Computing a finite semigroup

J. D. Mitchell

School of Mathematics and Statistics, University of St Andrews
4th of February, 2014

Some questions?

Aim: to present some algorithms to compute finite semigroups.
We must address the following questions:

- how is the semigroup given?
- what are we trying to compute?
- what is the complexity of the algorithms?

Some things the talk is not about:

- programming issues;
- data structures;
- implementations;
- user interfaces.

GAP

A prelude to some answers

GAP is a free, open system for computational discrete mathematics, in particular group theory.
free GAP is can be downloaded from www.gap-system.org free GAP (as of version 4.3) is released under the GPL.
open the source code is completely available.
open mechanism for third-party contributions, and distribution.

GAP runs on (almost) every platform.

Estimated to have thousands of users world-wide.

Why compute?

- perform low-level calculations such as multiplication, inversion, and so on;
- suggests new theoretical results;
- obtain counter-examples;
- gain more detailed understanding of the objects under consideration;
- perform more intricate calculations than possible by hand.

Even computing small examples by hand can exceed human patience.

Insert semigroup into computer...

How is a semigroup given?
There are 3 main ways to define a semigroup to a computer:

Cayley table: ...;

Finite presentation: words in generators and relations i.e.

$$
\left\langle e, f \mid e^{2}=e, e f e=f e, f^{2} e=f e, f^{3}=f, f e f^{2}=f e\right\rangle
$$

Generators: as a subsemigroup of a larger semigroup such as transformations, matrices, binary relations, partitions, and so on ...

In this talk, we will deal (almost) exclusively with the latter.

Enumeration of semigroups

| n | number of semigroups | |
| :---: | ---: | :--- | :--- |
| 0 | 1 | |
| 1 | 1 | |
| 2 | 4 | |
| 3 | 18 | |
| 4 | 126 | (Forsythe '54) |
| 5 | 1160 | (Motzkin-Selfridge '56) |
| 6 | 15973 | (Plemmons '66) |
| 7 | 836021 | (Jürgensen-Wick '76) |
| 8 | 1843120128 | (Satoh-Yama-Tokizawa '94) |
| 9 | 52989400714478 | (Distler-Kelsey '11) |
| 10 | 12418001077381302684 | (Distler-Kelsey '13) |
| 11 | $? ?$ | (Everyone '13) |

The semigroups of orders 1 to 8 are available in the GAP package Smallsemi available at tinyurl.com/smallsemi.

The semigroups of order 2,3 and 4

Fundamental tasks

What are we trying to compute anyway?

INPUT: a list of x_{1}, \ldots, x_{m} (in the universe) generating a semigroup U.

OUTPUT/TEST:

- the size of U;
- membership in U;
- factorise elements over the generators;
- the number of idempotents $\left(x^{2}=x\right)$;
- the maximal subgroups;
- the ideal structural of U (i.e. Green's relations);
- is U a group? an inverse semigroup? a regular semigroup?

The universe

Transformations, partial perms, matrices, partitions...

The full transformation monoid is just the monoid of all transformations under composition of functions.

A symmetric inverse monoid is just the monoid of all partial permutations under composition of functions.

A general linear monoid of $n \times n$ matrices over a finite field.
A partition monoid is the monoid of partitions...
A Rees 0-matrix semigroup ...

Excluded middle

Exhaustive: store the elements

- be happy with relatively small semigroups
- SgpWin by Don McAlister (2006?)
- Semigroupe by Jean-Eric Pin (2009)

Non-exhaustive: don't store the elements

- Lallement-McFadden (1990)
- Monoid package for GAP3 by Linton-Pfeiffer-Robertson-Ruškuc (1997)
- Semigroups package for GAP4 by me (2013)

The limitations of exhaustive enumeration

n	\# transformations	memory	unit
1	1	16	bits
2	4	16	bytes
3	27	162	bytes
4	256	2	kb
5	3125	~ 30	kb
6	46656	~ 546	kb
7	823543	~ 10	mb
8	16777216	~ 256	mb
9	387420489	~ 6	gb
10	10000000000	~ 186	gb
11	285311670611	~ 6	tb
12	8916100448256	~ 194	tb
13	302875106592253	~ 7	pb

Storing the elements of a semigroup internally quickly becomes impractical.

A simple example

Let S be the semigroup generated by the transformations

$$
x_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 3
\end{array}\right) \quad \text { and } \quad x_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 3 & 1
\end{array}\right)
$$

- How many elements does S have?
- How many idempotents does S have?
- What are its maximal subgroups?

An exhaustive algorithm

S acting on itself by right multiplication
Input: A subsemigroup $S=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ of a larger semigroup.
Output: The elements of S.
Suppose $x_{1}, x_{2}, \ldots, x_{m}$ are distinct. Here's the algorithm:

```
1: X:= [\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{m}{}]
2: for }y\inX\mathrm{ do
3: for i\in{1,\ldots,m} do
4: }\quad\mathrm{ if }y\mp@subsup{x}{i}{}\not\inX then
                                    append yxi to }
        end if
7: end for
8: end for
9: return }
```

Pay closer attention...
...and we've found the Cayley graphs and a presentation

The right Cayley graph.

The left Cayley graph.

$$
\left.\langle e, f| e^{2}=e, \text { efe }=f e, f^{2} e=f e, f^{3}=f, f e f^{2}=f e\right\rangle \ldots
$$

... and the Green's structure

What's not so great, is that the algorithm spends lots of time:

- checking $y x_{i} \notin X$;
- multiplying elements;
- uses too much memory.

The algorithm takes no advantage of the structure or representation of the semigroup.

Non-exhaustive

Overview
Let S be a finite regular semigroup and let $U=\left\langle x_{1}, \ldots, x_{m}\right\rangle \leq S$.
We consider S known and U unknown.
We don't want to find or store the elements of U.

We want to decompose S into blocks so that:

- the blocks have some uniform structure;
- the blocks are easy to compute from the given generators;
- the structure of S is used;
- we take advantage of computational group theory.

$$
\text { Blocks }=\text { Green's } \mathscr{R} \text {-classes }
$$

Actions and stabilisers

Suppose S acts on the right on a set Ω. The natural induced right action of S on the power set $\mathcal{P}(\Omega)$ is:

$$
\Sigma \cdot s=\{\alpha \cdot s: \alpha \in \Sigma\} \quad \text { for } \Sigma \subseteq \Omega \text { and } s \in S
$$

and we define $\left.s\right|_{\Sigma}: \Sigma \longrightarrow \Sigma \cdot s$ by $\left.s\right|_{\Sigma}: \alpha \mapsto \alpha \cdot s$. The stabiliser of Σ under S is

$$
\operatorname{Stab}_{S}(\Sigma)=\left\{s \in S^{1}: \Sigma \cdot s=\Sigma\right\}
$$

Then the quotient of $\operatorname{Stab}_{S}(\Sigma)$ by the kernel of its action is isomorphic to

$$
S_{\Sigma}=\left\{\left.s\right|_{\Sigma}: s \in \operatorname{Stab}_{S}(\Sigma)\right\}
$$

which is a subgroup of the symmetric group $\operatorname{Sym}(\Sigma)$ on Σ. The strongly connected component (s.c.c.) of $\alpha \in \Omega$ is

$$
\left\{\beta \in \Omega: \exists s, t \in S^{1}, \beta=\alpha \cdot s, \alpha=\beta \cdot t\right\}
$$

Schreier's Theorem for Semigroups Actions

Suppose that S acts on the right on a set Ω, and U is a subsemigroup of S.

If $\Sigma \subseteq \Omega$, then

$$
S_{\Sigma}=\left\{\left.s\right|_{\Sigma}: s \in \operatorname{Stab}_{S}(\Sigma)\right\}
$$

Proposition (Linton-Pfeiffer-Robertson-Ruškuc '98)

Let $\left\{\Sigma_{1}, \ldots, \Sigma_{n}\right\}$ be an s.c.c. of the action of U on $\mathcal{P}(\Omega)$. Then:
(i) for every $i>1$, there exist $u_{i}, v_{i} \in U$ such that $\Sigma_{1} \cdot u_{i}=\Sigma_{i}$, $\Sigma_{i} \cdot v_{i}=\Sigma_{1},\left.\left(u_{i} v_{i}\right)\right|_{\Sigma_{1}}=\operatorname{id}_{\Sigma_{1}}$ and $\left.\left(v_{i} u_{i}\right)\right|_{\Sigma_{i}}=\mathrm{id}_{\Sigma_{i}} ;$
(ii) $U_{\Sigma_{i}}$ and $U_{\Sigma_{j}}$ are isomorphic as permutation groups;
(iii) $U_{\Sigma_{1}}=\left\langle\left(u_{i} s v_{j}\right)_{\Sigma_{1}}: 1 \leq i, j \leq n, s \in X, \Sigma_{i} \cdot s=\Sigma_{j}\right\rangle$.

Action on \mathscr{L}-classes

Let S be a finite regular semigroup and let $U \leq S$. Then U acts freely on the \mathscr{L}-classes of S by right multiplication (\mathscr{L} is a right congruence).

Proposition (East-Egri-Nagy-M-Péresse '13)

Let $x, y \in U$ be arbitrary and let $x^{\prime} \in S$ such that $x x^{\prime} x=x$. Then:
(i) $\left\{L_{y}^{S}: y \in R_{x}^{U}\right\}$ is an s.c.c. of the action of U on S / \mathscr{L};
(ii) $L_{x}^{S} \cap R_{x}^{U}$ is a group under $s * t=s x^{\prime} t$ that is isomorphic to $U_{L_{x}^{S}}$;
(iii) $x \mathscr{R}^{U} y$ implies $U_{L_{x}^{S}} \cong U_{L_{y}^{S}}$;
(iv) $\left|R_{x}^{U}\right|=\left|U_{L_{x}^{S}}\right| \cdot\left|\left\{L_{y}^{S}: y \in R_{x}^{U}\right\}\right|$;
(v) If L_{x}^{S} belongs to the s.c.c. of L_{y}^{S} under the action of U on S / \mathscr{L}, then $\left|R_{x}^{U}\right|=\left|R_{y}^{U}\right|$.

So what?

For an \mathscr{R}-class of $U \leq S$, there are the actions of:

- U on the \mathscr{L}-classes of S by right multiplication;
- the group U_{L} where L is an \mathscr{L}-class of S.

Suppose that Ω is a set and $\lambda: S \longrightarrow \Omega$ such that:
(i) $|\Omega|=|S / \mathscr{L}|$;
(ii) $(x) \lambda=(y) \lambda$ if and only if $L_{x}^{S}=L_{y}^{S}$ for all $x, y \in S$;
(iii) S acts on Ω such that $(x \cdot u) \lambda=(x) \lambda \cdot u$ for all $x \in S$ and $u \in U$.

Then the actions of U on S / \mathscr{L} and Ω are isomorphic via λ.

Transformation semigroups

Proposition

Let U be any subsemigroup of some T_{n} where $n \in \mathbb{N}$. Then:
(i) the action of U on T_{n} / \mathscr{L} is isomorphic to the action of U on $\mathcal{P}(\{1,2, \ldots, n\})$ defined by

$$
X \cdot f=\{(x) f: x \in X\} ;
$$

(ii) if $L \in T_{n} / \mathscr{L}$, then U_{L} acts faithfully on $\operatorname{im}(x)$ for all $x \in L$.

This is what:
(i) Subsets of $\{1, \ldots, n\}$ are easier to compute with than T_{n} / \mathscr{L};
(ii) For example, if $x \in T_{10}$ and $|\operatorname{im}(x)|=5$, then

$$
|L|=5!* S(10,5)=5103000 .
$$

It is much easier to compute the action of U_{L} on $\operatorname{im}(x)$ than on L.

Rees 0-matrix semigroups

Let $S=\mathcal{M}^{0}[T: I, J ; P]$ be a regular Rees 0-matrix semigroup over a permutation group $G \leq S_{n}$ and $|J| \times|I|$ matrix $P=\left(p_{j, i}\right)_{j \in J, i \in I}$.

Proposition

Let U be any subsemigroup of S. Then:
(i) the action of U on S / \mathscr{L} is isomorphic the action of U on $J \cup\{0\}$ defined by

$$
0 \cdot(j, g, k)=0 \cdot 0=0=i \cdot 0, \quad i \cdot(j, g, k)= \begin{cases}k & \text { if } p_{i, j} \neq 0 \\ 0 & \text { if } p_{i, j}=0\end{cases}
$$

(ii) if L is any \mathscr{L}-class of S, then U_{L} acts faithfully on $\{1, \ldots, n\}$ by

$$
\left.m \cdot(i, g, j)\right|_{L}=m \cdot p_{j, i} g \quad \text { for all } \quad m \in\{1,2, \ldots, n\}
$$

is faithful.

An algorithm

Let $U=\langle X\rangle$ be a subsemigroup of a finite regular semigroup S.
Green's \mathscr{R}-relation is a left congruence on S and so S acts by left multiplication on \mathscr{R}-classes.

1: find $(U) \lambda=\{(u) \lambda: u \in U\}$
2: find the s.c.c.s of $(U) \lambda$
3: $\mathfrak{R} \leftarrow X$
\triangleright the standard orbit algorithm \triangleright standard graph algorithms $\triangleright \mathscr{R}$-class reps

4: for $r \in \mathfrak{R}$ do
5: \quad identify the s.c.c. of $(r) \lambda$ in $(U) \lambda$
6: \quad compute $U_{L_{x}^{S}}$
\triangleright if we didn't already
7: \quad for $x \in X$ do
8: \quad if $(x r, y) \notin \mathscr{R}^{U}$ for any $y \in \mathfrak{R}$ then
9: \quad append $x r$ to \mathfrak{R}
10: end if
11: end for
12: end for

Return

The output is:

- \mathfrak{R} - the \mathscr{R}-class representatives of U;
- data structures for the \mathscr{R}-classes;

The latter lets us calculate/test:

$$
\text { size: }|U|=\sum_{x \in \mathfrak{R}}\left|R_{x}\right| ;
$$

membership: $x \in U$ if and only $(x) \lambda \in(U) \lambda$ and $\left.\left(x^{\prime} y\right)\right|_{L_{y}^{S}} \in U_{L_{y}^{S}}$ for some $y \in \mathfrak{R}$;
factorisation: pay very very very close attention!

