Boolean inverse semigroups

Ganna Kudryavtseva

University of Ljubljana
IMFM, Ljubljana
http://www.kmf.fgg.uni-lj.si/gkudryav/

York semigroup seminar via Zoom
Ljubljana, October 28, 2020

The classical Stone duality

- A Boolean algebra is a relatively complemented distributive lattice with 0 but in general without 1.
- Distributive lattices have 0 , but in general do not have 1 .
- Finite Boolean algebras are precisely powersets of finite sets.
- There are infinite Boolean algebras which are not powersets.
- Too many subsets? Topologize!
- A Stone space is a Hausdorff space with a basis of compact-open sets.
- A spectral space is a a sober space that has a basis of compact-open sets which is closed under finite non-empty intersections.
- The classical Stone duality (Stone, 1937; Doctor, 1964):
- The categories of Boolean algebras (resp. unital Boolean algebras) and Stone spaces (resp. compact Stone spaces) are dually equivalent.
- The categories of distributive lattices (resp. bounded distributive lattices) and spectral spaces (resp. compact spectral spaces) are dually equivalent.

Boolean and distributive inverse semigroups

- A Boolean inverse semigroup is an inverse semigroup S such that:
- $E(S)$ admits the structure of a Boolean algebra;
- If $a \sim b$ (\sim is the compatibility relation) then $a \vee b$ exists in S.
- A distributive inverse semigroup is an inverse semigroup S such that:
- $E(S)$ admits the structure of a distributive lattice;
- If $a \sim b$ then $a \vee b$ exists in S.
- Any distributive lattice is a distributive inverse semigroup with $a \cdot b=a \wedge b$; likewise any Boolean algebra is a Boolean inverse semigroup.
- $\mathcal{I}_{n} ; \mathcal{I}_{X}(X-$ any set $) ; E\left(\mathcal{I}_{X}\right) \simeq \mathcal{P}(X)$.

Étale groupoids

- A groupoid is a small category where every arrow is invertible.
- \mathcal{G} - groupoid, $\mathcal{G}^{(0)}=\left\{a^{-1} a: a \in \mathcal{G}\right\}$ - the set of units of \mathcal{G}.
- $d: \mathcal{G} \rightarrow \mathcal{G}^{(0)}, d(a)=a^{-1} a$ - the domain (or sourse) map;
$r: \mathcal{G} \rightarrow \mathcal{G}^{(0)}, r(a)=a a^{-1}$ - the range map.
- The set of composable pairs: $\mathcal{G}^{(2)}=\{(a, b) \in \mathcal{G} \times \mathcal{G}: r(b)=d(a)\}$.
- A local bisection is a subset $U \subseteq \mathcal{G}$ such that $\left.d\right|_{U}$ and $\left.r\right|_{U}$ are injective maps.
- \mathcal{G} is a topological groupoid if \mathcal{G} is a topological space and the inversion map $\mathcal{G} \rightarrow \mathcal{G}$ and the product map $\mathcal{G}^{(2)} \rightarrow \mathcal{G}$ are both continuous.
- \mathcal{G} is étale if d is a local homeomorphism ($\Leftrightarrow r$ is a local homeomorphism $\Leftrightarrow m$ is a local homeomorphism)
- If \mathcal{G} is étale than $\mathcal{G}^{(0)}$ is an open subspace and \mathcal{G} has a basis of open local bisections; also \mathcal{G} is R-discrete, that is, $d^{-1}(x)$ is a discrete subspace of \mathcal{G} for any $x \in \mathcal{G}^{(0)}$.

Non-commutative Stone dualities

- A spectral groupoid is an étale groupoid \mathcal{G} such that $\mathcal{G}^{(0)}$ is a spectral space.
- A Stone groupoid is an étale groupoid \mathcal{G} such that $\mathcal{G}^{(0)}$ is a Stone space.
Theorem (Lawson, 2010-2013, more morphisms: GK and Lawson, 2017, very relevant work: Resende, 2007, Lawson and Lenz, 2013.)
- The categories of Boolean inverse semigroups and Stone groupoids are dually equivalent.
- The categories of distributive inverse semigroups and spectral groupoids are dually equivalent.
- Local bisections of a Stone groupoid form a Boolean inverse semigroup.
- Germs of elements of a Boolean inverse semigroup S over points of the space of ultracharacters (resp. prime characters) of $E(S)$ give rise to a Boolean (resp. spectral) groupoid.

Morphisms

- A morphism $\varphi: S \rightarrow T$ between Boolean inverse semigroups is a semigroup homomorphism such that $\left.\varphi\right|_{E(S)}$ is a non-degenerate morphism of Boolean algebras. (Non-degenerate: for any $e \in E(T)$ there is $f \in E(S): \varphi(f) \geq e$.)
- A continuous relational covering morphism between Boolean (or spectral) groupoids is a map $f: \mathcal{G}_{1} \rightarrow \mathcal{P}\left(\mathcal{G}_{2}\right)$ such that:
(RM1) for any $t \in \mathcal{G}_{1}^{(0)}:|f(t)|=1$ and $\left.f\right|_{\mathcal{G}^{(0)}}$ is a continuous proper map;
(RM2) for all $y \in f(x): d(y)=f d(x)$ and $r(y)=f r(x)$;
(RM3) if $(x, y) \in \mathcal{G}_{1}^{(2)}$ and $s \in f(x), t \in f(y)$ then $s t \in f(x y)$;
(RM4) for any $x \in \mathcal{G}_{1}: f\left(x^{-1}\right)=(f(x))^{-1}$;
(RM5) if $A \subseteq \mathcal{G}_{2}$ is compact-open local bisection, then
$f^{-1}(A)=\left\{x \in \mathcal{G}_{1}: f(x) \cap A \neq \varnothing\right\}$ is a compact-open local
bisection in \mathcal{G}_{1};
(RM6) if $d(x)=d(y)($ or $r(x)=r(y))$ and $f(x) \cap f(y) \neq \varnothing$ then $x=y$ (star-injectivity);
(RM7) if $d(t)=y($ resp. $r(t)=y)$ where $y=f(x)$ then there is $s \in \mathcal{G}_{1}$ such that $d(s)=x$ (resp. $r(s)=x$) and $t \in f(s)$ (star-surjectivity).
- Morphisms between Boolean inverse semigroups are dualized by continuous relational covering morphisms (GK and Lawson, 2017).

Morphisms: variations

	semigroups	groupoids
type 1	morphisms	continuous relational covering morphisms (CRCMs)
type 2	proper moprhisms	at least single valued CRCMs
type 3	weakly meet-preserving moprhisms	at most single valued CRCMs
type 4	proper and weakly meet preserving morphisms	continuous covering functors $(=$ single-valued CRCMs)

- A morphism $\varphi: S \rightarrow T$ is proper if any $t \in T$ can be written as $t=\bigvee_{i=1}^{n} t_{i}$ where $n \geq 1$ so that there are $s_{1}, \ldots, s_{n} \in S$ satisfying $\varphi\left(s_{i}\right) \geq t_{i}$ for all $i=1, \ldots, n$. Briefly, $T=\left((\operatorname{im} \varphi)^{\downarrow}\right)^{\vee}$.
- A morphism $\varphi: S \rightarrow S$ is weakly meet-preserving if $t \leq f(a), f(b)$ implies that there is $c \leq a, b$ such that $t \leq f(c)$.
- In the case where S, T are \wedge-semigroups, weakly meet preserving $=$ \wedge-preserving.

Character space of a semilattice

- E - a semilattice with $0, B$ - a Boolean algebra (or a distributive lattice).
- A representation $\varphi: E \rightarrow B$ is a map such that
- $\varphi(0)=0$;
- $\varphi(a \wedge b)=\varphi(a) \wedge \varphi(b)$ for all $a, b \in E$.
- A character of E is a non-zero representation $E \rightarrow\{0,1\}$.
- \widehat{E} - character set of E, topology is inherited from $\{0,1\}^{E}$ (with 0 removed), called the patch topology. Basis of the patch topology:

$$
M_{a ; b_{1}, \ldots, b_{n}}=\left\{\varphi \in \widehat{E}: \varphi(a)=1, \varphi\left(b_{1}\right)=\cdots=\varphi\left(b_{n}\right)=0\right\},
$$

$n \geq 1$ and $a, b_{1}, \ldots, b_{n} \in S$ are such that $b_{i} \leq a$ for all $i=1, \ldots, n$.

- Remark. There is another, spectral, topology on \widehat{E} with the basis:

$$
M_{a}=\{\varphi \in \hat{E}: \varphi(a)=1\}, a \in S .
$$

The groupoid of germs of an inverse semigroup

- S - an inverse semigroup with 0 (assumed throughout the talk!).
- S acts on $\widehat{E(S)}$ by partial maps: if $s \in S$ and $\varphi \in \widehat{E(S)}$ then $s \cdot \varphi$ is defined $\Leftrightarrow \varphi\left(s^{-1} s\right)=1$,
in which case $(s \cdot \varphi)(e)=\varphi\left(s^{-1} e s\right), e \in E(S)$.
- Let $s, t \in S$ and $\varphi \in \widehat{E(S)}$ be such that $s \cdot \varphi$ and $t \cdot \varphi$ are both defined.
- s and t define the same germ over φ if there is $e \in E(S)$ such that $\varphi(e)=1$ and $s e=t e$.
- Notation: $[s, \varphi]$ - the germ defined by s over φ.
- We look at the germ $[s, \varphi$] as an arrow from φ to $s \cdot \varphi$.
- This leads to the groupoid of germs $\mathcal{G}(S)$ of the natural action of S on $\widehat{E(S)}$.

The universal groupoid of an inverse semigroup

- The patch topology on $\mathcal{G}(S)$ has a basis consisting of the sets

$$
\Theta\left[s ; s_{1}, \ldots s_{n}\right]=\left\{[s, \varphi] \in \mathcal{G}(S): \varphi\left(s^{-1} s\right)=1, \forall i: \varphi\left(s_{i}^{-1} s_{i}\right)=0\right\}
$$

where $n \geq 1, s \in S$ and $s_{1}, \ldots, s_{n} \leq s$.

- $\mathcal{G}(S)$ - Paterson's universal groupoid of S. It is a Stone groupoid.
- $B(S)$ - the dual Boolean inverse semigroup of $\mathcal{G}(S)$, the universal Booleanization of S.

Cover-to-join representations

- E - semilattice, B - Boolean algebra (or a distributive lattice)
- $Z \subseteq E$ is a cover of $e \in E$ if $f \leq e$ such that ef $\neq 0$ there is $z \in Z$ satisfying $z f \neq 0$. From now on we consider finite covers.
- $\varphi: E \rightarrow B$ is cover-to-join, if for $e \in E$ and any finite cover $Z \subseteq E$ of e we have:

$$
\varphi(e)=\bigvee_{z \in Z} \varphi(z)
$$

- Cover-to-join represenations (Donsig \& Milan, 2014) are closely relatedy to tight representations (Exel, 2009) (B is a uinital Boolean algebra).
- A non-degenerate representation $E \rightarrow B$ is tight if and only if it is cover-to-join (Exel, 2019, B - Boolean algebra).
- Cover-to-join characters of $E=$ tight characters of E.
- $\hat{E}_{\text {tight }}$ is a closed subset of \hat{E}.

The tight groupoid of an inverse semigroup

- $\widehat{E}_{\text {tight }}$ is invariant under the natural action of S on \hat{E} :
if $\varphi \in \widehat{E}_{\text {tight }}$ and $\varphi\left(s^{-1} s\right)=1$ then $s \cdot \varphi \in E_{\text {tight }}$.
- $\widehat{E}_{\text {tight }}$ is a closed subset of \widehat{E}.
- Let $\mathcal{G}(S)_{\text {tight }}$ be the groupoid of germs attached to the induced action of S on $\widehat{E}_{\text {tight }}$.
- $\mathcal{G}(S)_{\text {tight }}$ - the tight groupoid of S.
- $B_{\text {tight }}(S)$ - the dual Boolean inverse semigroup of $\mathcal{G}_{\text {tight }}(S)$, the tight Booleanization of S.
- $\iota_{B_{\text {tight }}(S)}: S \rightarrow B_{\text {tight }}(S), s \mapsto \Theta[s]$, is a morphism of semigroups (not injective in general!)
- Example. Let S be a Boolean inverse semigroup. Then its dual Stone groupoid is $\mathcal{G}_{\text {tight }}(S)$ whence $S \simeq B_{\text {tight }}(S)$.

X-to-join representations of semilattices

- E - a semilattice, B a - Boolean algebra, $X \subseteq E \times \mathcal{P}_{\text {fin }}(E)$.
- A representation $\varphi: E \rightarrow B$ will be called an X-to-join representation, if

$$
\varphi(e)=\bigvee_{i=1}^{n} \varphi\left(e_{i}\right)
$$

for all $\left(e,\left\{e_{1}, \ldots, e_{n}\right\}\right) \in X$.

- \widehat{E}_{X} - the set of all X-to-join characters of E. It is a closed subset of \hat{E}.
- \widehat{E}_{X} - the space of X-to-join characters with the subspace topology inherited from \widehat{E}.
- \hat{E}_{X} is a Stone space.
- $B_{X}(E)$ - the X-to-join Booleanization of E.

Connection with π-tight representations

- Let $\pi: E \rightarrow B$ be a representation of a semilattice E in a Boolean algebra B.
- Define X_{π} as the set consisting of all $\left(e,\left\{e_{1}, \ldots, e_{n}\right\}\right) \in E \times \mathcal{P}_{\text {fin }}(E)$ such that $\pi(e)=\bigvee_{i=1}^{n} \pi\left(e_{i}\right)$.
- Then X_{π}-to-join representations of E coincide with π-tight representations considered by Exel and Steinberg in 2018.
- The following is a consequence of a result by Exel and Steinberg:

Theorem

Let $\pi: E \rightarrow B$ be a representation of a semilattice E in a Boolean algebra B such that $\pi(E)$ generates B as a Boolean algebra. Then B is isomorphic to $\mathrm{B}_{X_{\pi}}(E)$.

Quotients of $\mathrm{B}(S)$ via X-to-join representations

- The canonical quotient morphism $\mathrm{B}(S) \rightarrow \mathrm{B}_{X}(S)$ corresponds to the inclusion map $\mathcal{G}_{X}(S) \hookrightarrow \mathcal{G}(S)$. Since this map is single-valued, $\mathrm{B}(S) \rightarrow \mathrm{B}_{X}(S)$ is weakly meet-preserving.
- \mathcal{X} - a closed and invariant subset of $\widehat{E(S)}$
- $\mathcal{I}_{\mathcal{X}}$ - the ideal of $E(\mathrm{~B}(S))$ consisting of those compact-opens of $\widehat{E(S)}$ which do not intersect with \mathcal{X}.
- $a, b \in \mathrm{~B}(S)$: define $a \sim_{\mathcal{X}} b$ iff there are $e, f, g \in E(\mathrm{~B}(S))$ such that $\mathbf{d}(a)=e \vee f, \mathbf{d}(b)=e \vee g$ where $f, g \in I_{\mathcal{X}}$ and $a e=b e$.
- Theorem. Let S be an inverse semigroup and \mathcal{X} a closed invariant subset of $\widehat{E(S)}$. Then $\mathrm{B}(S) / \sim_{\mathcal{X}} \simeq \mathrm{B}_{X_{\pi_{\mathcal{X}}}}(S)$ where $\pi_{\mathcal{X}}: S \rightarrow \mathrm{~B}(S) / \sim_{\mathcal{X}}$ is the composition of $\iota_{\mathrm{B}(S)}: S \rightarrow \mathrm{~B}(S)$ and the quotient map $\mathrm{B}(S) \rightarrow \mathrm{B}(S) / \sim_{\mathcal{X}}$.
- Corollary. Let $\varphi: \mathrm{B}(S) \rightarrow T$ be a surjective weakly meet-preserving additive morphism where T is a Boolean inverse semigroup. Then there is an invariant subset $X \subseteq E(S) \times \mathcal{P}_{\text {fin }}(E(S))$ such that $T \simeq \mathrm{~B}_{X}(S)$.

The X-to-join Booleanization of an inverse semigroup

- S - an inverse semigroup, $X \subseteq E(S) \times \mathcal{P}_{\text {fin }}(E(S))$.
- X is said to be S-invariant if $\left(e,\left\{e_{1}, \ldots, e_{n}\right\}\right) \in X$ implies that $\left(s^{-1} e s,\left\{s^{-1} e_{1} s, \ldots, s^{-1} e_{n} s\right\}\right) \in X$, for all $s \in S$.
- If X is S-invariant then $\widehat{E(S)}_{X}$ is invariant under the natural action of S on $\widehat{E(S)}$.
- X^{\prime} - the smallest S-invariant subset that contains X.
- The natural action of S on $\widehat{E(S)}$ restricts to the closed invariant subset $\widehat{E(S)_{X^{\prime}}}$.
- The groupoid of germs of this restricted action is denoted by $\mathcal{G}_{X}(S)$.
- Example: $X=\varnothing \Rightarrow$ the universal groupoid, X defines cover-to-join representations \Rightarrow the tight groupoid.
- The dual Boolean inverse semigroup of $\mathcal{G}_{X}(S)$, denoted $B_{X}(S)$, will be called the X-to-join Booleanization of S.

The universal property of $B_{X}(S)$

- The canonical map $\iota_{B_{X}(S)}: S \rightarrow B_{X}(S)$ is given by $\iota_{B_{X}(S)}(s)=\Theta[s] \cap \mathcal{G}_{X}(S)$.
- A representation of S in a Boolean inverse semigroup B is a morphism of semigroups $\varphi: S \rightarrow B$ satisfying $\varphi(0)=0$. It is called an X-to-join representation if $\left.\varphi\right|_{E(S)}: E(S) \rightarrow E(T)$ is an X-to-join representation.
- Example: $\iota_{B_{X}(S)}$ is a proper X-to-join representation.

Theorem (GK, 2019) Let S be an inverse semigroup and $X \subseteq E(S) \times \mathcal{P}_{\text {fin }}(E(S))$. Let further B be a Boolean inverse semigroup and $\varphi: S \rightarrow B$ an X-to-join representation (resp. a proper X-to-join representation). Then there is a unique morphism (resp. a unique proper morphism) of Boolean inverse semigroups $\psi: \mathrm{B}_{X}(S) \rightarrow B$ such that $\varphi=\psi \iota_{\mathrm{B} \times(S)}$.

Prime representations of semilattices

- E - a semilattice, B - a Boolean algebra
- A representation $\varphi: E \rightarrow D$ will be called prime, if that for any $e \in E$ and any finite cover Y of e the following implication holds:

$$
\begin{equation*}
\text { if } y=\bigvee Y \text { then } \varphi(y)=\bigvee_{y \in Y} \varphi(y) \tag{1}
\end{equation*}
$$

- Prime $=($ cover\&join $)$-to-join
- Any tight representation is prime.
- Let B be a Boolean algebra and suppose that the semilattice E admits the structure of a distributive lattice. Then a proper representation $\varphi: E \rightarrow B$ is prime if and only if it is a lattice morphism.
- Prime representations generalize proper morphisms from distributive lattices to Boolean algebras.

Example

- $n \geq 1, E_{n}=\left\{0, e_{1}, \ldots, e_{n}\right\}$ with $0 \leq e_{1} \leq \cdots \leq e_{n}$
- Since E_{n} is a distributive lattice, $\iota_{\mathrm{B}_{\text {prime }}\left(E_{n}\right)}: E \rightarrow \mathrm{~B}_{\text {prime }}\left(E_{n}\right)$ is an injective lattice morphism and $\mathrm{B}_{\text {prime }}\left(E_{n}\right)$ is isomorphic to the Booleanization E_{n}^{-}of the distributive lattice E_{n}
- $\iota_{\mathrm{B}_{\text {prime }}\left(E_{n}\right)}$ is prime but not cover-to-join and that $\iota_{\mathrm{B}_{\text {tight }}\left(E_{n}\right)}$ maps E_{n} onto a two-element Boolean algebra

Core and prime represenations of inverse semigroups

- E - a semilattice, $e, f \in E, f \leq e, f \neq 0$
- f is dense in e (Exel, 2009) if there is no non-zero element $d \leq e$ satisfying $d \wedge f=0$
- f is dense in e if and only if $\{f\}$ is a cover of e
- A representation $\varphi: E \rightarrow B$ of E in a Boolean algebra B is called core, provided that for any $e, f \in E, f \neq 0$, such that $f \leq e$ and f is dense in e we have: $\varphi(f)=\varphi(e)$
- A representation $\varphi: S \rightarrow T$ of an inverse semigroup S in a Boolean inverse semigroup T is called a core (resp. prime) if $\left.\varphi\right|_{E(S)}: E(S) \rightarrow E(T)$ is core (resp. prime).
- Core and prime represenations are a special case of X-to-join representations
- Any tight representation is core and prime
- Other representations that are different form tight ones have been recently studied by Exel and Steinberg (2019, arXiv)

Boolean inverse semigroups in extended signature
S - Boolean inverse semigroup. The operations \backslash and \vee on $E(S)$ can be extended to $S: s \backslash t=(\mathbf{r}(s) \backslash \mathbf{r}(t)) s(\mathbf{d}(s) \backslash \mathbf{d}(t)), s \nabla t=(s \backslash t) \vee t$. Theorem [Wehrung, 2017]. An algebra ($S ; 0,{ }^{-1}, \cdot, \backslash, \nabla$) is an algebra attached to a Boolean inverse semigroup iff $\left(S ; 0,{ }^{-1}, \cdot\right)$ is an inverse semigroup with zero 0 and:
(1) $(\mathbf{d}(x) \backslash \mathbf{d}(y))^{2}=\mathbf{d}(x) \backslash \mathbf{d}(y),(\mathbf{d}(x) \nabla \mathbf{d}(y))^{2}=\mathbf{d}(x) \nabla \mathbf{d}(y)$;
(2) all the defining identities (and hence all the identities) of the variety of Boolean algebras with x, y, \ldots, replaced by $\mathbf{d}(x), \mathbf{d}(y), \ldots$, and $0, \wedge, \vee$ and \backslash replaced by $0, \cdot, \nabla$ and $\backslash ;$
(3) $x \nabla y \geq x \backslash y, x \nabla y \geq y$;
(4) $\mathbf{d}(x \nabla y)=\mathbf{d}(x \backslash y) \nabla \mathbf{d}(y)$;
(5) $x \backslash y=(\mathbf{r}(x) \backslash \mathbf{r}(y)) x(\mathbf{d}(x) \backslash \mathbf{d}(y))$;
(6) $z((\mathbf{d}(x) \backslash \mathbf{d}(y) \nabla \mathbf{d}(y))=z(\mathbf{d}(x) \backslash \mathbf{d}(y)) \nabla z \mathbf{d}(y)$.

If $\left(S ; 0,{ }^{-1}, \cdot, \backslash, \nabla\right)$ is an algebra where $\left(S ; 0,{ }^{-1}, \cdot\right)$ is an inverse semigroup with zero 0 and (1)-(6) hold, then $\left(S ; 0,{ }^{-1}, \cdot\right)$ is a Boolean inverse semigroup and $\left(S ; 0,,^{-1}, \cdot, \backslash, \nabla\right)$ is the algebra attached to $\left(S ; 0,{ }^{-1}, \cdot\right)$.

Free Boolean inverse semigroups

A map $\varphi: S \rightarrow T$ between Boolean inverse semigroups is a morphisms between their attached algebras if and only if:

1. $\varphi(s t)=\varphi(s) \varphi(t)$ for all $s, t \in S$;
2. $\varphi(0)=0$;
3. $\varphi(a \vee b)=\varphi(a) \vee \varphi(b)$ for all $a, b \in S$ such that $a \sim b$.

They are called additive morphisms.

Proposition

Let X be a set and let $F I(X)$ be the free inverse semigroup on X. Then the free Boolean inverse semigroup (in the extended signature), $\operatorname{FBI}(X)$, on X is isomorphic to $\mathrm{B}(F I(X) \cup\{0\})$.

Defining relations

Proposition (GK, 2019)

Let S be an inverse semigroup and $X \subseteq E(S) \times \mathcal{P}_{\text {fin }}(E(S))$. Then $\mathrm{B}_{X}(S)$ is generated by the set $\{[s]: s \in S\}$ subject to the relations:
(1) $[0]=0$;
(2) $[s t]=[s][t]$ for all $s, t \in S$;
(3) $[e]=\nabla_{i=1}^{n}\left[e_{n}\right]$ for all $\left(e,\left\{e_{1}, \ldots, e_{n}\right\}\right) \in X$.

Corollary
Let S be an inverse semigroup.

1. The universal Booleanization $\mathrm{B}(\mathrm{S})$ is generated by the set $\{[s]: s \in S\}$ subject to the relations (1) and (2) above.
2. Let $X \subseteq E(S) \times \mathcal{P}_{\text {fin }}(E(S))$. Then $\mathrm{B}_{X}(S)$ is a quotient of $\mathrm{B}(S)$ obtained by adding relations (3) above $\mathrm{B}(S)$.
X-to-join representations of inverse semigroups in C^{*}-algebras

- S - an inverse semigroup, A - a C^{*}-algebra.
- A map $\sigma: S \rightarrow A$ is a representation if the following conditions hold:

1. $\sigma(0)=0$;
2. $\sigma(s t)=\sigma(s) \sigma(t)$ for all $s, t \in S$;
3. $\sigma\left(s^{-1}\right)=(\sigma(s))^{*}$ for all $s \in S$.

- D_{σ} - the C^{*}-subalgebra of A generated $\sigma(E(S))$,

$$
B_{\sigma}=\left\{e \in D_{\sigma}: e^{2}=e\right\} .
$$

B_{σ} is a Boolean algebra with respect to the operations

$$
a \wedge b=a b, a \vee b=a+b-a b, a \backslash b=a-a b .
$$

- Let $X \subseteq E(S) \times \mathcal{P}_{\text {fin }}(E(S))$. A representation $\sigma: S \rightarrow A$ is called X-to-join if the restriction of σ to $E(S)$ is an X-to-join representation of $E(S)$ in the Boolean algebra B_{σ}.

Right LCM semigroups and their C^{*}-algebras

- A semigroup P is right LCM if it is left cancellative and the intersection of any two principal right ideals is either empty or a principal right ideal.
- We assume that P has the identity element denoted 1_{P}.
- $\mathcal{J}(P)$ - the set of all principal right ideals of P, plus \varnothing.
- The full C^{*}-algebra $C^{*}(P)$ of $P(\mathrm{Li}, 2012, P$ any left cancellative semigroup, $\mathcal{J}(P)$ the set of constructible right ideals).
- $C^{*}(P)$ is the universal C^{*}-algebra generated by a set of isometries $\left\{v_{p}: p \in P\right\}$ and a set of projections $\left\{e_{X}: X \in J(P)\right\}$ subject to the following relations:
(L1) $v_{p} v_{q}=v_{p q}$ for all $p, q \in P$,
(L2) $v_{p} e_{x} v_{p}^{*}=e_{p} X$ for all $p \in P$ and $X \in J(P)$,
(L3) $e_{P}=1$ and $e_{\varnothing}=0$,
(L4) $e_{X} e_{Y}=e_{X \cap Y}$ for all $X, Y \in J(P)$.

$C^{*}(P)$ is a groupoid C^{*}-algebra

- $U(P)$ - the group of units of P.
- $(p, q) \sim(a, b) \Leftrightarrow$ there is $u \in U(P)$ such that $p=a u$ and $q=b u$.
- $[p, q]$ - the \sim-class of (p, q), for any $p, q \in P$.
- $\mathcal{S}=\{[p, q]: p, q \in P\} \cup\{0\}$
is an inverse semigroup with the identity $\left[1_{P}, 1_{P}\right]$,

$$
[a, b][c, d]= \begin{cases}{\left[a b^{\prime}, d c^{\prime}\right],} & \text { if } c P \cap b P=r P \text { and } c c^{\prime}=b b^{\prime}=r \\ 0, & \text { if } c P \cap b P=\varnothing\end{cases}
$$

$s 0=0 s=0$ and $[p, q]^{-1}=[q, p]$.

- $E(\mathcal{S})=\{[p, p]: p \in P\}$.
- The inverse semigroup \mathcal{S} is called the left inverse hull of P.
- Another consruction of \mathcal{S} :
- $\lambda_{p}: P \rightarrow p P, p \in P$, is a bijection $\Rightarrow \lambda_{p} \in \mathcal{I}(P)$.
- $\mathcal{I}_{l}(P)$ - the inverse subsemigroup of $\mathcal{I}(P)$ generated by $\lambda_{p}, p \in P$.
- $\mathcal{S} \rightarrow \mathcal{I}_{l}(P),[p, q] \mapsto \lambda_{p} \lambda_{q}^{-1}$, is an isomorphism.
- $C^{*}(P)$ is isomorphic to the universal C^{*}-algebra $C^{*}(\mathcal{S})$ of S (Norling, 2014). It is a groupoid C^{*}-algebra of the groupoid $\mathcal{G}(S)$.

The boundary quotient $\mathcal{Q}(P)$

- A finite subset $F \subset P$ is a foundation set if for all $p \in P$ there exists $f \in F$ such that $f P \cap p P \neq \varnothing$.
- $F \subseteq P$ is a foundation set $\Leftrightarrow\{[f, f]: f \in F\}$ is a cover of $\left[1_{P}, 1_{P}\right]$ in $E(S)$.
- The boundary quotient $\mathcal{Q}(P)$ of $C^{*}(P)$ is defined as the universal C^{*}-algebra given by the defining relations of $C^{*}(P)$ plus the relations

$$
\prod_{p \in F}\left(1-e_{p P}\right)=0 \text { for all foundation sets } F \subseteq P
$$

(Brownlowe, Ramagge, Robertson and Whittaker, 2014).

- $\mathcal{Q}(P)$ is isomorphic to the tight C^{*}-algebra $C_{\text {tight }}^{*}(S)$ of \mathcal{S} (Starling, 2015). It is a groupoid C^{*}-algebra of the groupoid $\mathcal{G}_{\text {tight }}(\mathcal{S})(P-$ countable).
- Example: if $P=\{a, b\}^{*}$ then characters of $E(\mathcal{S})$ are in a bijection with path in the binary tree (both finite and infinite), the cover-to-join characters correspond to infinite paths).

An example: the semigroup $\mathbb{N} \rtimes \mathbb{N}^{\times}$

- $\mathbb{N}^{\times}=\{n \in \mathbb{N}: n \geq 1\}$
- \mathbb{N}^{\times}acts on \mathbb{N} by multiplication.
- $\mathbb{N} \rtimes \mathbb{N}^{\times}$- the semidirect product, i.e.

$$
(r, a)(q, b)=(r+a q, a b) .
$$

- $P=\mathbb{N} \rtimes \mathbb{N}^{\times}$is right LCM:

$$
(r, a) P \cap(q, b) P= \begin{cases}(I, \operatorname{lcm}(a, b)), & \text { if }(r+a \mathbb{N}) \cap(q+b \mathbb{N}) \neq \varnothing, \\ \varnothing, & \text { otherwise. }\end{cases}
$$

- The C^{*}-albebra $\mathcal{Q}_{\mathbb{N}}$ (Cuntz, 2008), it is isomorphic to the Crisp-Laca quotient $\mathcal{Q}\left(\mathbb{N} \rtimes \mathbb{N}^{\times}\right)$of the Toeplitz algebra $\mathcal{T}\left(\mathbb{N} \rtimes \mathbb{N}^{\times}\right)$ (Laca and Raeburn, 2010). This is precisely the tight C^{*}-algebra $C_{\text {tight }}^{*}(\mathcal{S})$ (follows from the result by Starling, 2015).

A construction of a Zappa-Szép product

- P - a semigroup with unit $e ; U, A \subseteq P$ - subsemigroups and
- $U \cap A=\{e\}$;
- $\forall p \in P \exists!(u, a) \in U \times A$ such that $p=u a$.
- Then P is an internal Zappa-Szép product $P \simeq U \bowtie A$ of U and A.
- If $u \in U$ and $a \in A$ we write $a u=\left.(a \cdot u) a\right|_{u}$ where $(a \cdot u) \in U$ and $\left.a\right|_{u} \in A$. These define the action and the restriction maps.
- Brin (2005) defined external Zappa-Szép products of U and A and proved the equivalence of the 'external' and the 'internal' definitions.
- For groups: Zappa (1942) and Szép (1950, 1958, 1962).
- Brownlowe, Ramagge, Robertson, Whittaker (2014) considered Zappa-Szép products $P \simeq U \bowtie A$ such that:
(C1) U, A are right LCM;
(C2) $\mathcal{J}(A)$ is totally ordered by inclusion;
(C3) The map $u \mapsto a \cdot u$ is a bijection for each $a \in A$.
- Then the P is right LCM.

Zappa-Szép products: examples

- $\mathbb{N} \rtimes \mathbb{N}^{\times}$
- $U=\left\{(r, x) \in \mathbb{N} \times \mathbb{N}^{\times}: 0 \leq r \leq x-1\right\}, A=\{(m, 1): m \in \mathbb{N}\}$.
- Axioms (C1), (C2), (C3) hold.
- Baumslag - Solitar semigroups $B(c, d)^{+}$
- $c, d \in \mathbb{Z}, c, d>0, B S(c, d)$ is a group given by the group presentation $B S(c, d)=\left\langle a, b: a b^{c}=b^{d} a\right\rangle$.
- $B(c, d)^{+}$is the submonoid in $B S(c, d)$, generated by a and b.
- every element of $B(c, d)^{+}$can be uniquely written as
$\prod_{i=1}^{n}\left(b^{\alpha_{i}} a\right) b^{\beta}$, where $\alpha_{i} \in\{0, \ldots, d-1\}$ and $\beta \geq 0$.
- $U=\left\langle a, b a, \ldots, b^{d-1} a\right\rangle, A=\langle b\rangle$.
- Axioms (C1), (C2), (C3) hold.
- Self-similar group actions: X a finite alphabet, G a group acting faithfully on the rooted tree X^{*}. The action is self-similar if $\forall g \in G,\left.x \in X \exists!g\right|_{x} \in G: g \cdot(x w)=(g \cdot x)\left(\left.g\right|_{x} \cdot w\right)$.

The additive and the multiplicative boundary quotients of $C^{*}(U \bowtie A)$

- Suppose that axioms (C1), (C2) and (C3) hold. Brownlowe, Ramagge, Robertson, Whittaker (2014) have shown that $\mathcal{Q}(U \bowtie A)$ is a quotient of $C^{*}(U \bowtie A)$ by the relations:
(Q1) $e_{a} P=1$ for all $a \in A$ and
(Q2) $\prod_{p \in F}\left(1-e_{p P}\right)=0$ for all foundation sets $F \subseteq U$.
- The additive boundary quotient $\mathcal{Q}_{A}(U \bowtie A)$ - only relations (Q1)
- The multiplicative boundary quotient $\mathcal{Q} U(U \bowtie A)$ - only relations (Q2)
- $\mathcal{Q}_{U}\left(\mathbb{N} \rtimes \mathbb{N}^{\times}\right)$and $\mathcal{Q}_{A}\left(\mathbb{N} \rtimes \mathbb{N}^{\times}\right)$were studied before that by Brownlowe, An Huef, Laca and Raeburn (2012).
- The boundary quotient diagram:

The core subsemigroup of a right LCM semigroup

- Stammeier (2015) studies right LCM semigroups P that are decomposable as $P \simeq U \bowtie A$ where

$$
A=P_{c}=\{p \in P: p P \cap q P \neq \varnothing \text { for all } q \in P\}
$$

- the core subsemigroup of P (the term stems from Crisp and Laca, 2007, in the context of quasi-lattice ordered groups).
- Examples:
- $\mathbb{N} \rtimes \mathbb{N}^{\times}, B(c, d)^{+}, X^{*} \bowtie G$ - in their presented decompositions as $P \simeq U \bowtie A$ we have $A=P_{c}$.
- Stammeier (2015) asked for a realisation of $\mathcal{Q}_{U}(U \bowtie A)$ and $\mathcal{Q}_{A}(U \bowtie A)$ as groupoid C^{*}-algebras.

$\mathcal{Q}_{U}(U \bowtie A)$ and $\mathcal{Q}_{A}(U \bowtie A)$ are groupoid C^{*}-algebras

- $P=U \bowtie A, S$ - the left inverse hull of P.
- The set X_{A} consists of all $([a, a],\{[b, b]\})$ where $a \in A$ and $b \in a A$;
- The set X_{U} consists of all $\left([s, s],\left\{\left[s_{1}, s_{1}\right], \ldots,\left[s_{n}, s_{n}\right]\right\}\right)$ where $s \in U$, $s_{i} \in s U$ for all $i \in\{1, \ldots, n\}$ and for each $t \in s U$ there is $i \in\{1, \ldots, n\}$ satisfying $s_{i} U \cap t U \neq \varnothing$.
- The C^{*}-algebras $C_{A}^{*}\left(\mathcal{S}_{P}\right)$, and $C_{U}^{*}\left(\mathcal{S}_{P}\right)$ are defined as the universal C^{*}-algebras generated by one element for each element of \mathcal{S}_{P} subject to the following relations:

1. for $C_{A}^{*}\left(\mathcal{S}_{P}\right)$ these are the relations saying that the standard map $\pi_{A}: \mathcal{S}_{P} \rightarrow C_{A}^{*}\left(\mathcal{S}_{P}\right)$ is an X_{A}-to-join representation.
2. for $C_{U}^{*}\left(\mathcal{S}_{P}\right)$ these are the relations saying that the standard map $\pi_{U}: \mathcal{S}_{P} \rightarrow C_{U}^{*}\left(\mathcal{S}_{P}\right)$ is an X_{U}-to-join representation.

- Result (GK, 2019)
- $\mathcal{Q}_{U}(U \bowtie A)$ is isomorphic to the C^{*}-algebra $C_{U}^{*}(\mathcal{S})$.
- $\mathcal{Q}_{A}(U \bowtie A)$ is isomorphic to the C^{*}-algebra $C_{A}^{*}(\mathcal{S})$.
- Corollary. $\mathcal{Q}_{U}(U \bowtie A)$ and $\mathcal{Q}_{A}(U \bowtie A)$ are groupoid C^{*}-algebras.

