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What's the problem?

Let S be a semigroup or group and let T < S. Then T is maximal
if
T<U<S=T=U.

Equivalently, ( T,s) =S forallse S\ T.

One way to understand the structure of S is to understand the
subsemigroup or subgroup structure.

Starting point: understand the maximal subsemigroups!

We concentrate on:
> Sq - the symmetric group on a set ;

» QF - the full transformation semigroup on Q.

If |2 = n €N, then we write S, and n".



Finite permutation groups

Theorem (O'Nan—Scott '79)
A maximal subgroup of S,, or A, is one of the following:
> Sk X Sp—k (intransitive)
> Sk 1Sm with mk =n, m>1, k > 1 (imprimitive)
> Sk 1S, in its product action where m¥ =n, m>5, k > 1
(wreath)
AGL(d, p) where p prime and p? = n (affine)
Tk . (Out(T) x Sk) where T non-abelian simple and
| T|k~1 = n (diagonal)
an almost simple group G in some primitive action —
T < G < Aut(T) where T non-abelian simple
(almost simple).
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Finite transformation semigroups

If k < n, then write Iy, = {f e n” : [(n)f| < k}.
Theorem (Trivial)

A maximal subsemigroup of the full transformation semigroup n" is
one of the following:

> SpU 2,

» G U Il,_1 where G is a maximal subgroup of Sp,.

Proof.
If f € n" such that |(n)f| = k < n—1, then

<5n,f>:SnU/k.

This implies that the subsemigroups in the theorem are maximal.

If M is maximal, then M NS, = S, or = a maximal subgroup
(since I,_1 is an ideal). O



Some infinite permutation groups
If Q is an infinite set, then {X1,...,X,} is a finite partition of Q if
Yi,..., X, partition Q and |X;| = |Q\ ;| = |9Q].
If X C Q is arbitrary, then define:
Pointwise stabilizer:
Sey=Sas=1{f€Sa: (o)f =0 (VoeX)}
Setwise stabilizer: S¢zy ={f €S5q : (0)f €X (Vo €X)}

Stabilizer of finite partition:
Stab(Zl, e Z,,) = {f € S5q : (Vi)(ﬂj)(Z,-f = Zj)} =S50S,

Lemma
IfT1,T> CQ and ]Fl N rg‘ = min{]l’ll, ’rgl}, then

SI'1UI'2 = <5I'17 Srg )



Infinite symmetric groups - intransitive case
G < Sq intransitive = 3¥ C Qsuch that ¥¢ =¥ = G < S5y

Proposition
S¢xy is maximal if and only if [X| < oo or [\ Z| < oc.

Proof.
(é) ‘Z| = |Q’ =Q\X|= S{Z} < Stab(Z,Q \ Z) < Sq.

(<) Sq is transitive and primitive = Sy, is maximal for all a € Q

Proceed by induction:

» M :=Q\Xand f € S5q\ Sxy

» Ja € X such that (a)f € X

> (Sizys f) 2> (Sr FSm,f ) = (Srys Srip1) = Srun et

> Six\{e}} = SizySrune < (Sqzp Srure1) < (Sgy ).
> S{x\{a}} Maximal and Sgzy \ Sy oy # 0

> Sq = <5{Z\{a}}>5{2}> <S{Z}7 ) and so 5{2} maximal. [J



Infinite symmetric groups - imprimitive case |

Stab(Xy,...,X,) is imprimitive, is it maximal?
Let € X1 and § € ¥5. Then (Stab(Xy,...,X,),(af)) # Sa.

If X, C Q, then X is almost equal T if
IZ\T|+ I\ X] < || and we write Z ~ T.

If BSq ={f € Sq : |supp(f)| < ||}, then

<Stab(21, cey Z,,), BSq > = Stab(Zl, C ,Zn) - BSq
= AStab(Zl, ey )I,,) = {f € Sq : (VI)(H])((Z,)f ~ ZJ)} 75 SN.



Infinite symmetric groups - imprimitive case |l
Theorem (Ball '66)
AStab(X4,...,%,) is maximal for all n > 2.
Proof.
> let f € Sq \ AStab(X4,...,%,)

v

3i,j, k such that [¥X;f NY;| = co and |L;f N Xx| = o0
> Ss.r < F1AStab(Xy,...,X,)f

> Sy, Sy, < AStab(Xy,...,%,)

> Syus, = (Sx;5 Sz, S5, ) < (AStab(XZg,...,X,),f)

» AStab(Xi,...,X,) is 2-transitive on X1,...,X,

Sa < (Ssyus,; Ssousss -5 Sy, yUS, )
< (AStab(Z1,...,%,),f). O



Filters and ideals - |

A filter F is a subset of the power set P(2) such that
>0 gF
» ifAc Fand AC B, then Be F
> if A,B € F, then ANB € F.

An ideal T is a subset of P(2) such that
»PcZand QgT
» ifAcZand BC A then BeZ
» if ABeZ then AUB€eT.

For example, if « € Q, then F ={ACQ : o € A} is an filter.
Such a filter F is called principal.



Filters and ideals - 1l

An ultrafilter is a filter not contained in any other filter.

If F is a filter on €2, then the stabilizer of F in Sq is
Siry=1{f€Sa: (VACQ)AeF «~ (Af eF)}

Theorem (Richman '67)

If F is an ultrafilter, then

(a) Syry has two orbits on infinite coinfinite subsets of 2

(b) Syry is a maximal subgroup of Sq
(¢) Sgry = Uaer S(a)-

Corollary

There are 22 non-conjugate maximal subgroups Sa.
Jug: group.



Some non-maximal ideals

Theorem
Let T be an ideal of 2 such that S;zy has 3 orbits on infinite
coinfinite subsets. Then S(z) is maximal.

There exist ideals 7 on ) such that S;7, have 4 orbits on infinite
coinfinite subsets and Sz} is not maximal.

There are 22" maximal subgroups that are stabilizers of
non-maximal ideals.

Example. Define

I={ACQ: : Qs A} or
Z={ACQ : Ais nowhere dense }.

Then Z is an ideal and Sy} has 3 orbits on moieties.



Theorem (Macpherson & Neumann '90)

There exists a maximal subgroup of Sq that does not contain any
S(z) for any . C N.

Theorem (Brazil, Covington, Penttila, Praeger, Woods '94)

Let G be a maximal subgroup of Sq such that S5y < Sq for some
Y such that |Q\ X| = |Q|. Then

(i) G = AStab(P) for some finite partition P of Q
(ii) G = SyFy for some specific type of filter F.



Infinite symmetric groups - wreath case

There is an analogue of this case but I'm not going to talk about
it...

‘It seems hopeless to try to prove an analogue of the
O’Nan-Scott Theorem in the infinite case.’



Containment in maximal subgroups

Theorem (Zorn's Lemma)

Let G be any (semi)group and let H < G such that 3K C G with
|K| < oo and (H,K)= G. Then H is contained in a maximal
(semi)subgroup of G.

Theorem (Macpherson & Praeger '90)

Let G be a subgroup of Sy that is not highly transitive. Then G is
contained in a maximal subgroup.

Theorem (Baumgartner, Shelah, Thomas '93)

It is consistent and independent of ZFC that 3G < Sy not
contained in any maximal subgroup.



Infinite transformation semigroups - preliminaries

The functions with finite image:

F={feQ?:|Qf| <0}
A subsemigroup S of Q% is dense if for all finite ¥ C Q and for all
f € ¥ there exists g € S such that g|y = f.

Lemma
If M is a maximal subsemigroup of Q%, then M is dense.

Proof.
M#Q2=M<MUF # Q% O
Proposition (Macpherson & Praeger '90)

Let S be a countable subsemigroup of QL. Then S is contained in
a maximal subsemigroup of Q<.



Infinite transformation semigroups - parameters

If feQ?and ¥ CQ such that f|s is injective and Xf = Qf, then
Y is a transversal of f.

d(f) = [Q\Qf|

c(f) = |Q\ X| where ¥ is any transversal of f
k(f.p) = HaeQ:laf = pl
where 11 < [Q].

Theorem (Howie, Higgins, Ruskuc '98)

Let Q be an infinite set and let f, g € Q such that c(f) =0,
d(f) = 19|, d(g) =0, and k(g,|Q) = Q. Then (Sq,f.g) = Q"



Maximal subsemigroups containing the symmetric group

Theorem (East, M., Péresse '11)
Let Q be any infinite set and let M < Q% such that Sq < M

If || is regular, then M is maximal if and only if M is one of:
{FeQ®: c(f)y<pord(f)>p} for some N < 11 < |Q;
{feQ®: c(f)=0ord(f)>0};

{FfeQ®: c(f)>pord(f)<p} for some Ry < 1 < |Q;
{feQ®: c(fy>0o0rd(f)=0}
{FeQ®: k(f,1Q) <}

If || is a singular cardinal, then M is maximal if and only if M is
one of the first four subsemigroups above or

{FeQ®: 3v<|Q)k(f,v)<IQD}.



The countable case

Theorem (East, M., Péresse '11)
Let M < NN such that Sy < M. Then M is maximal if and only if

M is one of:

{feqQ®:
{fe®:
{feq®:
{feQ®:
{fe®:

c(f) < oo ord(f)=o0}
(f)=0o0rd(f) >0}
(f)=occord(f) < oo}
(

(

[9)

)

c(f)>0ord(f)=0}
kf,N0)<OO}.

Koppitz independently proved that the semigroups in the above

theorem are maximal.



Stabilizers of finite sets

Theorem (East, M., Péresse '11)

Let S := Sq, let ¥ C Q be finite, and let M < Q% such that
M N Sq = Sgzy. Then M is maximal if and only if M is one of:

{FeQ®: d(f)>porX € Qf or
(Q\X)F CQ\ X and c(f) < p)}

{FeQ®: (QA\D)FCQ\ZorLZQf}UF
{feQ®: SfFCYor|Xf|<|Z}UF

{FeQ?: c(f)>por|Xf| <|Z|or
(Ef =X and d(f) < p)}.



Almost stabilizers of finite partitions

Let P = {A1, Az, ..., A} where n > 2 be a finite partition of N
and let f € NN, Then define pr C {1,2,...,n}? by

pr={(i,J) - [AIf NAj| =00}

p;lz{(laj) : (jai)gpf}
A binary relation o is total if for all o € 2 there exists 3 € 2 such
that (a, ) € o.

Theorem (East, M., Péresse '11)

Let M be a subsemigroup of NN such that M N Sy = AStab(P).
Then M is maximal if and only if M is one of:

AStab(P) U { f € NN : p¢ is not total }
AStab(P) U { f € N : p1 is not total }.



Ultrafilters

Theorem (East, M., Péresse '11)

Let F be a non-principal ultrafilter on N and let M < NN such that
M N Sy = SiFy. Then M is maximal if and only if M is one of:

{feNY: (VACN)AcF — Af € Forc(fla) >0)}
{feNY: (VACN)AZF = Af ¢ Forc(fla) >0)(Ag F — Af &.

Corollary
There are 2 x 22°° non-conjugate maximal subsemigroups of NV,



A non-ultrafilter

Theorem (East, M., Péresse '11)
Let A C N be infinite coinfinite N and let

M={feNY: |AFN(N\A)| < oo}
Then M is a maximal subsemigroup of N,
Note that M N Sy is not a subgroup of Sy.

In fact, M N Sy is a generating set for Sy.



3 orbits on infinite coinfinite sets

Theorem (East, M., Péresse '11)

Let F be a filter such that Syr) has 3 orbits on infinite coinfinite
sets, let T be the ideal corresponding to F, and let M < Q% such
that S¢ry < M # Sq. Then M is maximal if and only if M is one
of:

{feNY . (VACN)AcF — Af € Forc(fla) >0)}
{feNY: (VACN)AE€T— Af €T orc(fla) >0)}
{feNV : (VACN)AecF — AfteForc(fla) >0)}
{feNV: (VACN)AeZ— Af1eTorc(fla)>0)}

For some examples some of these semigroups are equal, and for
other examples they are distinct.



Open problems

Open Problem

Does there exist a maximal subsemigroup M of NN such that
M N Sy is not a maximal subsemigroup of Sy?

Open Problem

Can we prove that there does not exist a maximal subsemigroup M
of NN such that M N Sy is trivial or { f € Sy : |supp(f)| < co }?



