm~a! QB~a!exp@2~a~2j!* 2a* ~2j!!#5B2j . ~55!

We will turn ~46! into a condition for the expansion coefficientsBj of a Lüdersoperator which can
be solved explicitly. Take the expectation value of the operatorB in ~46! in the coherent stateub&,
and use the identity

u^aub&u25exp@2ua2bu2#5E
C

dm~j! e2jj* exp@bj* 2b* j# exp@2aj* 1a* j# , ~56!

leading to

QB~b!5E
C

dm~j! e2jj* F E
C

dm~a! QB~a!exp@2~aj* 2a* j!#Gexp@bj* 2b* j# ,

5E
C

dm~j! e2jj* Bj exp@bj* 2b* j# , ~57!

where~54! has been used. Due to the uniqueness of the expansion~53!, the expansion coefficient
of any Lüdersoperators must satisfy

Bj5e2jj* Bj , ~58!

which is the equivalent of~38! for continuous variables. Consequently, the coefficientsBj are
necessarily zero for all values ofj exceptj50, and there are no solutions in terms of ordina
functions. If allowing for generalized functions,Bj is necessarily a distribution of finite order,11

that is, a linear combination of ad-distribution and finite derivatives of it,

Bj5 (
n1m50

N

bnm]j
n]j*

m d~j! , bnmPC , n,m50,1,2,... , N50,1,2,... . ~59!

The functionBj must satisfy~55! leading to

bnm5~2 !m1nbmn* , n,m50,1,2,... , ~60!
1 Oct 2005 to 144.32.128.113. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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and thed~j!-function is real,

d~j!5E
C

dm~a!exp@aj* 2a* j#5d~2j!5d* ~j! . ~61!

Only some of the distributions~59! will satisfy ~58! since one must have

QB~a!5E
C

dm~j!@DNd~j!#e2jj* eaj* 2a* j5E
C

dm~j!@DNd~j!#eaj* 2a* j , ~62!

where

DN5 (
n1m50

N

bnm]j
n]j*

m . ~63!

Partial integrations in~62! lead to the requirement

@DN
† e2jj* eaj* 2a* j#j5j* 505@DN

† eaj* 2a* j#j5j* 50 , ~64!

where the adjointDN
† of DN is obtained from replacingbnm by (2)n1mbnm in ~63!. It is shown in

the Appendix that this condition is satisfied if and only if

bnm50 , 1<m,n<N , ~65!

i.e., only termsbnm with at least one index~that is,m or n or both! equal to zero will contribute
to the symbol of a well-ordered operator. Therefore, only coefficients of the form

Bj5 (
n50

N

~bn0]j
n1~2 !nbn0* ]j*

n
!d~j! ~66!

occur which, upon partial integration in~53!, give rise toQ-symbols ofLüdersoperators,

QB~a!5 (
n50

N

~bn0a* n1bn0* an! . ~67!

The operators corresponding to these symbols are given by

B5b0I 1 (
n51

N

~bn
qBn

q1bn
pBn

p! , ~68!

i.e., a linear combination of the identity and 2N Hermitian operators

Bn
q5

1

2
~an1a† n! and Bn

p5
1

2i
~an2a† n! , n51,2,...,N , ~69!

which satisfy~46!, and (2N11) real coefficients

b052b00 , bn
q5bn01bn0* , bn

p5
1

i
~bn02bn0* ! , n51,2,...,N . ~70!

If N52, for example, it follows that not only the operatorsQ,P, andQ22P2 areLüdersbut also
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B2
p5

1

2i
~a22a† 2!}QP1PQ . ~71!

Every bounded Lu¨dersoperator is necessarily a multiple of the identity.

C. Lüders map and operator ordering

It is easy to understand why the operatorsBn ,n51,2,...,N, in ~70! areLüders. Consider any
Hermitian operatorB given as a finite polynomial ina anda†. Using their commutation relation
one can bring the annihilation operators either to the right or to the left,

B~a,a†!5(
m,n

bnm
N a† man5(

m,n
bnm

A ama† n , ~72!

corresponding to normal and antinormal ordering ofB, respectively.12 It is straightforward to
calculate theLüders transform ofB if it is written in normal order:

L~B~a,a†!!5(
m,n

bnm
N L~a† man!5(

m,n
bnm

N ana† m , ~73!

since

L~a† man!5E
C

dm~a! ua&^aua† manua&^au5E
C

dm~a! anua&^aua* m

5anS E
C

dm(a) ua&^aU D a† m5ana† m . ~74!

Thus, the effect ofL is to push each creation operatora† to the right as if it would commute with
the annihilation operatora. In other words, the mapL provides an explicit form of the operatorA
which generates antinormal order of an operator.8 This operator and its twinN, which brings a
given operator into normal order, are useful tools to evaluate expectation values or B
Campbell–Hausdorff relations, for example.8

To conclude: if an operatorB is to be invariant underL, the normally and antinormally
ordered forms of an operatorB must coincide,

(
m,n

bnm
N ana† m5(

m,n
bnm

A ama† n , ~75!

that is,bnm
N 5bnm

A . This is obviously true for the linear combinations of powers ofa anda† given
in ~70!, defining the family of well-ordered operators.

V. DISCUSSION

We have shown that there is only oneLüdersoperator, the identity~and its multiples!, for the
CS-POVM of SU~2! while a countable family of linearly independent, unbounded, and w
ordered operators exists in the case ofH3 . Due to the linearity of mapL, all their linear combi-
nations are well-ordered as well. It is plausible that our study exhausts all possibilities which
arise for CS-POVMs of general~simple and simply connected! Lie groups: we expect only the
identity as aLüdersoperator forcompactLie groups such as SU~N!, and a countable family for a
CS-POVM associated with noncompact groups such as SU(N2n,n),1<n,N. If we restrict our
attention to bounded operators, we conjectureLüders’ theorem to hold with respect to the CS
POVM of any Lie groupG.

APPENDIX: CONSTRUCTION OF WELL-ORDERED OPERATORS

We will show here that any operator compatible with~46! must have aQ-symbol with
expansion coefficients of the following form:
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Bj5 (
n50

N

~bn0]j
n1~2 !nbn0* ]j*

n
!d~j! , N,`; ~A1!

this means, in particular, that most of the coefficientsbnm are equal to zero:

bnm50 , for 1<m,n<N . ~A2!

In a first step, evaluate the right-hand-side of~64!:

F (
n1m50

N

~2 !n1mbnm]j
n]j*

m eaj* 2a* jG
j50

5 (
n1m50

N

~2 !mbnmama* n . ~A3!

To evaluate the left-hand side, use the relation

]j~e2jj* f ~j!!5e2jj* ~2j* 1]j! f ~j! ~A4!

and its complex conjugate for any smooth functionf . This leads to

]j
n]j*

m e2jj* 5e2jj* ~2j* 1]j!
n~2j1]j* !m5e2jj* (

n50

n

(
m50

m S n
n D S m

m D ~2j* !n2n]j
n~2j!m]j*

m2m .

~A5!

According to Eq.~64!, these operators must be applied to the functioneaj* 2a* j. Each derivative
]j* produces a factora, while the action of the derivatives]j is more complicated:

]j
n~~2j!meaj* 2a* j!5(

s50

n S n
sD ]~2j!m

]js

]n2seaj* 2a* j

]jn2s

5(
s50

n S n
sD m! ~2 !s

~m2s!!
~2j!m2s~2a* !n2seaj* 2a* j ; ~A6!

due to 1/G(2k)50,k50,1,2,..., there are no contributions to the sum ifs exceedsm. Now that
the derivatives have been evaluated, one can setj5j* 50 in the resulting expression: the term
with nonzero powers ofj or j* vanish, and the sums simplify according to

~2j!m2s→dms and ~2j* !n2n→dnn . ~A7!

The left-hand-side of~64! becomes

(
n1m50

N

~2 !mbnm(
s50

s0

s! S m
s D S n

sDam2sa* n2s , ~A8!

wheres05min(m,n). Note that the term withs50 in this expression is identical to the right-han
side of ~A3! which implies that the equality~62! is satisfied if

(
n1m50

N

~2 !mbnm(
s51

s0

s! S m
s D S n

sDam2sa* n2s50 ~A9!

holds for all complex numbersa. This equation does not restrict the coefficientsbn0 ,0<n<N,
and b0m ,0<m<N: if either m or n are equal to zero, the sum overs is empty sinces050.
However, all other coefficients must vanish as can be seen in the following way. Writina
5r exp@iw#, Eq. ~A9! turns into a sum of terms multiplying phase factors exp@i(m2n)w#
[exp@ikw#, k50,1,2,...,N21. Each of these terms must vanish individually due to the lin
independence of the exponentials. Their coefficients, in turn, are power series inr which can be
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shown to vanish identically only ifb1N50 for exp@i(N21)w#, b2N50, which implies that
b1 N2250 for exp@i(N22)w#, etc. Taking into account thatbnm5(2)m1nbnm* , the coefficientsBj

of Lüdersoperators finally read

Bj5S (
n50

N

bn0]j
n1 (

m50

N

b0m]j*
m D d~j!5 (

n50

N

~bn0]j
n1~2 !nbn0* ]j*

n
!d~j!. ~A10!
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