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The classical Stone duality

> A Boolean algebra is a relatively complemented distributive lattice
with O but in general without 1.
Distributive lattices have 0, but in general do not have 1.

v

> Finite Boolean algebras are precisely powersets of finite sets.
> There are infinite Boolean algebras which are not powersets.
» Too many subsets? Topologize!

v

A Stone space is a Hausdorff space with a basis of compact-open
sets.

v

A spectral space is a a sober space that has a basis of compact-open
sets which is closed under finite non-empty intersections.
The classical Stone duality (Stone, 1937; Doctor, 1964):
> The categories of Boolean algebras (resp. unital Boolean algebras)
and Stone spaces (resp. compact Stone spaces) are dually
equivalent.
> The categories of distributive lattices (resp. bounded distributive
lattices) and spectral spaces (resp. compact spectral spaces) are
dually equivalent.

v
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Boolean and distributive inverse semigroups

v

A Boolean inverse semigroup is an inverse semigroup S such that:

> E(S) admits the structure of a Boolean algebra;

> If a ~ b (~ is the compatibility relation) then a Vv b exists in S.

A distributive inverse semigroup is an inverse semigroup S such
that:

v

» E(S) admits the structure of a distributive lattice;
> If a~ bthen aV b exists in 5.

v

Any distributive lattice is a distributive inverse semigroup with
a-b=aAb; likewise any Boolean algebra is a Boolean inverse
semigroup.

Tn; Ix (X — any set); E(Zx) ~ P(X).

v
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Etale groupoids
» A groupoid is a small category where every arrow is invertible.

> G — groupoid, G = {a7'a: a € G} — the set of units of G.

v

d: G — G, d(a) = a—'a - the domain (or sourse) map;
r: G — GO, r(a) = aa—! - the range map.

The set of composable pairs: G = {(a, b) € G x G: r(b) = d(a)}.

A local bisection is a subset U C G such that d|y and r|y are
injective maps.

v

v

» G is a topological groupoid if G is a topological space and the
inversion map G — G and the product map G® — G are both
continuous.

v

G is étale if d is a local homeomorphism (< r is a local
homeomorphism < m is a local homeomorphism)
» If G is étale than G is an open subspace and G has a basis of open
local bisections; also G is R-discrete, that is, d~*(x) is a discrete
subspace of G for any x € g(o).
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Non-commutative Stone dualities

» A spectral groupoid is an étale groupoid G such that G(¥ is a
spectral space.

» A Stone groupoid is an étale groupoid G such that G(© is a Stone
space.

Theorem (Lawson, 2010-2013, more morphisms: GK and Lawson, 2017, very
relevant work: Resende, 2007, Lawson and Lenz, 2013.)
e The categories of Boolean inverse semigroups and Stone groupoids
are dually equivalent.
e The categories of distributive inverse semigroups and spectral
groupoids are dually equivalent.

» Local bisections of a Stone groupoid form a Boolean inverse
semigroup.

» Germs of elements of a Boolean inverse semigroup S over points of
the space of ultracharacters (resp. prime characters) of E(S) give
rise to a Boolean (resp. spectral) groupoid.
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Morphisms

» A morphism ¢: S — T between Boolean inverse semigroups is a
semigroup homomorphism such that ¢|g(s) is a non-degenerate morphism
of Boolean algebras. (Non-degenerate: for any e € E(T) there is
feE(S): o(f)>e)

> A continuous relational covering morphism between Boolean (or spectral)
groupoids is a map f: Gi — P(G2) such that:

(RM7)

for any t € gf’) |f(t)| =1 and f|g is a continuous proper map;
for all y € f(x): d(y) = fd(x) and r(y) = fr(x);

if (x,y) € gf) and s € f(x), t € f(y) then st € f(xy);

forany x € G1 : f(x71) = (F(x)) ™%

if AC G, is compact-open local bisection, then

f7Y(A) = {x € Gi: f(x)NA# @} is a compact-open local
bisection in Gy;

if d(x) =d(y) (or r(x) = r(y)) and f(x) N f(y) # @ then x =y
(star-injectivity);

if d(t) =y (resp. r(t) = y) where y = f(x) then there is s € G
such that d(s) = x (resp. r(s) = x) and t € f(s) (star-surjectivity).

» Morphisms between Boolean inverse semigroups are dualized by
continuous relational covering morphisms (GK and Lawson, 2017).
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Morphisms: variations

semigroups groupoids
type 1 morphisms continuous relational
covering morphisms (CRCMs)
type 2 proper moprhisms at least single valued CRCMs

type 3 | weakly meet-preserving | at most single valued CRCMs

moprhisms
type 4 | proper and weakly meet | continuous covering functors
preserving morphisms (= single-valued CRCMs)

» A morphism ¢: S — T is proper if any t € T can be written as
t =\/_, ti where n > 1 so that there are s1,...,s, € S satisfying
o(s)) >t forall i=1,... n Briefly, T = ((img)*)".

> A morphism ¢: S — S is weakly meet-preserving if t < f(a), f(b) implies
that there is ¢ < a, b such that t < f(c).

» In the case where S, T are A-semigroups, weakly meet preserving =
N-preserving.
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Character space of a semilattice

» E — a semilattice with 0, B — a Boolean algebra (or a distributive
lattice).

> A representation ¢: E — B is a map such that

> ¢(0)=0;
> p(aAb)=(a)Ap(b) forall a,b e E.

v

A character of E is a non-zero representation E — {0,1}.

» E - character set of E, topology is inherited from {0,1}E (with 0
removed), called the patch topology. Basis of the patch topology:

Mab,....b, ={¢ € E: p(a) = 1,¢(b1) = - - = p(bn) = 0},
n>1landa,by,...,b, € Saresuchthat b; <aforalli=1,...,n

v

Remark. There is another, spectral, topology on E with the basis:

M,={peE:pa)=1},a€S.
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The groupoid of germs of an inverse semigroup

>

>

S — an inverse semigroup with 0 (assumed throughout the talk!).

— —

S acts on E(S) by partial maps: if s € S and p € E(S) thens- @ is
defined & (s 1s) =1,

in which case (s - ¢)(e) = p(stes), e € E(S).

Let s,t € S and ¢ € E(S) be such that s- ¢ and t - ¢ are both
defined.

s and t define the same germ over ¢ if there is e € E(S) such that
v(e) =1 and se = te.

Notation: [s, ] — the germ defined by s over .
We look at the germ [s, ] as an arrow from ¢ to s - .

This leads to the groupoid of germs G(S) of the natural action of S
on E(S).
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The universal groupoid of an inverse semigroup

> The patch topology on G(S) has a basis consisting of the sets
Ofsis1,---s0] = {[s, 0] € G(S): p(s7's) = 1,Vi: (s 's;) = 0},
where n>1,s€ S and s1,...,s, <s.

» G(S) — Paterson's universal groupoid of S. It is a Stone groupoid.

» B(S) — the dual Boolean inverse semigroup of G(S), the universal
Booleanization of S.
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Cover-to-join representations

>

>

E — semilattice, B — Boolean algebra (or a distributive lattice)

Z C E is a cover of e € E if f < e such that ef # 0 thereis z € Z
satisfying zf = 0. From now on we consider finite covers.

@: E — B is cover-to-join, if for e € E and any finite cover Z C E
of e we have:

zeZ

Cover-to-join represenations (Donsig & Milan, 2014) are closely
relatedy to tight representations (Exel, 2009) (B is a uinital Boolean
algebra).

A non-degenerate representation E — B is tight if and only if it is
cover-to-join (Exel, 2019, B — Boolean algebra).

Cover-to-join characters of E = tight characters of E.

Etignt is a closed subset of E.
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The tight groupoid of an inverse semigroup

>

Et;ght is invariant under the natural action of S on E:
if © € Etigh and ¢(s™1s) =1 then s+ ¢ € Egjgne.

Etignt is a closed subset of E.

Let G(S),;on: be the groupoid of germs attached to the induced

action of S on Eyjgpt.
G(S)sign: — the tight groupoid of S.

Biight(S) — the dual Boolean inverse semigroup of Gyignt(S), the
tight Booleanization of S.
Buge(S): S — Bright(S), s+ ©][s], is a morphism of semigroups
(not injective in general!)

Example. Let S be a Boolean inverse semigroup. Then its dual
Stone groupoid is Gyight(S) whence S =~ Bijgn:(S).
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X-to-join representations of semilattices

» E — a semilattice, B a — Boolean algebra, X C E X Ps,(E).

> A representation ¢: E — B will be called an X-to-join
representation, if

ple) = \/ w(er)

for all (e,{er,...,en}) € X.

> EX — the set of all X-to-join characters of E. It is a closed subset of
E.

> EX — the space of X-to-join characters with the subspace topology
inherited from E.

» Ex is a Stone space.

» Bx(E) - the X-to-join Booleanization of E.



14

Connection with m-tight representations

» Let m: E — B be a representation of a semilattice E in a Boolean
algebra B.

» Define X, as the set consisting of all (e, {e1,...,e,}) € E X Pyin(E)
such that w(e) = /I, 7(e).

» Then X,-to-join representations of E coincide with 7-tight
representations considered by Exel and Steinberg in 2018.

» The following is a consequence of a result by Exel and Steinberg:

Theorem

Let m: E — B be a representation of a semilattice E in a Boolean
algebra B such that w(E) generates B as a Boolean algebra. Then B is
isomorphic to Bx_(E).
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Quotients of B(S) via X-to-join representations

>

The canonical quotient morphism B(S) — Bx(S) corresponds to
the inclusion map Gx(S) < G(S). Since this map is single-valued,
B(S) — Bx(S) is weakly meet-preserving.

» X — a closed and invariant subset of E(S)
» [y — the ideal of E(B(S)) consisting of those compact-opens of

E(S) which do not intersect with X.

a,b € B(S): define a ~x b iff there are e, f, g € E(B(S)) such that
&1 )=eVf, d(b)=eVgwhere f,g € Iy and ae = be.

Theorem. Let S be an inverse semigroup and X" a closed invariant

subset of E(S) Then B(S)/ ~x =~ Bx, (S) where

mx: S — B(S)/ ~x is the composition of tg(s): S — B(S) and the

quotient map B(S) — B(S)/ ~x.

Corollary. Let ¢: B(S) — T be a surjective weakly meet-preserving

additive morphism where T is a Boolean inverse semigroup. Then

there is an invariant subset X C E(S) X Pgn(E(S)) such that

T ~ Bx(S)
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The X-to-join Booleanization of an inverse semigroup

>

v

S — an inverse semigroup, X C E(S) X Pr(E(S)).

X is said to be S-invariant if (e, {e1,..., e }) € X implies that
(s7les,{s teis,...,sle,s}) € X, foralls € S.

—

If X is S-invariant then E(S), is invariant under the natural action
of S on E(S).

X' — the smallest S-invariant subset that contains X.

—

The natural action of S on E(S) restricts to the closed invariant

—

subset E£(S)y..

The groupoid of germs of this restricted action is denoted by
Gx(S).

Example: X = @ = the universal groupoid,

X defines cover-to-join representations = the tight groupoid.

The dual Boolean inverse semigroup of Gx(S), denoted Bx(S), will
be called the X-to-join Booleanization of S.
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The universal property of Bx(S)

> The canonical map tg,(sy: S — Bx(S) is given by
1x(5)(5) = OIs] N Gx(S).

» A representation of S in a Boolean inverse semigroup B is a
morphism of semigroups ¢: S — B satisfying ¢(0) = 0. It is called
an X-to-join representation if ¢|gs): E(S) — E(T) is an X-to-join
representation.

» Example: tp,(s) is a proper X-to-join representation.

Theorem (GK, 2019) Let S be an inverse semigroup and

X C E(S) x Prin(E(S)). Let further B be a Boolean inverse semigroup
and ¢: S — B an X-to-join representation (resp. a proper X-to-join
representation). Then there is a unique morphism (resp. a unique proper
morphism) of Boolean inverse semigroups 1: Bx(S) — B such that

o = Pipy(s)-
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Prime representations of semilattices

» E — a semilattice, B — a Boolean algebra

> A representation ¢: E — D will be called prime, if that for any
e € E and any finite cover Y of e the following implication holds:

if y = \/ Y then o(y) = \/ ¢(y) (1)

yey
> Prime = (cover&join)-to-join
> Any tight representation is prime.

> Let B be a Boolean algebra and suppose that the semilattice E
admits the structure of a distributive lattice. Then a proper
representation ¢: E — B is prime if and only if it is a lattice
morphism.

» Prime representations generalize proper morphisms from distributive
lattices to Boolean algebras.
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Example

»n>1E,={0,e,...,e, with0< e <--- < e,

> Since E, is a distributive lattice, tp_, (£,): E = Bprime(En) is an
injective lattice morphism and B ime(E,) is isomorphic to the
Booleanization E; of the distributive lattice E,

> LB,m(E,) IS prime but not cover-to-join and that ¢, (g,) maps E,
onto a two-element Boolean algebra
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Core and prime represenations of inverse semigroups

v

v

E — a semilattice, e,f € E, f <e, f #£0

f is dense in e (Exel, 2009) if there is no non-zero element d < e
satisfying d A f =0

f is dense in e if and only if {f} is a cover of e

A representation ¢: E — B of E in a Boolean algebra B is called

core, provided that for any e, f € E, f # 0, such that f < e and f is
dense in e we have: p(f) = ¢(e)

A representation ¢: S — T of an inverse semigroup S in a Boolean
inverse semigroup T is called a core (resp. prime) if

©lesy: E(S) — E(T) is core (resp. prime).

Core and prime represenations are a special case of X-to-join
representations

> Any tight representation is core and prime
» Other representations that are different form tight ones have been

recently studied by Exel and Steinberg (2019, arXiv)
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Boolean inverse semigroups in extended signature

S — Boolean inverse semigroup. The operations \ and V on E(S) can be

extended to S: s\ t = (r(s) \ r(t))s(d(s)\d(t)),sVt=(s\t)Vt.

Theorem [Wehrung, 2017]. An algebra (S;0,7%,-,\, V) is an algebra

attached to a Boolean inverse semigroup iff (S;0,71,-) is an inverse

semigroup with zero 0 and:

(1) (d(x)\ d(y))* = d(x) \ d(y), (d(x)vd(y))* = d(x) vd(y);

(2) all the defining identities (and hence all the identities) of the variety
of Boolean algebras with x, y, ..., replaced by d(x), d(y), ..., and
0, A, V and \ replaced by 0, -, vV and \;

(3) xVy >x\y, xVy >y,

(4) d(xvy) =d(x\ y)vd(y);

(5) x\y = (r(x) \ r(y))x(d(x) \ d(y));

(6) z((d(x) \ d(y)vd(y)) = z(d(x) \ d(y))Vzd(y).

If (5;0,7%,-,\, V) is an algebra where (5;0,71,-) is an inverse semigroup
with zero 0 and (1)-(6) hold, then (S;0,71,-) is a Boolean inverse
semigroup and (S;0,71, -\, V) is the algebra attached to (S;0,71,").
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Free Boolean inverse semigroups

A map ¢: S = T between Boolean inverse semigroups is a morphisms
between their attached algebras if and only if:

1. (st) = p(s)e(t) for all s, t € S;
2. ¢(0) =0;
3. p(aV b) =p(a) Vv p(b) for all a,b € S such that a ~ b.

They are called additive morphisms.

Proposition

Let X be a set and let FI(X) be the free inverse semigroup on X. Then
the free Boolean inverse semigroup (in the extended signature), FBI(X),
on X is isomorphic to B(FI(X) U {0}).
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Defining relations

Proposition (GK, 2019)
Let S be an inverse semigroup and X C E(S) x Pgn(E(S)). Then Bx(S)
is generated by the set {[s]: s € S} subject to the relations:

(1) [0] = 0;
(2) [st] = [s][e] for all s, t € S
(3) [e] = Vi_,len] for all (e,{e1,...,en}) € X.

Corollary
Let S be an inverse semigroup.

1. The universal Booleanization B(S) is generated by the set
{[s]: s € S} subject to the relations (1) and (2) above.

2. Let X C E(S) x Psin(E(S)). Then Bx(S) is a quotient of B(S)
obtained by adding relations (3) above B(S).
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X-to-join representations of inverse semigroups in C*-algebras

» S — an inverse semigroup, A — a C*-algebra.

» Amapo: S — Ais a representation if the following conditions
hold:

1. ¢(0)=0;
2. o(st) =o(s)o(t) for all s,t € S;
3. o(s7!) = (o(s))* forall s € S.

D, — the C*-subalgebra of A generated o(E(S)),
B,={ecD,: e*=e}.

B, is a Boolean algebra with respect to the operations

v

aANb=ab, avVvb=a+b—ab, a\b=a— ab.

v

Let X C E(S) x Prin(E(S)). A representation o: S — A is called
X-to-join if the restriction of o to E(S) is an X-to-join
representation of E(S) in the Boolean algebra B, .
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Right LCM semigroups and their C*-algebras

> A semigroup P is right LCM if it is left cancellative and the
intersection of any two principal right ideals is either empty or a
principal right ideal.

» We assume that P has the identity element denoted 1p.

> J(P) — the set of all principal right ideals of P, plus &.

> The full C*-algebra C*(P) of P (Li, 2012, P any left cancellative
semigroup, J(P) the set of constructible right ideals).

» C*(P) is the universal C*-algebra generated by a set of isometries
{vp: p € P} and a set of projections {ex: X € J(P)} subject to the
following relations:

(L1) vpvq =vpq for all p,g € P,

(L2) vpexvy = epx forall p e P and X € J(P),

(L3) ep =1and ez =0,

( ) exey = exny for all X7 Y € J(P).
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C*(P) is a groupoid C*-algebra

vV v vy

v

U(P) — the group of units of P.
(p,q) ~ (a, b) & there is u € U(P) such that p = au and q = bu.
[p, q] — the ~-class of (p, q), for any p,q € P.
S={lp.q]: p,g € P} U{0}
is an inverse semigroup with the identity [1p,1p],
[ [ab',dc], ifcPNbP =rPand cc’ = bb' =,
(3. blfe, d] = { 0, if cPNbP =2,
s0=0s=0and [p,q] "' = [q,p]
E(S) ={lp,pl: p€ P}.
The inverse semigroup S is called the left inverse hull of P.

Another consruction of S:
> X\p: P— pP, p € P, is a bijection = X\, € Z(P).
> Z;(P) — the inverse subsemigroup of Z(P) generated by \,, p € P.
» S = I)(P), [p,q] = X\pA; ", is an isomorphism.

C*(P) is isomorphic to the universal C*-algebra C*(S) of S
(Norling, 2014). It is a groupoid C*-algebra of the groupoid G(5).
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The boundary quotient Q(P)

» A finite subset F C P is a foundation set if for all p € P there exists

f € F such that fP N pP # &.

F C P is a foundation set < {[f,f]: f € F} is a cover of [1p, 1p]
in E(S).

The boundary quotient Q(P) of C*(P) is defined as the universal
C*-algebra given by the defining relations of C*(P) plus the
relations

H(l — epp) =0 for all foundation sets F C P
pEF

(Brownlowe, Ramagge, Robertson and Whittaker, 2014).

Q(P) is isomorphic to the tight C*-algebra Cj;,,,(S) of S (Starling,
2015). It is a groupoid C*-algebra of the groupoid Giignt(S) (P —
countable).

Example: if P = {a, b}* then characters of E(S) are in a bijection
with path in the binary tree (both finite and infinite), the
cover-to-join characters correspond to infinite paths).



28

An example: the semigroup N x N*
» N*={neN:n>1}
» N* acts on N by multiplication.

» N x N* — the semidirect product, i.e.

(r,a)(q, b) = (r + aq, ab).

v

P =N x N* is right LCM:

(I,lem(a, b)), if (r+aN)N (g + bN) # o,
a, otherwise.

(r,a)PN(q,b)P = {

v

The C*-albebra Qy (Cuntz, 2008), it is isomorphic to the
Crisp-Laca quotient Q(N x N*) of the Toeplitz algebra T (N x N*)
(Laca and Raeburn, 2010). This is precisely the tight C*-algebra
Ciight(S) (follows from the result by Starling, 2015).
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A construction of a Zappa-Szép product
» P — a semigroup with unit e; U, A C P — subsemigroups and
» UNnA={e};
» Vp € P 3! (u,a) € U x Asuch that p = ua.

» Then P is an internal Zappa-Szép product P ~ U < A of U and A.

» If ue U and a € A we write au = (a- u)al, where (a-u) € U and
al, € A. These define the action and the restriction maps.

» Brin (2005) defined external Zappa-Szép products of U and A and
proved the equivalence of the ‘external’ and the ‘internal’
definitions.

» For groups: Zappa (1942) and Szép (1950, 1958, 1962).

» Brownlowe, Ramagge, Robertson, Whittaker (2014) considered
Zappa-Szép products P ~ U <1 A such that:

(C1) U, A are right LCM;
(C2) J(A) is totally ordered by inclusion;
(C3) The map u > a- uis a bijection for each a € A.

» Then the P is right LCM.
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Zappa-Szép products: examples

> N x N*
» U={(r,x) eNxN*:0<r<x—1}, A={(m,1): me N}.
» Axioms (C1), (C2), (C3) hold.

» Baumslag - Solitar semigroups B(c,d)*"

» ¢,d €7, c,d>0, BS(c,d) is a group given by the group
presentation BS(c,d) = (a, b: ab® = b%a).
» B(c,d)" is the submonoid in BS(c, d), generated by a and b.

» every element of B(c,d)" can be uniquely written as
[17,(b*a)b?, where a; € {0,...,d — 1} and 3 > 0.

» U= (a,ba,..., b a), A= (b).
» Axioms (C1), (C2), (C3) hold.
» Self-similar group actions: X a finite alphabet, G a group acting

faithfully on the rooted tree X*. The action is self-similar if
Vge G,xe X 3lgly e G: g-(xw) =(g-x)(g|x-w).
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The additive and the multiplicative boundary quotients of C*(U < A)

> Suppose that axioms (C1), (C2) and (C3) hold. Brownlowe,
Ramagge, Robertson, Whittaker (2014) have shown that Q(U 1 A)
is a quotient of C*(U <1 A) by the relations:

(Ql) esp =1 forall a€ Aand
(Q2) TI(1 — epp) =0 for all foundation sets F C U.

peEF
The additive boundary quotient Qa(U 1 A) - only relations (Q1)
The multiplicative boundary quotient Qu(U > A) - only relations (Q2)
Qu(N x N*) and Q4(N »x N*) were studied before that by
Brownlowe, An Huef, Laca and Raeburn (2012).

vwvyy

» The boundary quotient diagram:
C'(Ux A)
b ~
Qu(U = A) Q4(U < A)
N b

QU< A)
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The core subsemigroup of a right LCM semigroup

» Stammeier (2015) studies right LCM semigroups P that are
decomposable as P ~ U 1 A where

A=P.={peP:pPNqgP # @ for all g € P}

- the core subsemigroup of P (the term stems from Crisp and Laca,
2007, in the context of quasi-lattice ordered groups).

» Examples:

» NxN*, B(c,d)*, X* > G - in their presented decompositions as
P~ U< A we have A = P..

» Stammeier (2015) asked for a realisation of Qy(U 1 A) and
Oa(U a1 A) as groupoid C*-algebras.
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Qu(U 1 A) and Qa(U 1 A) are groupoid C*-algebras

> P= U< A, S - the left inverse hull of P.
> The set X4 consists of all ([a, a], {[b, b]}) where a € A and b € aA;

> The set Xy consists of all ([s, s], {[s1,51],---,[5n, Sn]}) where s € U,
s; € sU for all i € {1,...,n} and for each t € sU there is
i €{1,...,n} satisfying s;UNtU # @.

» The C*-algebras C;(Sp), and C[;(Sp) are defined as the universal
C*-algebras generated by one element for each element of Sp
subject to the following relations:

1. for C,(Sp) these are the relations saying that the standard map

ma: Sp — Cx(Sp) is an Xa-to-join representation.
2. for C(j(Sp) these are the relations saying that the standard map

mu: Sp — Cj(Sp) is an Xy-to-join representation.
» Result (GK, 2019)

» OQuy(U i A) is isomorphic to the C*-algebra Cj(S).
> Qa(U < A) is isomorphic to the C*-algebra C5(S

» Corollary. Qu(U <t A) and Q4(U < A) are groupoid C*-algebras.



