Maximal subsemigroups of the semigroup of all mappings on an infinite set

James Mitchell joint work with J. East (Sydney) and Y. Péresse (St Andrews)

Semigroups Seminar, York, June 2011

What's the problem?

Let S be a semigroup or group and let $T<S$. Then T is maximal if

$$
T \leqslant U<S \Rightarrow T=U
$$

Equivalently, $\langle T, s\rangle=S$ for all $s \in S \backslash T$.
One way to understand the structure of S is to understand the subsemigroup or subgroup structure.

Starting point: understand the maximal subsemigroups!
We concentrate on:

- S_{Ω} - the symmetric group on a set Ω;
- Ω^{Ω} - the full transformation semigroup on Ω.

If $|\Omega|=n \in \mathbb{N}$, then we write S_{n} and n^{n}.

Finite permutation groups

Theorem (O'Nan-Scott '79)

A maximal subgroup of S_{n} or A_{n} is one of the following:

- $S_{k} \times S_{n-k}$ (intransitive)
- S_{k} l S_{m} with $m k=n, m>1, k>1$ (imprimitive)
- $S_{k} \backslash S_{m}$ in its product action where $m^{k}=n, m \geq 5, k>1$ (wreath)
- $\operatorname{AGL}(d, p)$ where p prime and $p^{d}=n$ (affine)
- $T^{k} \cdot\left(\operatorname{Out}(T) \times S_{k}\right)$ where T non-abelian simple and $|T|^{k-1}=n$ (diagonal)
- an almost simple group G in some primitive action $T \leqslant G \leqslant \operatorname{Aut}(T)$ where T non-abelian simple (almost simple).

Finite transformation semigroups

If $k \leqslant n$, then write $I_{k}=\left\{f \in n^{n}:|(n) f| \leqslant k\right\}$.
Theorem (Trivial)
A maximal subsemigroup of the full transformation semigroup n^{n} is one of the following:

- $S_{n} \cup I_{n-2}$;
- $G \cup I_{n-1}$ where G is a maximal subgroup of S_{n}.

Proof.
If $f \in n^{n}$ such that $|(n) f|=k \leqslant n-1$, then

$$
\left\langle S_{n}, f\right\rangle=S_{n} \cup I_{k}
$$

This implies that the subsemigroups in the theorem are maximal.
If M is maximal, then $M \cap S_{n}=S_{n}$ or = a maximal subgroup (since I_{n-1} is an ideal).

Some infinite permutation groups

If Ω is an infinite set, then $\left\{\Sigma_{1}, \ldots, \Sigma_{n}\right\}$ is a finite partition of Ω if $\Sigma_{1}, \ldots, \Sigma_{n}$ partition Ω and $\left|\Sigma_{i}\right|=\left|\Omega \backslash \Sigma_{i}\right|=|\Omega|$.

If $\Sigma \subseteq \Omega$ is arbitrary, then define:
Pointwise stabilizer:
$S_{(\Sigma)}=S_{\Omega \backslash \Sigma}=\left\{f \in S_{\Omega}:(\sigma) f=\sigma(\forall \sigma \in \Sigma)\right\}$
Setwise stabilizer: $S_{\{\Sigma\}}=\left\{f \in S_{\Omega}:(\sigma) f \in \Sigma(\forall \sigma \in \Sigma)\right\}$
Stabilizer of finite partition:

$$
\operatorname{Stab}\left(\Sigma_{1}, \ldots, \Sigma_{n}\right)=\left\{f \in S_{\Omega}:(\forall i)(\exists j)\left(\Sigma_{i} f=\Sigma_{j}\right)\right\} \cong S_{\Omega}\left\langle S_{n}\right.
$$

Lemma
If $\Gamma_{1}, \Gamma_{2} \subseteq \Omega$ and $\left|\Gamma_{1} \cap \Gamma_{2}\right|=\min \left\{\left|\Gamma_{1}\right|,\left|\Gamma_{2}\right|\right\}$, then

$$
S_{\Gamma_{1} \cup \Gamma_{2}}=\left\langle S_{\Gamma_{1}}, S_{\Gamma_{2}}\right\rangle
$$

Infinite symmetric groups - intransitive case

$G \leqslant S_{\Omega}$ intransitive $\Rightarrow \exists \Sigma \subseteq \Omega$ such that $\Sigma^{G}=\Sigma \Rightarrow G \leqslant S_{\{\Sigma\}}$

Proposition

$S_{\{\Sigma\}}$ is maximal if and only if $|\Sigma|<\infty$ or $|\Omega \backslash \Sigma|<\infty$.
Proof.
$(\Rightarrow)|\Sigma|=|\Omega|=|\Omega \backslash \Sigma| \Rightarrow S_{\{\Sigma\}}<\operatorname{Stab}(\Sigma, \Omega \backslash \Sigma)<S_{\Omega}$.
$(\Leftarrow) S_{\Omega}$ is transitive and primitive $\Rightarrow S_{\{\alpha\}}$ is maximal for all $\alpha \in \Omega$ Proceed by induction:

- $\Gamma_{1}:=\Omega \backslash \Sigma$ and $f \in S_{\Omega} \backslash S_{\{\Sigma\}}$
- $\exists \alpha \in \Sigma$ such that $(\alpha) f \notin \Sigma$
- $\left\langle S_{\{\Sigma\}}, f\right\rangle \geq\left\langle S_{\Gamma_{1}, f^{-1}} S_{\Gamma_{1}} f\right\rangle=\left\langle S_{\Gamma_{1}}, S_{\Gamma_{1} f-1}\right\rangle=S_{\Gamma_{1} \cup \Gamma_{1} f-1}$
- $S_{\{\Sigma \backslash\{\alpha\}\}}=S_{\{\Sigma\}} S_{\Gamma_{1} \cup \Gamma_{1} f-1} \leqslant\left\langle S_{\{\Sigma\}}, S_{\Gamma_{1} \cup \Gamma_{1} f-1}\right\rangle \leqslant\left\langle S_{\{\Sigma\}}, f\right\rangle$.
- $S_{\{\Sigma \backslash\{\alpha\}\}}$ maximal and $S_{\{\Sigma\}} \backslash S_{\{\Sigma \backslash\{\alpha\}\}} \neq \emptyset$
- $S_{\Omega}=\left\langle S_{\{\Sigma \backslash\{\alpha\}\}}, S_{\{\Sigma\}}\right\rangle \leqslant\left\langle S_{\{\Sigma\}}, f\right\rangle$ and so $S_{\{\Sigma\}}$ maximal.

Infinite symmetric groups - imprimitive case I

$\operatorname{Stab}\left(\Sigma_{1}, \ldots, \Sigma_{n}\right)$ is imprimitive, is it maximal?
Let $\alpha \in \Sigma_{1}$ and $\beta \in \Sigma_{2}$. Then $\left\langle\operatorname{Stab}\left(\Sigma_{1}, \ldots, \Sigma_{n}\right),(\alpha \beta)\right\rangle \neq S_{\Omega}$.
If $\Sigma, \Gamma \subseteq \Omega$, then Σ is almost equal Γ if

$$
|\Sigma \backslash \Gamma|+|\Gamma \backslash \Sigma|<|\Omega| \text { and we write } \Sigma \approx \Gamma .
$$

If $B S_{\Omega}=\left\{f \in S_{\Omega}:|\operatorname{supp}(f)|<|\Omega|\right\}$, then

$$
\begin{aligned}
& \left\langle\operatorname{Stab}\left(\Sigma_{1}, \ldots, \Sigma_{n}\right), B S_{\Omega}\right\rangle=\operatorname{Stab}\left(\Sigma_{1}, \ldots, \Sigma_{n}\right) \cdot B S_{\Omega} \\
= & \operatorname{AStab}\left(\Sigma_{1}, \ldots, \Sigma_{n}\right)=\left\{f \in S_{\Omega}:(\forall i)(\exists j)\left(\left(\Sigma_{i}\right) f \approx \Sigma_{j}\right)\right\} \neq S_{\mathbb{N}} .
\end{aligned}
$$

Infinite symmetric groups - imprimitive case II

Theorem (Ball '66)
$\operatorname{AStab}\left(\Sigma_{1}, \ldots, \Sigma_{n}\right)$ is maximal for all $n \geq 2$.
Proof.

- let $f \in S_{\Omega} \backslash \operatorname{AStab}\left(\Sigma_{1}, \ldots, \Sigma_{n}\right)$
- $\exists i, j, k$ such that $\left|\Sigma_{i} f \cap \Sigma_{j}\right|=\infty$ and $\left|\Sigma_{i} f \cap \Sigma_{k}\right|=\infty$
- $S_{\Sigma_{i} f} \leqslant f^{-1} \operatorname{AStab}\left(\Sigma_{1}, \ldots, \Sigma_{n}\right) f$
- $S_{\Sigma_{j}}, S_{\Sigma_{k}} \leqslant \operatorname{AStab}\left(\Sigma_{1}, \ldots, \Sigma_{n}\right)$
- $S_{\Sigma_{j} \cup \Sigma_{k}}=\left\langle S_{\Sigma_{j}}, S_{\Sigma_{i} f}, S_{\Sigma_{k}}\right\rangle \leqslant\left\langle\operatorname{AStab}\left(\Sigma_{1}, \ldots, \Sigma_{n}\right), f\right\rangle$
- $\operatorname{AStab}\left(\Sigma_{1}, \ldots, \Sigma_{n}\right)$ is 2-transitive on $\Sigma_{1}, \ldots, \Sigma_{n}$

$$
\begin{aligned}
& S_{\Omega} \leqslant\left\langle S_{\Sigma_{1} \cup \Sigma_{2}}, S_{\Sigma_{2} \cup \Sigma_{3}}, \ldots, S_{\Sigma_{n-1} \cup \Sigma_{n}}\right\rangle \\
& \leqslant\left\langle\operatorname{AStab}\left(\Sigma_{1}, \ldots, \Sigma_{n}\right), f\right\rangle
\end{aligned}
$$

Filters and ideals - I

A filter \mathcal{F} is a subset of the power set $\mathcal{P}(\Omega)$ such that

- $\emptyset \notin \mathcal{F}$
- if $A \in \mathcal{F}$ and $A \subseteq B$, then $B \in \mathcal{F}$
- if $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.

An ideal \mathcal{I} is a subset of $\mathcal{P}(\Omega)$ such that

- $\emptyset \in \mathcal{I}$ and $\Omega \notin \mathcal{I}$
- if $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$
- if $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$.

For example, if $\alpha \in \Omega$, then $\mathcal{F}=\{A \subseteq \Omega: \alpha \in A\}$ is an filter.
Such a filter \mathcal{F} is called principal.

Filters and ideals - II

An ultrafilter is a filter not contained in any other filter.
If \mathcal{F} is a filter on Ω, then the stabilizer of \mathcal{F} in S_{Ω} is

$$
S_{\{\mathcal{F}\}}=\left\{f \in S_{\Omega}:(\forall A \subseteq \Omega)(A \in \mathcal{F} \leftrightarrow(A) f \in \mathcal{F})\right\} .
$$

Theorem (Richman '67)
If \mathcal{F} is an ultrafilter, then
(a) $S_{\{\mathcal{F}\}}$ has two orbits on infinite coinfinite subsets of Ω
(b) $S_{\{\mathcal{F}\}}$ is a maximal subgroup of S_{Ω}
(c) $S_{\{\mathcal{F}\}}=\bigcup_{A \in \mathcal{F}} S_{(A)}$.

Corollary
There are $2^{2^{|\Omega|}}$ non-conjugate maximal subgroups S_{Ω}.

Some non-maximal ideals

Theorem

Let \mathcal{I} be an ideal of Ω such that $S_{\{\mathcal{I}\}}$ has 3 orbits on infinite coinfinite subsets. Then $S_{\{\mathcal{I}\}}$ is maximal.
There exist ideals \mathcal{I} on Ω such that $S_{\{\mathcal{I}\}}$ have 4 orbits on infinite coinfinite subsets and $S_{\{\mathcal{I}\}}$ is not maximal.

There are $2^{2^{|\Omega|}}$ maximal subgroups that are stabilizers of non-maximal ideals.

Example. Define

$$
\begin{aligned}
& \mathcal{I}=\{A \subseteq \mathbb{Q}: \mathbb{Q} \nrightarrow A\} \text { or } \\
& \mathcal{I}=\{A \subseteq \mathbb{Q}: A \text { is nowhere dense }\} .
\end{aligned}
$$

Then \mathcal{I} is an ideal and $S_{\{\mathcal{I}\}}$ has 3 orbits on moieties.

Theorem (Macpherson \& Neumann '90)
There exists a maximal subgroup of S_{Ω} that does not contain any $S_{(\Sigma)}$ for any $\Sigma \subseteq \mathbb{N}$.

Theorem (Brazil, Covington, Penttila, Praeger, Woods '94)
Let G be a maximal subgroup of S_{Ω} such that $S_{(\Sigma)} \leqslant S_{\Omega}$ for some Σ such that $|\Omega \backslash \Sigma|=|\Omega|$. Then
(i) $G=\operatorname{AStab}(\mathcal{P})$ for some finite partition \mathcal{P} of Ω
(ii) $G=S_{\{\mathcal{F}\}}$ for some specific type of filter \mathcal{F}.

Infinite symmetric groups - wreath case

There is an analogue of this case but I'm not going to talk about it...
'It seems hopeless to try to prove an analogue of the
O'Nan-Scott Theorem in the infinite case.'

Containment in maximal subgroups

Theorem (Zorn's Lemma)
Let G be any (semi)group and let $H \leqslant G$ such that $\exists K \subseteq G$ with $|K|<\infty$ and $\langle H, K\rangle=G$. Then H is contained in a maximal (semi)subgroup of G.

Theorem (Macpherson \& Praeger '90)

Let G be a subgroup of $S_{\mathbb{N}}$ that is not highly transitive. Then G is contained in a maximal subgroup.

Theorem (Baumgartner, Shelah, Thomas '93)
It is consistent and independent of ZFC that $\exists G \leqslant S_{\mathbb{N}}$ not contained in any maximal subgroup.

Infinite transformation semigroups - preliminaries

The functions with finite image:

$$
\mathfrak{F}=\left\{f \in \Omega^{\Omega}:|\Omega f|<\infty\right\} .
$$

A subsemigroup S of Ω^{Ω} is dense if for all finite $\Sigma \subseteq \Omega$ and for all $f \in \Sigma^{\Sigma}$ there exists $g \in S$ such that $\left.g\right|_{\Sigma}=f$.
Lemma
If M is a maximal subsemigroup of Ω^{Ω}, then M is dense.
Proof.
$M \neq \Omega^{\Omega} \Rightarrow M \leqslant M \cup \mathfrak{F} \neq \Omega^{\Omega}$.
Proposition (Macpherson \& Praeger '90)
Let S be a countable subsemigroup of Ω^{Ω}. Then S is contained in a maximal subsemigroup of Ω^{Ω}.

Infinite transformation semigroups - parameters

If $f \in \Omega^{\Omega}$ and $\Sigma \subseteq \Omega$ such that $\left.f\right|_{\Sigma}$ is injective and $\Sigma f=\Omega f$, then Σ is a transversal of f.

$$
\begin{aligned}
d(f) & =|\Omega \backslash \Omega f| \\
c(f) & =|\Omega \backslash \Sigma| \text { where } \Sigma \text { is any transversal of } f \\
k(f, \mu) & =\left|\left\{\alpha \in \Omega:\left|\alpha f^{-1}\right| \geq \mu\right\}\right|
\end{aligned}
$$

where $\mu \leqslant|\Omega|$.

Theorem (Howie, Higgins, Ruškuc '98)
Let Ω be an infinite set and let $f, g \in \Omega^{\Omega}$ such that $c(f)=0$, $d(f)=|\Omega|, d(g)=0$, and $k(g,|\Omega|)=|\Omega|$. Then $\left\langle S_{\Omega}, f, g\right\rangle=\Omega^{\Omega}$.

Maximal subsemigroups containing the symmetric group

Theorem (East, M., Péresse '11)
Let Ω be any infinite set and let $M \lesseqgtr \Omega^{\Omega}$ such that $S_{\Omega} \leqslant M$. If $|\Omega|$ is regular, then M is maximal if and only if M is one of:

$$
\begin{aligned}
& \left\{f \in \Omega^{\Omega}: c(f)<\mu \text { or } d(f) \geq \mu\right\} \text { for some } \aleph_{0} \leqslant \mu \leqslant|\Omega| ; \\
& \left\{f \in \Omega^{\Omega}: c(f)=0 \text { or } d(f)>0\right\} ; \\
& \left\{f \in \Omega^{\Omega}: c(f) \geq \mu \text { or } d(f)<\mu\right\} \text { for some } \aleph_{0} \leqslant \mu \leqslant|\Omega| ; \\
& \left\{f \in \Omega^{\Omega}: c(f)>0 \text { or } d(f)=0\right\} \\
& \left\{f \in \Omega^{\Omega}: k(f,|\Omega|)<|\Omega|\right\} .
\end{aligned}
$$

If $|\Omega|$ is a singular cardinal, then M is maximal if and only if M is one of the first four subsemigroups above or

$$
\left\{f \in \Omega^{\Omega}:(\exists \nu<|\Omega|)(k(f, \nu)<|\Omega|)\right\}
$$

The countable case

Theorem (East, M., Péresse '11)
Let $M \lesseqgtr \mathbb{N}^{\mathbb{N}}$ such that $S_{\mathbb{N}} \leqslant M$. Then M is maximal if and only if M is one of:

$$
\begin{aligned}
& \left\{f \in \Omega^{\Omega}: c(f)<\infty \text { or } d(f)=\infty\right\} \\
& \left\{f \in \Omega^{\Omega}: c(f)=0 \text { ord }(f)>0\right\} \\
& \left\{f \in \Omega^{\Omega}: c(f)=\infty \text { or } d(f)<\infty\right\} \\
& \left\{f \in \Omega^{\Omega}: c(f)>0 \text { or } d(f)=0\right\} \\
& \left\{f \in \Omega^{\Omega}: k\left(f, \aleph_{0}\right)<\infty\right\} .
\end{aligned}
$$

Koppitz independently proved that the semigroups in the above theorem are maximal.

Stabilizers of finite sets

Theorem (East, M., Péresse '11)
Let $S:=S_{\Omega}$, let $\Sigma \subseteq \Omega$ be finite, and let $M \leqslant \Omega^{\Omega}$ such that $M \cap S_{\Omega}=S_{\{\Sigma\}}$. Then M is maximal if and only if M is one of:

$$
\begin{aligned}
\left\{f \in \Omega^{\Omega}:\right. & d(f) \geq \mu \text { or } \Sigma \nsubseteq \Omega f \text { or } \\
& ((\Omega \backslash \Sigma) f \subseteq \Omega \backslash \Sigma \text { and } c(f)<\mu)\} \\
\left\{f \in \Omega^{\Omega}:\right. & (\Omega \backslash \Sigma) f \subseteq \Omega \backslash \Sigma \text { or } \Sigma \nsubseteq \Omega f\} \cup \mathfrak{F} \\
\left\{f \in \Omega^{\Omega}:\right. & \Sigma f \subseteq \Sigma \text { or }|\Sigma f|<|\Sigma|\} \cup \mathfrak{F} \\
\left\{f \in \Omega^{\Omega}:\right. & \\
& c(f) \geq \mu \text { or }|\Sigma f|<|\Sigma| \text { or } \\
& (\Sigma f=\Sigma \text { and } d(f)<\mu)\}
\end{aligned}
$$

Almost stabilizers of finite partitions

Let $\mathcal{P}=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ where $n \geq 2$ be a finite partition of \mathbb{N} and let $f \in \mathbb{N}^{\mathbb{N}}$. Then define $\rho_{f} \subseteq\{1,2, \ldots, n\}^{2}$ by

$$
\begin{gathered}
\rho_{f}=\left\{(i, j):\left|A_{i} f \cap A_{j}\right|=\infty\right\} \\
\rho_{f}^{-1}=\left\{(i, j):(j, i) \in \rho_{f}\right\}
\end{gathered}
$$

A binary relation σ is total if for all $\alpha \in \Omega$ there exists $\beta \in \Omega$ such that $(\alpha, \beta) \in \sigma$.

Theorem (East, M., Péresse '11)
Let M be a subsemigroup of $\mathbb{N}^{\mathbb{N}}$ such that $M \cap S_{\mathbb{N}}=\operatorname{AStab}(\mathcal{P})$.
Then M is maximal if and only if M is one of:

$$
\begin{aligned}
& \operatorname{AStab}(\mathcal{P}) \cup\left\{f \in \mathbb{N}^{\mathbb{N}}: \rho_{f} \text { is not total }\right\} \\
& \operatorname{AStab}(\mathcal{P}) \cup\left\{f \in \mathbb{N}^{\mathbb{N}}: \rho_{f}^{-1} \text { is not total }\right\} .
\end{aligned}
$$

Ultrafilters

Theorem (East, M., Péresse '11)
Let \mathcal{F} be a non-principal ultrafilter on \mathbb{N} and let $M \leqslant \mathbb{N}^{\mathbb{N}}$ such that $M \cap S_{\mathbb{N}}=S_{\{\mathcal{F}\}}$. Then M is maximal if and only if M is one of:
$\left\{f \in \mathbb{N}^{\mathbb{N}}:(\forall A \subseteq \mathbb{N})\left(A \in \mathcal{F} \rightarrow A f \in \mathcal{F}\right.\right.$ or $\left.\left.c\left(\left.f\right|_{A}\right)>0\right)\right\}$
$\left\{f \in \mathbb{N}^{\mathbb{N}}:(\forall A \subseteq \mathbb{N})\left(A \notin \mathcal{F} \rightarrow A f \notin \mathcal{F}\right.\right.$ or $\left.c\left(\left.f\right|_{A}\right)>0\right)(A \notin \mathcal{F} \rightarrow A f \notin\}$

Corollary
There are $2 \times 2^{2^{\aleph_{0}}}$ non-conjugate maximal subsemigroups of $\mathbb{N}^{\mathbb{N}}$.

A non-ultrafilter

Theorem (East, M., Péresse '11)
Let $A \subseteq \mathbb{N}$ be infinite coinfinite \mathbb{N} and let

$$
M=\left\{f \in \mathbb{N}^{\mathbb{N}}:|A f \cap(\mathbb{N} \backslash A)|<\infty\right\} .
$$

Then M is a maximal subsemigroup of $\mathbb{N}^{\mathbb{N}}$.
Note that $M \cap S_{\mathbb{N}}$ is not a subgroup of $S_{\mathbb{N}}$.
In fact, $M \cap S_{\mathbb{N}}$ is a generating set for $S_{\mathbb{N}}$.

3 orbits on infinite coinfinite sets

Theorem (East, M., Péresse '11)
Let \mathcal{F} be a filter such that $S_{\{\mathcal{F}\}}$ has 3 orbits on infinite coinfinite sets, let \mathcal{I} be the ideal corresponding to \mathcal{F}, and let $M \leqslant \Omega^{\Omega}$ such that $S_{\{\mathcal{F}\}} \leqslant M \neq S_{\Omega}$. Then M is maximal if and only if M is one of:

$$
\begin{aligned}
& \left\{f \in \mathbb{N}^{\mathbb{N}}:(\forall A \subseteq \mathbb{N})\left(A \in \mathcal{F} \rightarrow A f \in \mathcal{F} \text { or } c\left(\left.f\right|_{A}\right)>0\right)\right\} \\
& \left\{f \in \mathbb{N}^{\mathbb{N}}:(\forall A \subseteq \mathbb{N})\left(A \in \mathcal{I} \rightarrow A f \in \mathcal{I} \text { or } c\left(\left.f\right|_{A}\right)>0\right)\right\} \\
& \left\{f \in \mathbb{N}^{\mathbb{N}}:(\forall A \subseteq \mathbb{N})\left(A \in \mathcal{F} \rightarrow A f^{-1} \in \mathcal{F} \text { or } c\left(\left.f\right|_{A}\right)>0\right)\right\} \\
& \left\{f \in \mathbb{N}^{\mathbb{N}}:(\forall A \subseteq \mathbb{N})\left(A \in \mathcal{I} \rightarrow A f^{-1} \in \mathcal{I} \text { or } c\left(\left.f\right|_{A}\right)>0\right)\right\} .
\end{aligned}
$$

For some examples some of these semigroups are equal, and for other examples they are distinct.

Open problems

Open Problem

Does there exist a maximal subsemigroup M of $\mathbb{N}^{\mathbb{N}}$ such that $M \cap S_{\mathbb{N}}$ is not a maximal subsemigroup of $S_{\mathbb{N}}$?

Open Problem
Can we prove that there does not exist a maximal subsemigroup M of $\mathbb{N}^{\mathbb{N}}$ such that $M \cap S_{\mathbb{N}}$ is trivial or $\left\{f \in S_{\mathbb{N}}:|\operatorname{supp}(f)|<\infty\right\}$?

