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The classical Stone duality

I A Boolean algebra is a relatively complemented distributive lattice
with 0 but in general without 1.

I Distributive lattices have 0, but in general do not have 1.
I Finite Boolean algebras are precisely powersets of finite sets.
I There are infinite Boolean algebras which are not powersets.
I Too many subsets? Topologize!

I A Stone space is a Hausdorff space with a basis of compact-open
sets.

I A spectral space is a a sober space that has a basis of compact-open
sets which is closed under finite non-empty intersections.

I The classical Stone duality (Stone, 1937; Doctor, 1964):
I The categories of Boolean algebras (resp. unital Boolean algebras)

and Stone spaces (resp. compact Stone spaces) are dually
equivalent.

I The categories of distributive lattices (resp. bounded distributive
lattices) and spectral spaces (resp. compact spectral spaces) are
dually equivalent.
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Boolean and distributive inverse semigroups

I A Boolean inverse semigroup is an inverse semigroup S such that:

I E(S) admits the structure of a Boolean algebra;

I If a ∼ b (∼ is the compatibility relation) then a ∨ b exists in S .

I A distributive inverse semigroup is an inverse semigroup S such
that:

I E(S) admits the structure of a distributive lattice;

I If a ∼ b then a ∨ b exists in S .

I Any distributive lattice is a distributive inverse semigroup with
a · b = a ∧ b; likewise any Boolean algebra is a Boolean inverse
semigroup.

I In; IX (X – any set); E (IX ) ' P(X ).
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Étale groupoids
I A groupoid is a small category where every arrow is invertible.

I G – groupoid, G(0) = {a−1a : a ∈ G} – the set of units of G.

I d : G → G(0), d(a) = a−1a – the domain (or sourse) map;
r : G → G(0), r(a) = aa−1 – the range map.

I The set of composable pairs: G(2) = {(a, b) ∈ G × G : r(b) = d(a)}.
I A local bisection is a subset U ⊆ G such that d |U and r |U are

injective maps.

I G is a topological groupoid if G is a topological space and the
inversion map G → G and the product map G(2) → G are both
continuous.

I G is étale if d is a local homeomorphism (⇔ r is a local
homeomorphism ⇔ m is a local homeomorphism)

I If G is étale than G(0) is an open subspace and G has a basis of open
local bisections; also G is R-discrete, that is, d−1(x) is a discrete
subspace of G for any x ∈ G(0).
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Non-commutative Stone dualities

I A spectral groupoid is an étale groupoid G such that G(0) is a
spectral space.

I A Stone groupoid is an étale groupoid G such that G(0) is a Stone
space.

Theorem (Lawson, 2010-2013, more morphisms: GK and Lawson, 2017, very

relevant work: Resende, 2007, Lawson and Lenz, 2013.)

• The categories of Boolean inverse semigroups and Stone groupoids
are dually equivalent.

• The categories of distributive inverse semigroups and spectral
groupoids are dually equivalent.

I Local bisections of a Stone groupoid form a Boolean inverse
semigroup.

I Germs of elements of a Boolean inverse semigroup S over points of
the space of ultracharacters (resp. prime characters) of E (S) give
rise to a Boolean (resp. spectral) groupoid.
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Morphisms
I A morphism ϕ : S → T between Boolean inverse semigroups is a

semigroup homomorphism such that ϕ|E(S) is a non-degenerate morphism
of Boolean algebras. (Non-degenerate: for any e ∈ E(T ) there is
f ∈ E(S): ϕ(f ) ≥ e.)

I A continuous relational covering morphism between Boolean (or spectral)
groupoids is a map f : G1 → P(G2) such that:

(RM1) for any t ∈ G(0)1 : |f (t)| = 1 and f |G(0) is a continuous proper map;
(RM2) for all y ∈ f (x): d(y) = fd(x) and r(y) = fr(x);

(RM3) if (x , y) ∈ G(2)1 and s ∈ f (x), t ∈ f (y) then st ∈ f (xy);
(RM4) for any x ∈ G1 : f (x−1) = (f (x))−1;
(RM5) if A ⊆ G2 is compact-open local bisection, then

f −1(A) = {x ∈ G1 : f (x) ∩ A 6= ∅} is a compact-open local
bisection in G1;

(RM6) if d(x) = d(y) (or r(x) = r(y)) and f (x) ∩ f (y) 6= ∅ then x = y
(star-injectivity);

(RM7) if d(t) = y (resp. r(t) = y) where y = f (x) then there is s ∈ G1
such that d(s) = x (resp. r(s) = x) and t ∈ f (s) (star-surjectivity).

I Morphisms between Boolean inverse semigroups are dualized by

continuous relational covering morphisms (GK and Lawson, 2017).
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Morphisms: variations

semigroups groupoids
type 1 morphisms continuous relational

covering morphisms (CRCMs)
type 2 proper moprhisms at least single valued CRCMs

type 3 weakly meet-preserving at most single valued CRCMs
moprhisms

type 4 proper and weakly meet continuous covering functors
preserving morphisms (= single-valued CRCMs)

I A morphism ϕ : S → T is proper if any t ∈ T can be written as
t =

∨n
i=1 ti where n ≥ 1 so that there are s1, . . . , sn ∈ S satisfying

ϕ(si ) ≥ ti for all i = 1, . . . , n. Briefly, T = ((imϕ)↓)∨.

I A morphism ϕ : S → S is weakly meet-preserving if t ≤ f (a), f (b) implies
that there is c ≤ a, b such that t ≤ f (c).

I In the case where S ,T are ∧-semigroups, weakly meet preserving =
∧-preserving.
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Character space of a semilattice

I E – a semilattice with 0, B – a Boolean algebra (or a distributive
lattice).

I A representation ϕ : E → B is a map such that

I ϕ(0) = 0;

I ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b) for all a, b ∈ E .

I A character of E is a non-zero representation E → {0, 1}.

I Ê - character set of E , topology is inherited from {0, 1}E (with 0
removed), called the patch topology. Basis of the patch topology:

Ma;b1,...,bn = {ϕ ∈ Ê : ϕ(a) = 1, ϕ(b1) = · · · = ϕ(bn) = 0},

n ≥ 1 and a, b1, . . . , bn ∈ S are such that bi ≤ a for all i = 1, . . . , n.

I Remark. There is another, spectral, topology on Ê with the basis:

Ma = {ϕ ∈ Ê : ϕ(a) = 1}, a ∈ S .
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The groupoid of germs of an inverse semigroup

I S – an inverse semigroup with 0 (assumed throughout the talk!).

I S acts on Ê (S) by partial maps: if s ∈ S and ϕ ∈ Ê (S) then s · ϕ is
defined ⇔ ϕ(s−1s) = 1,

in which case (s · ϕ)(e) = ϕ(s−1es), e ∈ E (S).

I Let s, t ∈ S and ϕ ∈ Ê (S) be such that s · ϕ and t · ϕ are both
defined.

I s and t define the same germ over ϕ if there is e ∈ E (S) such that
ϕ(e) = 1 and se = te.

I Notation: [s, ϕ] – the germ defined by s over ϕ.

I We look at the germ [s, ϕ] as an arrow from ϕ to s · ϕ.

I This leads to the groupoid of germs G(S) of the natural action of S

on Ê (S).
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The universal groupoid of an inverse semigroup

I The patch topology on G(S) has a basis consisting of the sets

Θ[s; s1, . . . sn] = {[s, ϕ] ∈ G(S) : ϕ(s−1s) = 1,∀i : ϕ(s−1i si ) = 0},

where n ≥ 1, s ∈ S and s1, . . . , sn ≤ s.

I G(S) – Paterson’s universal groupoid of S . It is a Stone groupoid.

I B(S) – the dual Boolean inverse semigroup of G(S), the universal
Booleanization of S .
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Cover-to-join representations

I E – semilattice, B – Boolean algebra (or a distributive lattice)

I Z ⊆ E is a cover of e ∈ E if f ≤ e such that ef 6= 0 there is z ∈ Z
satisfying zf 6= 0. From now on we consider finite covers.

I ϕ : E → B is cover-to-join, if for e ∈ E and any finite cover Z ⊆ E
of e we have:

ϕ(e) =
∨
z∈Z

ϕ(z).

I Cover-to-join represenations (Donsig & Milan, 2014) are closely
relatedy to tight representations (Exel, 2009) (B is a uinital Boolean
algebra).

I A non-degenerate representation E → B is tight if and only if it is
cover-to-join (Exel, 2019, B – Boolean algebra).

I Cover-to-join characters of E = tight characters of E .

I Êtight is a closed subset of Ê .
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The tight groupoid of an inverse semigroup

I Êtight is invariant under the natural action of S on Ê :

if ϕ ∈ Êtight and ϕ(s−1s) = 1 then s · ϕ ∈ Etight .

I Êtight is a closed subset of Ê .

I Let G(S)tight be the groupoid of germs attached to the induced

action of S on Êtight .

I G(S)tight – the tight groupoid of S .

I Btight(S) – the dual Boolean inverse semigroup of Gtight(S), the
tight Booleanization of S .

I ιBtight(S) : S → Btight(S), s 7→ Θ[s], is a morphism of semigroups
(not injective in general!)

I Example. Let S be a Boolean inverse semigroup. Then its dual
Stone groupoid is Gtight(S) whence S ' Btight(S).
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X -to-join representations of semilattices

I E – a semilattice, B a – Boolean algebra, X ⊆ E × Pfin(E ).

I A representation ϕ : E → B will be called an X -to-join
representation, if

ϕ(e) =
n∨

i=1

ϕ(ei )

for all (e, {e1, . . . , en}) ∈ X .

I ÊX – the set of all X -to-join characters of E . It is a closed subset of
Ê .

I ÊX – the space of X -to-join characters with the subspace topology
inherited from Ê .

I ÊX is a Stone space.

I BX (E ) – the X -to-join Booleanization of E .
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Connection with π-tight representations

I Let π : E → B be a representation of a semilattice E in a Boolean
algebra B.

I Define Xπ as the set consisting of all (e, {e1, . . . , en}) ∈ E ×Pfin(E )
such that π(e) =

∨n
i=1 π(ei ).

I Then Xπ-to-join representations of E coincide with π-tight
representations considered by Exel and Steinberg in 2018.

I The following is a consequence of a result by Exel and Steinberg:

Theorem

Let π : E → B be a representation of a semilattice E in a Boolean
algebra B such that π(E ) generates B as a Boolean algebra. Then B is
isomorphic to BXπ

(E ).
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Quotients of B(S) via X -to-join representations

I The canonical quotient morphism B(S)→ BX (S) corresponds to
the inclusion map GX (S) ↪→ G(S). Since this map is single-valued,
B(S)→ BX (S) is weakly meet-preserving.

I X – a closed and invariant subset of Ê (S)
I IX – the ideal of E (B(S)) consisting of those compact-opens of

Ê (S) which do not intersect with X .
I a, b ∈ B(S): define a ∼X b iff there are e, f , g ∈ E (B(S)) such that

d(a) = e ∨ f , d(b) = e ∨ g where f , g ∈ IX and ae = be.
I Theorem. Let S be an inverse semigroup and X a closed invariant

subset of Ê (S). Then B(S)/ ∼X ' BXπX
(S) where

πX : S → B(S)/ ∼X is the composition of ιB(S) : S → B(S) and the
quotient map B(S)→ B(S)/ ∼X .

I Corollary. Let ϕ : B(S)→ T be a surjective weakly meet-preserving
additive morphism where T is a Boolean inverse semigroup. Then
there is an invariant subset X ⊆ E (S)× Pfin(E (S)) such that
T ' BX (S).
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The X -to-join Booleanization of an inverse semigroup
I S – an inverse semigroup, X ⊆ E (S)× Pfin(E (S)).

I X is said to be S-invariant if (e, {e1, . . . , en}) ∈ X implies that
(s−1es, {s−1e1s, . . . , s−1ens}) ∈ X , for all s ∈ S .

I If X is S-invariant then Ê (S)X is invariant under the natural action

of S on Ê (S).

I X ′ – the smallest S-invariant subset that contains X .

I The natural action of S on Ê (S) restricts to the closed invariant

subset Ê (S)X ′ .

I The groupoid of germs of this restricted action is denoted by
GX (S).

I Example: X = ∅ ⇒ the universal groupoid,
X defines cover-to-join representations ⇒ the tight groupoid.

I The dual Boolean inverse semigroup of GX (S), denoted BX (S), will
be called the X -to-join Booleanization of S .
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The universal property of BX (S)

I The canonical map ιBX (S) : S → BX (S) is given by
ιBX (S)(s) = Θ[s] ∩ GX (S).

I A representation of S in a Boolean inverse semigroup B is a
morphism of semigroups ϕ : S → B satisfying ϕ(0) = 0. It is called
an X -to-join representation if ϕ|E(S) : E (S)→ E (T ) is an X -to-join
representation.

I Example: ιBX (S) is a proper X -to-join representation.

Theorem (GK, 2019) Let S be an inverse semigroup and
X ⊆ E (S)× Pfin(E (S)). Let further B be a Boolean inverse semigroup
and ϕ : S → B an X -to-join representation (resp. a proper X -to-join
representation). Then there is a unique morphism (resp. a unique proper
morphism) of Boolean inverse semigroups ψ : BX (S)→ B such that
ϕ = ψιBX (S).
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Prime representations of semilattices

I E – a semilattice, B – a Boolean algebra

I A representation ϕ : E → D will be called prime, if that for any
e ∈ E and any finite cover Y of e the following implication holds:

if y =
∨

Y then ϕ(y) =
∨

y∈Y

ϕ(y) (1)

I Prime = (cover&join)-to-join

I Any tight representation is prime.

I Let B be a Boolean algebra and suppose that the semilattice E
admits the structure of a distributive lattice. Then a proper
representation ϕ : E → B is prime if and only if it is a lattice
morphism.

I Prime representations generalize proper morphisms from distributive
lattices to Boolean algebras.
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Example

I n ≥ 1, En = {0, e1, . . . , en} with 0 ≤ e1 ≤ · · · ≤ en

I Since En is a distributive lattice, ιBprime(En) : E → Bprime(En) is an
injective lattice morphism and Bprime(En) is isomorphic to the
Booleanization E−n of the distributive lattice En

I ιBprime(En) is prime but not cover-to-join and that ιBtight(En) maps En

onto a two-element Boolean algebra
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Core and prime represenations of inverse semigroups

I E – a semilattice, e, f ∈ E , f ≤ e, f 6= 0

I f is dense in e (Exel, 2009) if there is no non-zero element d ≤ e
satisfying d ∧ f = 0

I f is dense in e if and only if {f } is a cover of e

I A representation ϕ : E → B of E in a Boolean algebra B is called
core, provided that for any e, f ∈ E , f 6= 0, such that f ≤ e and f is
dense in e we have: ϕ(f ) = ϕ(e)

I A representation ϕ : S → T of an inverse semigroup S in a Boolean
inverse semigroup T is called a core (resp. prime) if
ϕ|E(S) : E (S)→ E (T ) is core (resp. prime).

I Core and prime represenations are a special case of X -to-join
representations

I Any tight representation is core and prime
I Other representations that are different form tight ones have been

recently studied by Exel and Steinberg (2019, arXiv)
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Boolean inverse semigroups in extended signature
S – Boolean inverse semigroup. The operations \ and ∨ on E (S) can be
extended to S : s \ t = (r(s) \ r(t)) s (d(s) \ d(t)), sOt = (s \ t) ∨ t.
Theorem [Wehrung, 2017]. An algebra (S ; 0,−1 , ·, \,O) is an algebra
attached to a Boolean inverse semigroup iff (S ; 0,−1 , ·) is an inverse
semigroup with zero 0 and:
(1) (d(x) \ d(y))2 = d(x) \ d(y), (d(x)Od(y))2 = d(x)Od(y);

(2) all the defining identities (and hence all the identities) of the variety
of Boolean algebras with x , y , . . . , replaced by d(x), d(y), . . . , and
0, ∧, ∨ and \ replaced by 0, ·, O and \;

(3) xOy ≥ x \ y , xOy ≥ y ;

(4) d(xOy) = d(x \ y)Od(y);

(5) x \ y = (r(x) \ r(y))x(d(x) \ d(y));

(6) z((d(x) \ d(y)Od(y)) = z(d(x) \ d(y))Ozd(y).
If (S ; 0,−1 , ·, \,O) is an algebra where (S ; 0,−1 , ·) is an inverse semigroup
with zero 0 and (1)–(6) hold, then (S ; 0,−1 , ·) is a Boolean inverse
semigroup and (S ; 0,−1 , ·, \,O) is the algebra attached to (S ; 0,−1 , ·).



22

Free Boolean inverse semigroups

A map ϕ : S → T between Boolean inverse semigroups is a morphisms
between their attached algebras if and only if:

1. ϕ(st) = ϕ(s)ϕ(t) for all s, t ∈ S ;

2. ϕ(0) = 0;

3. ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b) for all a, b ∈ S such that a ∼ b.

They are called additive morphisms.

Proposition
Let X be a set and let FI (X ) be the free inverse semigroup on X . Then
the free Boolean inverse semigroup (in the extended signature), FBI (X ),
on X is isomorphic to B(FI (X ) ∪ {0}).
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Defining relations

Proposition (GK, 2019)
Let S be an inverse semigroup and X ⊆ E (S)×Pfin(E (S)). Then BX (S)
is generated by the set {[s] : s ∈ S} subject to the relations:

(1) [0] = 0;

(2) [st] = [s][t] for all s, t ∈ S ;

(3) [e] =
`n

i=1[en] for all (e, {e1, . . . , en}) ∈ X .

Corollary
Let S be an inverse semigroup.

1. The universal Booleanization B(S) is generated by the set
{[s] : s ∈ S} subject to the relations (1) and (2) above.

2. Let X ⊆ E (S)× Pfin(E (S)). Then BX (S) is a quotient of B(S)
obtained by adding relations (3) above B(S).
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X -to-join representations of inverse semigroups in C ∗-algebras

I S – an inverse semigroup, A – a C∗-algebra.

I A map σ : S → A is a representation if the following conditions
hold:

1. σ(0) = 0;

2. σ(st) = σ(s)σ(t) for all s, t ∈ S ;

3. σ(s−1) = (σ(s))∗ for all s ∈ S .

I Dσ – the C∗-subalgebra of A generated σ(E (S)),

Bσ = {e ∈ Dσ : e2 = e}.

Bσ is a Boolean algebra with respect to the operations

a ∧ b = ab, a ∨ b = a + b − ab, a \ b = a− ab.

I Let X ⊆ E (S)× Pfin(E (S)). A representation σ : S → A is called
X -to-join if the restriction of σ to E (S) is an X -to-join
representation of E (S) in the Boolean algebra Bσ.
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Right LCM semigroups and their C ∗-algebras

I A semigroup P is right LCM if it is left cancellative and the
intersection of any two principal right ideals is either empty or a
principal right ideal.

I We assume that P has the identity element denoted 1P .

I J (P) – the set of all principal right ideals of P, plus ∅.

I The full C∗-algebra C∗(P) of P (Li, 2012, P any left cancellative
semigroup, J (P) the set of constructible right ideals).

I C∗(P) is the universal C∗-algebra generated by a set of isometries
{vp : p ∈ P} and a set of projections {eX : X ∈ J(P)} subject to the
following relations:

(L1) vpvq =vpq for all p, q ∈ P,

(L2) vpeX v
∗
p = epX for all p ∈ P and X ∈ J(P),

(L3) eP = 1 and e∅ = 0,

(L4) eX eY = eX∩Y for all X ,Y ∈ J(P).
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C ∗(P) is a groupoid C ∗-algebra
I U(P) – the group of units of P.

I (p, q) ∼ (a, b) ⇔ there is u ∈ U(P) such that p = au and q = bu.

I [p, q] – the ∼-class of (p, q), for any p, q ∈ P.

I S = {[p, q] : p, q ∈ P} ∪ {0}
is an inverse semigroup with the identity [1P , 1P ],

[a, b][c, d ] =

{
[ab′, dc ′], if cP ∩ bP = rP and cc ′ = bb′ = r ,
0, if cP ∩ bP = ∅,

s0 = 0s = 0 and [p, q]−1 = [q, p].
I E(S) = {[p, p] : p ∈ P}.
I The inverse semigroup S is called the left inverse hull of P.
I Another consruction of S:

I λp : P → pP, p ∈ P, is a bijection ⇒ λp ∈ I(P).
I Il (P) – the inverse subsemigroup of I(P) generated by λp, p ∈ P.
I S → Il (P), [p, q] 7→ λpλ

−1
q , is an isomorphism.

I C∗(P) is isomorphic to the universal C∗-algebra C∗(S) of S
(Norling, 2014). It is a groupoid C∗-algebra of the groupoid G(S).
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The boundary quotient Q(P)
I A finite subset F ⊂ P is a foundation set if for all p ∈ P there exists

f ∈ F such that fP ∩ pP 6= ∅.

I F ⊆ P is a foundation set ⇔ {[f , f ] : f ∈ F} is a cover of [1P , 1P ]
in E (S).

I The boundary quotient Q(P) of C∗(P) is defined as the universal
C∗-algebra given by the defining relations of C∗(P) plus the
relations ∏

p∈F

(1− epP ) = 0 for all foundation sets F ⊆ P

(Brownlowe, Ramagge, Robertson and Whittaker, 2014).
I Q(P) is isomorphic to the tight C∗-algebra C∗tight(S) of S (Starling,

2015). It is a groupoid C∗-algebra of the groupoid Gtight(S) (P –
countable).

I Example: if P = {a, b}∗ then characters of E (S) are in a bijection
with path in the binary tree (both finite and infinite), the
cover-to-join characters correspond to infinite paths).
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An example: the semigroup No N×

I N× = {n ∈ N : n ≥ 1}
I N× acts on N by multiplication.

I No N× – the semidirect product, i.e.

(r , a)(q, b) = (r + aq, ab).

I P = No N× is right LCM:

(r , a)P∩(q, b)P =

{
(l , lcm(a, b)), if (r + aN) ∩ (q + bN) 6= ∅,
∅, otherwise.

I The C∗-albebra QN (Cuntz, 2008), it is isomorphic to the
Crisp-Laca quotient Q(No N×) of the Toeplitz algebra T (No N×)
(Laca and Raeburn, 2010). This is precisely the tight C∗-algebra
C∗tight(S) (follows from the result by Starling, 2015).
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A construction of a Zappa-Szép product
I P – a semigroup with unit e; U,A ⊆ P – subsemigroups and

I U ∩ A = {e};
I ∀p ∈ P ∃! (u, a) ∈ U × A such that p = ua.

I Then P is an internal Zappa-Szép product P ' U ./ A of U and A.

I If u ∈ U and a ∈ A we write au = (a · u)a|u where (a · u) ∈ U and
a|u ∈ A. These define the action and the restriction maps.

I Brin (2005) defined external Zappa-Szép products of U and A and
proved the equivalence of the ‘external’ and the ‘internal’
definitions.

I For groups: Zappa (1942) and Szép (1950, 1958, 1962).
I Brownlowe, Ramagge, Robertson, Whittaker (2014) considered

Zappa-Szép products P ' U ./ A such that:

(C1) U,A are right LCM;
(C2) J (A) is totally ordered by inclusion;
(C3) The map u 7→ a · u is a bijection for each a ∈ A.

I Then the P is right LCM.
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Zappa-Szép products: examples

I No N×
I U = {(r , x) ∈ N× N× : 0 ≤ r ≤ x − 1}, A = {(m, 1) : m ∈ N}.
I Axioms (C1), (C2), (C3) hold.

I Baumslag - Solitar semigroups B(c , d)+

I c, d ∈ Z, c, d > 0, BS(c, d) is a group given by the group
presentation BS(c, d) = 〈a, b : abc = bda〉.

I B(c, d)+ is the submonoid in BS(c, d), generated by a and b.

I every element of B(c, d)+ can be uniquely written as∏n
i=1(bαi a)bβ , where αi ∈ {0, . . . , d − 1} and β ≥ 0.

I U = 〈a, ba, . . . , bd−1a〉, A = 〈b〉.
I Axioms (C1), (C2), (C3) hold.

I Self-similar group actions: X a finite alphabet, G a group acting
faithfully on the rooted tree X ∗. The action is self-similar if
∀g ∈ G , x ∈ X ∃!g |x ∈ G : g · (xw) = (g · x)(g |x · w).
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The additive and the multiplicative boundary quotients of C ∗(U ./ A)

I Suppose that axioms (C1), (C2) and (C3) hold. Brownlowe,
Ramagge, Robertson, Whittaker (2014) have shown that Q(U ./ A)
is a quotient of C∗(U ./ A) by the relations:

(Q1) eaP = 1 for all a ∈ A and
(Q2)

∏
p∈F

(1− epP ) = 0 for all foundation sets F ⊆ U.

I The additive boundary quotient QA(U ./ A) - only relations (Q1)
I The multiplicative boundary quotient QU (U ./ A) - only relations (Q2)
I QU (No N×) and QA(No N×) were studied before that by

Brownlowe, An Huef, Laca and Raeburn (2012).

I The boundary quotient diagram:

C∗(U ./ A)

QU (U ./ A) QA(U ./ A)

Q(U ./ A)
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The core subsemigroup of a right LCM semigroup

I Stammeier (2015) studies right LCM semigroups P that are
decomposable as P ' U ./ A where

A = Pc = {p ∈ P : pP ∩ qP 6= ∅ for all q ∈ P}

- the core subsemigroup of P (the term stems from Crisp and Laca,
2007, in the context of quasi-lattice ordered groups).

I Examples:

I N o N×, B(c, d)+, X ∗ ./ G - in their presented decompositions as
P ' U ./ A we have A = Pc .

I Stammeier (2015) asked for a realisation of QU (U ./ A) and
QA(U ./ A) as groupoid C∗-algebras.
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QU(U ./ A) and QA(U ./ A) are groupoid C ∗-algebras

I P = U ./ A, S – the left inverse hull of P.
I The set XA consists of all ([a, a], {[b, b]}) where a ∈ A and b ∈ aA;

I The set XU consists of all ([s, s], {[s1, s1], . . . , [sn, sn]}) where s ∈ U,
si ∈ sU for all i ∈ {1, . . . , n} and for each t ∈ sU there is
i ∈ {1, . . . , n} satisfying siU ∩ tU 6= ∅.

I The C∗-algebras C∗A(SP ), and C∗U (SP ) are defined as the universal
C∗-algebras generated by one element for each element of SP

subject to the following relations:

1. for C∗A (SP ) these are the relations saying that the standard map
πA : SP → C∗A (SP ) is an XA-to-join representation.

2. for C∗U (SP ) these are the relations saying that the standard map
πU : SP → C∗U (SP ) is an XU -to-join representation.

I Result (GK, 2019)
I QU (U ./ A) is isomorphic to the C∗-algebra C∗U (S).
I QA(U ./ A) is isomorphic to the C∗-algebra C∗A (S).

I Corollary. QU (U ./ A) and QA(U ./ A) are groupoid C∗-algebras.


