UNIVERSITY OF YORK

BA, BSc and MMath Examinations 2006
 MATHEMATICS
 Metric Spaces

Time Allowed: $1 \frac{1}{2}$ hours.
Answer three questions.
Please write your answers in ink; pencil is acceptable for graphs and diagrams. Do not use red ink.
Standard calculators will be provided.
The marking scheme shown on each question is indicative only.

1 (of 4). Suppose X is a non-empty set and that $d: X \times X \rightarrow \mathbb{R}$. What properties must d satisfy, in order for it to be a metric on X ? If $x_{0} \in X$ and $r>0$, define the open ball $B\left(x_{0}, r\right)$.

Show that the function defined by

$$
d_{0}(x, y)= \begin{cases}1 & \text { if } x \neq y \\ 0 & \text { if } x=y\end{cases}
$$

is a metric (the discrete metric) on X.

If d is a metric on X and $A \subseteq X$, define the interior $\operatorname{int}(A)$, the exterior $\operatorname{ext}(A)$ and the boundary ∂A in the metric space (X, d). Show that A and its complement A^{c} have the same boundary.

Define the terms open and closed, as applied to the set A in (X, d). Show that, under the discrete metric, all sets are both open and closed, and have empty boundary.

2 (of 4). Suppose (X, d) is a metric space, $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a sequence in X and $x \in X$. What does it mean to say that x_{n} converges to x as $n \rightarrow \infty$? Show that if, as $n \rightarrow \infty$, $x_{n} \rightarrow x$ and $x_{n} \rightarrow y$ then $x=y$.

Suppose a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ converges to a limit f in the metric space $C[a, b]$ (continuous, real-valued functions on the interval $[a, b]$), with the uniform metric

$$
d_{\infty}(f, g)=\sup _{t \in[a, b]}|f(t)-g(t)|=\max _{t \in[a, b]}|f(t)-g(t)|
$$

Show that f_{n} also converges pointwise to f; that is, that for each $t \in[a, b]$ we have $f_{n}(t) \rightarrow f(t)$ in \mathbb{R}.

Consider the following sequences in $C[0,1]$:

$$
\begin{aligned}
g_{n}(t) & =\frac{\sin (n t)}{n} \\
h_{n}(t) & =\frac{n t}{1+(n t)^{2}}
\end{aligned}
$$

Indicate briefly why both of these sequences converge pointwise to 0 , and determine whether or not each one converges to 0 in the uniform metric.
[16]

Page 2 (of 3)

3 (of 4). Suppose (X, d) is a metric space and $f: X \rightarrow X$ is a function. What does it mean to say that a real number $k \geq 0$ is a Lipschitz constant for f ? Show that if f is a Lipschitz function (that is, one for which a Lipschitz constant exists) then f is continuous.

If X is the interval $[a, b]$ with the standard metric, f is differentiable on $[a, b]$ and f^{\prime} is continuous on $[a, b]$, use the Mean Value Theorem to show that the smallest Lipschitz constant for f is

$$
\begin{equation*}
\max _{t \in[a, b]}\left|f^{\prime}(t)\right| \tag{5}
\end{equation*}
$$

State without proof the Contraction Mapping Theorem and use it to show that there is exactly one solution in the interval $[0,1]$ to the equation $t=1-\cos (1-t)$.

Starting from $t_{0}=0.25$, use a calculator to find the next three steps in the iteration converging to this solution.

4 (of 4). What is meant by a subsequence of a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in a metric space (X, d) ? Show that if $x_{n} \rightarrow x \in X$ as $n \rightarrow \infty$ then any subsequence of $\left(x_{n}\right)_{n \in \mathbb{N}}$ also converges to x.

In \mathbb{R} with the standard metric, give examples of:
(a) a sequence with no convergent subsequence;
(b) a divergent sequence with a convergent subsequence
(and indicate why your examples have these properties).

What does it mean to say that a metric space (X, d) is sequentially compact? Show that the following spaces are not sequentially compact:
(a) the open interval $(0,1) \subseteq \mathbb{R}$ with the standard metric;
(b) the set

$$
\{f:[0,1] \rightarrow \mathbb{R}: f \text { is continuous and }|f(t)| \leq 1 \text { for all } t \in[0,1]\}
$$ with the uniform metric d_{∞} (defined in Question 2).

1. The three properties of a metric are:

M1 $d(x, y) \geq 0$ for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$
2 Marks

M2 $d(x, y)=d(y, x)$ for all $x, y \in X$

M3 $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in X$.

The ball is defined by

$$
B\left(x_{0}, r\right)=\left\{x \in X: d\left(x_{0}, x\right)<r\right\} .
$$

M1 and M2 are clear from the definition.
M3 is clear in the case $x=y$, since then the LHS is zero and the RHS is nonnegative. In the case that $x=y$, so the LHS is 1 , we must have either $x \neq z$ or $z \neq y$, so the RHS is either 1 or 2 , showing that M3 is true in this case too.

4 Marks

The interior of A is the set

$$
\operatorname{int}(A)=\{x \in X: B(x, r) \subseteq A \text { for some } r>0\}
$$

The exterior of A is the set

$$
\operatorname{ext}(A)=\left\{x \in X: B(x, r) \subseteq A^{c} \text { for some } r>0\right\}
$$

The boundary of A is the set

$$
\partial A=\left\{x \in X: \text { for all } r>0, B(x, r) \text { intersects both } A \text { and } A^{c}\right\}
$$

A and A^{c} have the same boundary because the definition of ∂A is symmetric in A and A^{c}.
A is open if it contains none of its boundary $(A \cap \partial A=\emptyset)$, and closed if it contains all of its boundary ($\partial A \subseteq A$).

In the discrete metric d_{0}, we have

$$
B\left(x_{0}, 1\right)=\left\{x \in X: d_{0}\left(x_{0}, x\right)<1\right\}=\left\{x_{0}\right\}
$$

If $x \in A$ then $B(x, 1)=\{x\} \subseteq A$ and if $x \in A^{c}$ then $B(x, 1)=\{x\} \subseteq A$. It follows that $\operatorname{int}(A)=A$, that $\operatorname{ext}(A)=A^{c}$ and that $\partial A=\emptyset$. open and closed.

Remarks. All familiar stuff. The definition of open and closed is unusual, of course, but this is the way I did it in lectures. If someone uses the more conventional approach, then of course they'll get full credit.
2. $\quad x_{n}$ converges to x as $n \rightarrow \infty$ if for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that if $n>N$ then $d\left(x_{n}, x\right)<\varepsilon$.

If both $x_{n} \rightarrow x$ and $x_{n} \rightarrow y$ then for any $\varepsilon>0$ there exist $M, N \in \mathbb{N}$ such that if $n>M$ then $d\left(x_{n}, x\right)<\varepsilon / 2$ and if $n>N$ then $d\left(x_{n}, y\right)<\varepsilon / 2$. If $n>\max (M, N)$ then

$$
d(x, y) \leq d\left(x, x_{n}\right)+d\left(x_{n}, y\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
$$

since this is true for all $\varepsilon>0, d(x, y) \leq 0$. But $d(x, y) \geq 0$ by definition, so $d(x, y)=0$ and hence $x=y$.

For any given $t \in[a, b]$, we have

$$
\left|f_{n}(t)-f(t)\right| \leq \sup _{t \in[a, b]}\left|f_{n}(t)-f(t)\right|=d_{\infty}\left(f_{n}, f\right)
$$

It follows that if $f_{n} \rightarrow f$ in the uniform metric, then $f_{n}(t) \rightarrow f(t)$ for each t.
4 Marks

Since $|\sin (n t)| / n \leq 1 / n \rightarrow 0$, we have $g_{n}(t) \rightarrow 0$ for any t; also

$$
h_{n}(t)=\frac{1 /(n t)}{1 /(n t)^{2}+1} \rightarrow 0
$$

for any t.
4 Marks
Calculate:

$$
\begin{aligned}
d_{\infty}\left(g_{n}, 0\right) & =\sup _{t \in[0,1]}\left|f_{n}(t)-0\right| \\
& =\sup _{t \in[0,1]} \frac{|\sin (n t)|}{n} \\
& \leq \frac{1}{n} \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

which shows that $g_{n} \rightarrow 0$ in the metric d_{∞}.

Notice that $h_{n}(t)=h_{1}(n t)$, and choose $t_{0} \in(0,1)$, so $h_{1}\left(t_{0}\right)>0$. Since $h_{n}\left(t_{0} / n\right)=h_{1}\left(t_{0}\right)$, we have

$$
\begin{aligned}
d_{\infty}\left(h_{n}, 0\right) & =\sup _{t \in[0,1]}\left|h_{n}(t)-0\right| \\
& =\sup _{t \in[0,1]} h_{n}(t) \\
& \geq h_{n}\left(t_{0} / n\right) \\
& =h_{1}\left(t_{0}\right)
\end{aligned}
$$

This shows that $d_{\infty}\left(h_{n}, 0\right) \nrightarrow 0$ as $n \rightarrow \infty$, so h_{n} does not converge to 0 in the metric d_{∞}.

Remarks. All familiar ideas; but of course these particular examples are unseen.
3. A Lipschitz constant is a constant $k \geq 0$ with the property that $d(f(x), f(y)) \leq$ $k d(x, y)$ for all $x, y \in X$.

If f has a Lipschitz constant of 0 , then it is evidently constant, and hence continuous. If f has a Lipschitz constant $k>0$, then for any $\varepsilon>0$ we let $\delta=\varepsilon / k$, so if $d(x, y)<\delta$ then $d(f(x), f(y)) \leq k d(x, y)<k \delta=\varepsilon$, showing that f is uniformly continuous on X.
Let

$$
k=\max _{t \in[a, b]}\left|f^{\prime}(t)\right| .
$$

If $s, t \in[a, b]$ and $s \neq t$ then, by the mean value theorem,

$$
|f(s)-f(t)|=\left|f^{\prime}(\tau)\right||s-t| \leq k|s-t|
$$

where τ is some number between s and t. If $s=t$ then $|f(s)-f(t)|=0=k|s-t|$, so k is indeed a Lipschitz constant for f.

7 Marks $\mid=$ To show that k is the minimal Lipschitz constant, choose some t_{0} such that $\left|f^{\prime}\left(t_{0}\right)\right|=$ k. This means that

$$
\frac{\left|f(t)-f\left(t_{0}\right)\right|}{\left|t-t_{0}\right|} \rightarrow k
$$

as $t \rightarrow t_{0}$. In particular, for any $\varepsilon>0$ we can choose t such that

$$
\frac{\left|f(t)-f\left(t_{0}\right)\right|}{\left|t-t_{0}\right|}>k-\varepsilon
$$

This shows that $k-\varepsilon$ is not a Lipschitz constant for f, so k is the minimal Lipschitz constant.

5 Marks

The contraction mapping theorem states that if (X, d) is a complete metric space and $F: X \rightarrow X$ has a Lipschitz constant $k<1$ then F has a unique fixed point in X. Moreover, for any $x_{0} \in X$ the iterates $\left(F^{(n)}\left(x_{0}\right)\right)_{n \in \mathbb{N}}$ converge to the fixed point as $n \rightarrow \infty$.

6 Marks

Let $f(t)=1-\cos (1-t)$. If $t \in[0,1]$ then $\cos (t) \in[0,1]$, so $1-\cos (1-t) \in[0,1]$ also. This shows that f leaves invariant the complete metric space $[0,1]$.
We have $f^{\prime}(t)=\sin (1-t)$. On the interval $[0,1]$, \sin is non-negative and increasing, so

$$
\max _{t \in[0,1]}|\sin (1-t)|=\sin (1)
$$

This shows that f has Lipschitz constant $\sin (1)<1$, and hence by the contraction mapping theorem a unique fixed in point in $[0,1]$.

6 Marks

Starting from $t_{0}=0.25$, we have $t_{1}=f\left(t_{0}\right) \approx 0.268, t_{2}=f\left(t_{1}\right) \approx 0.256$ and $t_{3}=f\left(t_{2}\right) \approx 0.264$.

3 Marks

Remarks. Again, all familiar but an unseen example of a contraction.
Total: 30 Marks
4. If $\left(n_{k}\right)_{k \in \mathbb{N}}$ is a strictly increasing sequence of natural numbers, then the sequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ is a subsequence of $\left(x_{n}\right)_{n \in \mathbb{N}}$. 3 Marks Suppose $x_{n} \rightarrow x$ as $n \rightarrow \infty$ and we have a subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$. Then for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that if $n>N$ then $d\left(x_{n}, x\right)<\varepsilon$. Since $\left(n_{k}\right)_{k \in \mathbb{N}}$ is strictly increasing in \mathbb{N}, we have $n_{k} \geq k$ for all k. If follows that if $k>N$ then $n_{k}>N$, so $d\left(x_{n_{k}}, x\right)<\varepsilon$, showing that $x_{n_{k}} \rightarrow x$ as $k \rightarrow \infty$
(a) Let $x_{n}=n$. Then any subsequence $\left(x_{n_{k}}\right)$ has $x_{n_{k}}>k$, so $x_{n_{k}} \rightarrow \infty$ as $k \rightarrow \infty$. This shows that there is no convergent subsequence. 4 Marks
(b) Let $x_{n}=(-1)^{n}$. Then $x_{2 n}=1$ and $x_{2 n+1}=-1$. These subsequences are trivially convergent, and the fact that they have different limits shows that $\left(x_{n}\right)_{n \in \mathbb{N}}$ itself is divergent.

4 Marks)

A metric space (X, d) is called sequentially compact if every sequence in X has a convergenbt subsequence.
(a) Let $x_{n}=1 / n$. Since $x_{n} \rightarrow 0$ as $n \rightarrow \infty$ in \mathbb{R}, every subsequence of $\left(x_{n}\right)_{n \in \mathbb{N}}$ also converges to 0 in \mathbb{R}. If a subsequence were to converge in $(0,1)$, then
it would also converge in \mathbb{R}, and would thus have two distinct limits in \mathbb{R}, which is impossible; it follows that no subsequence can converge in $(0,1)$.
(b) Let $f_{n}(t)$ be a continuous function on $[0,1]$ which is zero outside the interval $I_{n}=[1 /(n+1), 1 / n]$ and has a maximum value of 1 over I_{n}. Then, if $m \neq n$ $\left|f_{m}-f_{n}\right|=\left|f_{n}\right|$ on I_{n}, so $d_{\infty}\left(f_{m}, f_{n}\right) \geq 1$. This shows that $\left(f_{n}\right)_{n \in \mathbb{N}}$ has no Cauchy subsequence, and hence no convergent subsequence.

5 Marks

Remarks. Nothing at all new here, but the technical details are tricky.
Total: 30 Marks

