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Abstract
The expectation values of a Hermitian operator Â in (2s + 1)2 specific
coherent states of a spin are known to determine the operator
unambiguously. As shown here, (almost) any other set of (2s + 1)2 coherent
state projectors also provide a basis for self-adjoint operators. This is proved
by considering the determinant of the Gram matrix associated with the
coherent state projectors as a Hamiltonian of a fictitious classical spin
system. The result guarantees that (almost) any experimentally desirable
choice of directions is appropriate for reconstructing the state of a quantum
spin by means of a Stern–Gerlach apparatus.
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State reconstruction [1] aims at parametrizing the density
matrix ρ̂ of a quantum system by the expectations of
appropriately chosen observables, the quorum. For a spin
s, the (unnormalized) density matrix has Ns = (2s +
1)2 independent real parameters, and various reconstruction
schemes exist [2, 3].

In [4], a particularly simple and non-redundant quorum
has been identified. It consists of precisely Ns projectors
on coherent spin states |n〉, with n · Ŝ|n〉 = h̄s|n〉. The
quorum is non-redundant in the sense that one cannot do
with a smaller number of projectors. Indeed, the density
matrix ρ̂ of a spin s is determined unambiguously if one
performs the following measurements with a traditional Stern–
Gerlach apparatus. Consider (2s + 1) cones about the z axis
with different opening angles. Then, pick (2s + 1) directions
on each cone such that the set transforms into itself under
a rotation about z by an angle 2π/(2s + 1). This gives a
total of Ns directions nn, n = 1, 2, . . . , Ns evenly spaced on
(2s + 1) cones. Measuring the (2s + 1)2 relative frequencies
ps(nn) = 〈nn|ρ̂|nn〉 defines a unique (unnormalized) density
matrix ρ̂. The operator ρ̂ is thus fixed by its expectation values
in the coherent states |nn〉.

In fact, the result applies to any Hermitian operator
Â ∈ As , the space of linear operators acting in the Hilbert
space Hs of the spin. The values of its Q-symbol, Q A(n) =
Tr[ Â|n〉〈n|] = 〈n| Â|n〉, at Ns points corresponding to the
set of directions described above determine the operator Â

unambiguously. In the following, let us denote a set of Ns

points (as well as the associated Ns unit vectors nn) as a
‘constellation’ N or a ‘hedgehog’ N with unit spikes nn .

The spatial directions nn dealt with in [4] were restricted
to a certain class of regular hedgehogs, N0. The purpose of
the present contribution is to remove this restriction. Given
a generic constellation M, the Ns values of the Q-symbol
Q A(nn) will (almost always) contain all the information about
the operator Â. More precisely: given any constellation M of
vectors mn, then either the numbers Q A(mn) determine Â, or
there is an infinitesimally close constellation M′ such that the
numbers Q A(m′

n) can be used instead. Two constellations M
and M′ are close if, for example, the number

d(M,M′) =
Ns∑

n=1

|mn − m′
n| (1)

is small. Here is a low-dimensional example which illustrates
the ‘almost always’ aspect of the statement made above.
Consider the real vector space R

3: any three unit vectors
attached to the origin are a basis as long they are neither in
a plane nor parallel to each other. Clearly, the exceptional
cases have measure zero among all possibilities: picking
three directions at random, the corresponding vectors will
span R

3 with probability one. Furthermore, there are always
three linearly independent vectors arbitrarily close to each
exceptional situation.
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Let us now turn to the proof. Consider the Ns projection
operators on coherent states,

Q̂n = |nn〉〈nn|, nn ∈ N0, 1 � n � Ns , (2)

associated with a constellation N0 of the type given in [4].
The following argument shows that the projectors Q̂m , m =
1, 2, . . . , Ns , associated with any other hedgehog M (or
M′, infinitesimally close to M) span the space As . The
N 2

s elements of the Gram matrix Gnn′ [5] determined by
a constellation M are given by the scalar products of the
projection operators:

Gnn′ = Tr[Q̂n Q̂n′ ] = |〈mn|mn′ 〉|2 =
(

1 + mn · mn′

2

)2s

,

1 � n, n′ � Ns . (3)

The result in [4] essentially says that the Gram matrix
stemming from the constellation N0 has a non-zero
determinant. According to (3), the matrix elements of G are
polynomial expressions in the components of the unit vectors
mn and mn′ . Thus, the determinant of the matrix G is also a
polynomial in these components, and the derivatives of det G
exist to arbitrary order. The determinant of G is a (real) analytic
function of each spin component.

Consider now a constellation N0. When keeping the
vectors n1, . . . , nn−1 and nn+1, . . . , nNs fixed, the function
det G can be regarded as a fictitious time-independent
Hamiltonian Hn of a single classical spin, nn:

Hn(nn) = det G(nn). (4)

The Hamiltonian Hn is different from zero if nn coincides
with the nth vector of the constellation N0. It describes an
integrable system since there is just one degree of freedom
accompanied by one constant of motion, the Hamiltonian
itself [6]. Consequently, the two-dimensional phase space
S2 is foliated by one-dimensional tori of constant energy.
In addition, a finite number of (elliptic or hyperbolic) fixed
points and one-dimensional separatrices will occur. These are
the generic features of the flow generated by the Hamiltonian
Hn(nn) on the unit sphere S2:

dnn

dt
= nn × ∂ H

∂nn
, (5)

where ∂/∂nn is the gradient with respect to nn [7]. The
right-hand-side being a (non-constant) polynomial in the
components of nn implies that the integral curves of the
Hamiltonian are fixed points, separatrices, and closed orbits.
Due to its analyticity properties, the function Hn(nn) cannot
take the value zero in a finite two-dimensional region—it
would need to be identical to zero then. It will be zero at
most for a finite number of one-dimensional curves or points.
Consequently, the function det G(nn) is different from zero
for almost all choices of nn . It is thus possible to replace the
vector nn by any other vector, including mn , the nth vector of
the desired constellation M. If one follows a continuous path
on S2 connecting nn to mn , one will possibly pass through
points where the determinant of G vanishes. If, accidentally,
mn were to correspond to a point with vanishing energy, there
would always be a nearby vector m′

n with |m′
n − mn| < ε/Ns

since levels of constant energy have co-dimension one.

If one repeats this procedure Ns times, one ends up with
a constellation M′ infinitesimally close to M since

∑
n |mn −

m′
n| < ε can be made arbitrarily small. With probability one,

the exact constellation M is obtained. Consequently, almost
all hedgehogs M of Ns projection operators Q̂n give rise to a
basis in the space of linear operators onHs , the Hilbert space of
a spin s. In turn, the values of the discrete Q-symbol related
to a constellation M are indeed sufficient to determine the
operator Â.

The result obtained in this note has interesting implications
from both a theoretical and an experimental point of view.
On the one hand, it satisfactory to know that, in principle,
(almost) any constellation M of Ns directions can be used
to reconstruct a quantum spin state, using an ordinary Stern–
Gerlach apparatus. On the other hand, imagine actually
performing the reconstruction in the laboratory. Clearly,
an experimenter would look for a constellation which is
experimentally feasible (not all directions might be accessible),
which provides the best signal-to-noise ratio (close directions
should be avoided), and which uses the most efficient matrix
inversion (the determinant of the Gram matrix should not be
small). The present result, firstly, tells the experimenter that
(almost) any feasible constellation can be used; secondly, the
result allows the experimenter to opt for constellations in which
the directions are as ‘different’ as possible from each other—
ideally, there will be only one direction inside any cone with
opening angle 4π/Ns ; thirdly, the experimenter should select
those of the remaining desirable constellations which do not
lead to small values of the determinant of G—the numerical
implementation of the reconstruction will be most efficient
then.

In summary, it has been shown that (almost) any
distribution of Ns points on a sphere S2 gives rise to a basis
of (non-orthogonal) coherent state projectors Q̂n in the linear
space As . As shown in [8], one can develop a fully fledged
discrete equivalent of Q- and P-symbols each consisting of
Ns operators. An interesting expectation-value representation
of the dynamics of a quantum spin s emerges from this
approach [9], while the relation of the basis of projectors Q̂n

to a symbolic calculus à la Stratonovich and Weyl has been
elaborated on in [10].
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