Computing a finite semigroup

J. D. Mitchell

School of Mathematics and Statistics, University of St Andrews

4th of February, 2014

Some questions?

Aim: to present some algorithms to compute finite semigroups.

We must address the following questions:

- how is the semigroup **given**?
- what are we trying to **compute**?
- what is the **complexity** of the algorithms?

Some things the talk is not about:

- programming issues;
- data structures;
- implementations;
- user interfaces.

GAP A prelude to some answers

GAP is a free, open system for **computational discrete mathematics**, in particular group theory.

free GAP is can be downloaded from www.gap-system.orgfree GAP (as of version 4.3) is released under the GPL.open the source code is completely available.open mechanism for third-party contributions, and distribution.

GAP runs on (almost) every platform.

Estimated to have **thousands** of users world-wide.

Why compute?

- perform low-level calculations such as **multiplication**, **inversion**, and so on;
- suggests new theoretical results;
- obtain **counter-examples**;
- gain more **detailed understanding** of the objects under consideration;
- perform more **intricate** calculations than possible by hand.

Even computing small examples by hand can exceed human patience.

Insert semigroup into computer... How is a semigroup given?

There are 3 main ways to define a semigroup to a computer:

Cayley table: ...;

Finite presentation: words in generators and relations i.e.

$$\langle e, f \mid e^2 = e, \ efe = fe, \ f^2 e = fe, \ f^3 = f, \ fef^2 = fe \rangle.$$

Generators: as a subsemigroup of a larger semigroup such as transformations, matrices, binary relations, partitions, and so on ...

In this talk, we will deal (almost) exclusively with the latter.

Enumeration of semigroups

n	number of semigroups	
0	1	
1	1	
2	4	
3	18	
4	126	(Forsythe '54)
5	1160	(Motzkin-Selfridge '56)
6	15 973	(Plemmons '66)
7	836 021	(Jürgensen-Wick '76)
8	$1 \ 843 \ 120 \ 128$	(Satoh-Yama-Tokizawa '94)
9	$52 \ 989 \ 400 \ 714 \ 478$	(Distler-Kelsey '11)
10	$12 \ 418 \ 001 \ 077 \ 381 \ 302 \ 684$	(Distler-Kelsey '13)
11	??	(Everyone '13)

The semigroups of orders 1 to 8 are available in the GAP package Smallsemi available at tinyurl.com/smallsemi.

The semigroups of order 2, 3 and 4

										a	b			a	b			a	b			a	b								
								-	a	a	a		a	a	b	_	a	a	a		a	a	a	_							
								1	b	a	a		b	b	a		b	a	b		b	b	b								
																		· .													
	a	Ь	c	1	a	b c			a	b c		a	Ь	c	1	a	b c		a	b	c	1	a b	c		a	Ь	c	e	ı b	c
	a a	a	a	<i>a</i>	a	a c		a	a	b b	-	ı a	a	a	a	a	a a	-	a a	a	a	a	a a	a	<i>a</i>	a	a	a	a (ı a	с
	b a c a	a a	a a	b c	a c	a c c a			ь	a a a a			a a	a b	b c	a	a a a c			a b	a c	c b	a a c c	a c	b C	a a	a b	b c	ь с с с	ıa cc	c c
	a	Ь	c		a	b c		a	ŧ	c		a	Ь	c	Ĩ	a t	c		a	ь	c	Ĩ,	a b	c		a	ь .	c	a	b	c
0	ı a	Ь	<i>a</i>	<i>a</i>	<i>a</i>	b c	1	a a		a	a	a	<i>a</i>	a	a	a a	ı a	a	a	<i>a</i>	a	<i>a</i>	a a	a	a	<i>a</i>	a e	a	a a	b	с
		a b	b C	b C	c i	ac cc					0		b C	a c	b C	a t a t		6		С	ь с	c l	ab cc	c c	b C	6 1		b C	6 6 C C	c a	a b
				. 1				. 1 .				1.0							1			. 1							. 1 .		
	8 c .		a b c	d	a 🗖	4 4	4	6 c	4	4	e d		5 C 4		a b c	4	a b	4	4	e 4		8 c c		<u>b</u> c d	1	b c	4	4	0 4	- 4	6 4 4
8 a		4	a a a a a a	i I		6 6 6 5	b a c a	* *	44		e e a a	5 5 2 5		6	a d	4 1 5 4	a a a a	a a a a	6 a 4		6 a			0 0 0	6	4 C	4	8 a a		8 a c a	* * *
4 4	6 4 4		a a b c a a a a	4	a a a	e d	4	2 4 8 6	a a		4 4 4 4	4 4	6 6 6		4 6 6	4			-		4 a					 	4	4 4 4		-	
6 a	* * *	6		-	8 a a 6 a a	6 6 6 6	8 a 8 a	* *	a a	8 a a 6 a a		8 a 6 a		e C	a a a a a a	-		a 8 a 8		4 8 6 8	8 a 6 a	a a 4 a a 4	8 C		e e	a a e e e a	4		- E A 	8 a 6 c 1 a	6 6 6 6 6 6
4 4	6 c .		a b e a b b	4	4 Å	e d b a	4	5 e 5 5	đ	a a 4	e d 8 d	_ a a a	b e e		a b c a a a	4	4 5	e d a a	4 4	e d e d	a a	b c d	4	b c c		a b c a a a	4	- a - 6 - a - a	e d	4	b c d
6 6 6 6			5 a a 5 a a 3 b 5	6 1 6 4	5 5 a 5 5 a 4 a 5	4 8 4 8 4	5 5 6 5 4 6	a a a a b c	ð e d	5 5 a 6 5 a 6 6 6	a d a d d d	6 a 6 a		6 6			4 4 4 4	8 8 8 8	6 6 6 6 6 6 6 6 8		6 a 6 a 6 a		6 4 6 4		6 6	а в а а в б а б е	6 4	6 a a 6 a a 6 d d		8 a 6 a 6 a	6 6 6 6 6 6 6 6 6
4 a	b c s		a b c a a a	4	4 8 4 4 4	e d 6 0	a a	b c a a	d a	a a a	e d 0 0	4 4	6 6 6		а <mark>в</mark> с а а с	4	a 5 a 5	e d a a	4 4 4 4	4 4	a a			b c c	4	a b e a a a	4	4 4	e d 4 4 4		b c d a a a
6 a 6 a				i i	0 a a 6 a b 6 a b		e c d c	e e e e	а с	6 a a 6 a b 6 a b	с с с с	4 a		4	c c c d d d	4 4							e d		c 2	a	4			e a d a	
4 4	6 6 4		a b c a a a	4	a a a	e d a a		b c a a	4	a a a	6 d	a a	6 6 6		a b c	4	4 5	a a	4 4 4	c d	a a	8 c d	4	6 6 6	4	a b c a a a	4	4 4 4	4 4	4 4	6 c d
с а 4 а	4 d 1	4		4		e d d d	4 a d d	6 C	a d	6 a b 6 a b	c c c d	e a e	b e e b d d	4	a b c a b c	4 4	4 b	e d d d	e e e d e e	e e e d	e e d d		e 4 4 4	6 6 6	¢		e 4	e a 6 d a a	e a a d	e a d a	6 c 6
			- <u>b</u> c	4			4 4	6 C	4	4 4 6 6 4 4		4 4			- <u>b</u> -	4		e d a a b b	4 4 4		4 4 6 4				-	4 6 6	4 4 4			a a 8 a	
e a d a	8 c .	t d	6 6 6 6 6 6	e d	сее 4 а а	e e e d	е е 4 а	се В а	4		сс с 4	e e d e	сс, сс,	i d	0 0 0 4 4 4	e e	a b a b	cc cd	6 a 6 a		6 a 4 d	4 6 4 4 4 4	4	6 e . 1 d d .	t e t	ссс 4 4 4	d d	e = 6 d d d	e d 1 d d	e e d e	ссс сс4
4 4	a c a c		4 4 6 4 4 6 4 4 6	4	a a a b a a		4 4 6 6	6 a a 5	4 8	0 0 0 0 0 0	6 0 5 5	6 6 6 6	b a a a b b		a b a a b a b a b	4 4		c c c c			4 4 6 6		4 4 6 8		a b		d d	4 4 4 6 4 4	a d a d	4 4 8 4	6 6 6 6 6 6
4 4	6 6 d d	d d	44	4	4 4 4	4 4	e a e a	6 e	4	d a 8	e e e d	d 4	b c c b d c	t d	0 b e d d d	4	e e e e	c c c d	6 6 6 6 6 6		e e d d	4 6 6	4 4	0 0 0 d d d	d		4		d a a c	4 a	a a a
4 4 8 4	6 6 6 6 6 6		a a a a b a	-		a a a a	<u>.</u>	4 4 8 4	a a	a a a 8 a 8	6 6 6 6	a a 8 a	6 0 6 6 0 6	6	a a a a b a	6 8	- 0 - 0	a a a b	0 0 0 0 0 0	6 6 6 6	a a 8 a		- 4 - 4 - 5 - 4	6 6 6 6 6 6	ĥ	a a a a b a	4	6 6 6 6 6 6		0 0 0 0	6 6 6 6 6 6
4 4		4		4		4 d 4 d	d d	4 E	d d		c 4	44		4		4 4	- 6				4 a	4 4 4	4	4 4 4	4		4			d 4	0 2 8 0 8 d
4 4 6 4	5 5 1	i i	a a a a b b	6	a a a 8 a 8	5 5	6 6 6 6	4 4 5 5	4 8	a a a 8 a 8	5 5	4 4 8 4	6 6 6	ĥ	a a a a b b	1			6 6 6 6 6 1	e e	a a 8 8	8 0 0 5 5 5	4 4 5 8	a e a b d a	4	a	4	6 4 4 6 4 6	c d c d	6 6 5 5	6 c c
4 4	4 4 4	1 4	a 8 c	4	d 2 5	4 4	4 4	4.4	đ	d a d	d d	4 4	4 4 4	4	4 4 4	4 4	- 0	4 4	4 4 4	1 4 4	4 4	4 4 4	4	6 d d	1 4	4 4 5	c	4 4 4	1 4 6	d c	0 0 0

J. D. Mitchell (St Andrews)

Computing with semigroup

4th of February, 2014

7 / 24

Fundamental tasks

What are we trying to compute anyway?

INPUT: a list of x_1, \ldots, x_m (in the universe) generating a semigroup U.

OUTPUT/TEST:

- the size of U;
- membership in U;
- factorise elements over the generators;
- the number of idempotents $(x^2 = x)$;
- the maximal subgroups;
- the ideal structural of U (i.e. Green's relations);
- is U a group? an inverse semigroup? a regular semigroup?

The universe

Transformations, partial perms, matrices, partitions...

The **full transformation monoid** is just the monoid of all transformations under composition of functions.

A symmetric inverse monoid is just the monoid of all partial permutations under composition of functions.

A general linear monoid of $n \times n$ matrices over a finite field.

A partition monoid is the monoid of partitions...

A Rees 0-matrix semigroup ...

Excluded middle

Exhaustive: store the elements

- be happy with relatively small semigroups
- SgpWin by Don McAlister (2006?)
- Semigroupe by Jean-Eric Pin (2009)

Non-exhaustive: don't store the elements

- Lallement-McFadden (1990)
- Monoid package for GAP3 by Linton-Pfeiffer-Robertson-Ruškuc (1997)
- Semigroups package for GAP4 by me (2013)

The limitations of exhaustive enumeration

n	# transformations	memory	unit
1	1	16	bits
2	4	16	bytes
3	27	162	bytes
4	256	2	kb
5	3125	~ 30	kb
6	46 656	~ 546	kb
7	823 543	~ 10	mb
8	$16\ 777\ 216$	~ 256	mb
9	$387 \ 420 \ 489$	~ 6	gb
10	$10\ 000\ 000\ 000$	~ 186	gb
11	$285\ 311\ 670\ 611$	~ 6	$^{\mathrm{tb}}$
12	$8 \ 916 \ 100 \ 448 \ 256$	~ 194	tb
13	$302 \ 875 \ 106 \ 592 \ 253$	~ 7	pb

Storing the elements of a semigroup internally quickly becomes impractical.

J. D. Mitchell (St Andrews)	Computing with semigroups	4th of February, 2014	11 / 24
-----------------------------	---------------------------	-----------------------	---------

A simple example

Let S be the semigroup generated by the transformations

$$x_1 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 3 \end{pmatrix}$$
 and $x_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 1 \end{pmatrix}$.

- How many elements does S have?
- How many idempotents does S have?
- What are its maximal subgroups?

An exhaustive algorithm

 \boldsymbol{S} acting on itself by right multiplication

Input: A subsemigroup $S = \langle x_1, x_2, \dots, x_m \rangle$ of a larger semigroup.

Output: The elements of S.

Suppose x_1, x_2, \ldots, x_m are distinct. Here's the algorithm:

1:	$X := [x_1, x_2, \dots, x_m]$
2:	for $y \in X$ do
3:	for $i \in \{1, \ldots, m\}$ do
4:	if $yx_i \notin X$ then
5:	append yx_i to X
6:	end if
7:	end for
8:	end for
9:	return X

Pay closer attention...

...and we've found the Cayley graphs and a presentation

The right Cayley graph.

The left Cayley graph.

$$\langle e,f \ | \ e^2 = e, \ efe = fe, \ f^2 e = fe, \ f^3 = f, \ fef^2 = fe \rangle ...$$

... and the Green's structure

What's not so great, is that the algorithm spends lots of time:

- checking $yx_i \notin X$;
- multiplying elements;
- uses too much memory.

The algorithm takes no advantage of the structure or representation of the semigroup.

Non-exhaustive

Let S be a finite regular semigroup and let $U = \langle x_1, \ldots, x_m \rangle \leq S$.

We consider S known and U unknown.

We don't want to find or store the elements of U.

We want to **decompose** S into **blocks** so that:

- the blocks have some **uniform structure**;
- the blocks are **easy to compute** from the given generators;
- the **structure** of *S* is used;
- we take advantage of **computational group theory**.

Blocks = Green's \mathscr{R} -classes

Actions and stabilisers

Suppose S acts on the right on a set Ω . The natural induced right action of S on the power set $\mathcal{P}(\Omega)$ is:

$$\Sigma \cdot s = \{ \alpha \cdot s \ : \ \alpha \in \Sigma \} \qquad \text{for } \Sigma \subseteq \Omega \text{ and } s \in S$$

and we define $s|_{\Sigma} : \Sigma \longrightarrow \Sigma \cdot s$ by $s|_{\Sigma} : \alpha \mapsto \alpha \cdot s$. The **stabiliser** of Σ under S is

$$\operatorname{Stab}_S(\Sigma) = \{ s \in S^1 : \Sigma \cdot s = \Sigma \}.$$

Then the quotient of $\operatorname{Stab}_S(\Sigma)$ by the kernel of its action is isomorphic to

$$S_{\Sigma} = \{ s |_{\Sigma} : s \in \operatorname{Stab}_{S}(\Sigma) \}$$

which is a subgroup of the symmetric group $Sym(\Sigma)$ on Σ . The **strongly connected component** (s.c.c.) of $\alpha \in \Omega$ is

$$\{\,\beta\in\Omega\,:\,\exists s,t\in S^1,\beta=\alpha\cdot s,\alpha=\beta\cdot t\,\}.$$

Schreier's Theorem for Semigroups Actions

Suppose that S acts on the right on a set Ω , and U is a subsemigroup of S.

If $\Sigma \subseteq \Omega$, then

$$S_{\Sigma} = \{ s|_{\Sigma} : s \in \operatorname{Stab}_{S}(\Sigma) \}.$$

Proposition (Linton-Pfeiffer-Robertson-Ruškuc '98)

Let $\{\Sigma_1, \ldots, \Sigma_n\}$ be an s.c.c. of the action of U on $\mathcal{P}(\Omega)$. Then: (i) for every i > 1, there exist $u_i, v_i \in U$ such that $\Sigma_1 \cdot u_i = \Sigma_i$, $\Sigma_i \cdot v_i = \Sigma_1, (u_i v_i)|_{\Sigma_1} = \mathrm{id}_{\Sigma_1}$ and $(v_i u_i)|_{\Sigma_i} = \mathrm{id}_{\Sigma_i}$; (ii) U_{Σ_i} and U_{Σ_j} are isomorphic as permutation groups; (iii) $U_{\Sigma_1} = \langle (u_i s v_j)_{\Sigma_1} : 1 \leq i, j \leq n, s \in X, \Sigma_i \cdot s = \Sigma_j \rangle$.

J. D. Mitchell (St Andrews)

Action on \mathscr{L} -classes

Let S be a finite regular semigroup and let $U \leq S$. Then U acts freely on the \mathscr{L} -classes of S by right multiplication (\mathscr{L} is a **right congruence**).

Proposition (East-Egri-Nagy-M-Péresse '13)

Let $x, y \in U$ be arbitrary and let $x' \in S$ such that xx'x = x. Then: (i) $\{L_y^S : y \in R_x^U\}$ is an s.c.c. of the action of U on S/\mathscr{L} ; (ii) $L_x^S \cap R_x^U$ is a group under s * t = sx't that is isomorphic to $U_{L_x^S}$; (iii) $x\mathscr{R}^U y$ implies $U_{L_x^S} \cong U_{L_y^S}$; (iv) $|R_x^U| = |U_{L_x^S}| \cdot |\{L_y^S : y \in R_x^U\}|$; (v) If L_x^S belongs to the s.c.c. of L_y^S under the action of U on S/\mathscr{L} , then $|R_x^U| = |R_y^U|$.

So what?

For an \mathscr{R} -class of $U \leq S$, there are the actions of:

- U on the \mathscr{L} -classes of S by right multiplication;
- the group U_L where L is an \mathscr{L} -class of S.

Suppose that Ω is a set and $\lambda : S \longrightarrow \Omega$ such that:

Then the actions of U on S/\mathscr{L} and Ω are **isomorphic** via λ .

Transformation semigroups

Proposition

Let U be any subsemigroup of some T_n where $n \in \mathbb{N}$. Then:

(i) the action of U on T_n/\mathscr{L} is isomorphic to the action of U on $\mathcal{P}(\{1, 2, \dots, n\})$ defined by

$$X \cdot f = \{ (x)f : x \in X \};$$

(ii) if $L \in T_n/\mathscr{L}$, then U_L acts faithfully on im(x) for all $x \in L$.

This is what:

- (i) Subsets of $\{1, \ldots, n\}$ are easier to compute with than T_n/\mathscr{L} ;
- (ii) For example, if $x \in T_{10}$ and $|\operatorname{im}(x)| = 5$, then

$$|L| = 5! * S(10, 5) = 5103000.$$

It is much easier to compute the action of U_L on im(x) than on L.

Rees 0-matrix semigroups

Let $S = \mathcal{M}^0[T: I, J; P]$ be a regular **Rees 0-matrix semigroup** over a permutation group $G \leq S_n$ and $|J| \times |I|$ matrix $P = (p_{j,i})_{j \in J, i \in I}$.

Proposition

Let U be any subsemigroup of S. Then:

(i) the action of U on S/\mathscr{L} is isomorphic the action of U on $J \cup \{0\}$ defined by

$$0 \cdot (j, g, k) = 0 \cdot 0 = 0 = i \cdot 0, \quad i \cdot (j, g, k) = \begin{cases} k & \text{if } p_{i,j} \neq 0\\ 0 & \text{if } p_{i,j} = 0 \end{cases}$$

(ii) if L is any \mathscr{L} -class of S, then U_L acts faithfully on $\{1, \ldots, n\}$ by

$$m \cdot (i, g, j)|_L = m \cdot p_{j,i}g$$
 for all $m \in \{1, 2, \dots, n\}$

is faithful.

An algorithm Let $U = \langle X \rangle$ be a subsemigroup of a finite regular semigroup S. Green's \mathscr{R} -relation is a **left congruence** on S and so S acts by left multiplication on \mathscr{R} -classes.

1:	find $(U)\lambda = \{(u)\lambda : u \in U\}$	\triangleright the standard orbit algorithm
2:	find the s.c.c.s of $(U)\lambda$	▷ standard graph algorithms
3:	$\mathfrak{R} \leftarrow X$	$\triangleright \mathscr{R} ext{-class reps}$
4:	for $r \in \mathfrak{R}$ do	
5:	identify the s.c.c. of $(r)\lambda$ in	$(U)\lambda$
6:	compute $U_{L_x^S}$	▷ if we didn't already
7:	for $x \in X$ do	
8:	if $(xr, y) \notin \mathscr{R}^U$ for any g	$y \in \mathfrak{R}$ then
9:	append xr to \mathfrak{R}	
10:	end if	
11:	end for	
12:	end for	

Return

The output is:

- \Re the \mathscr{R} -class representatives of U;
- data structures for the \mathscr{R} -classes;

The latter lets us calculate/test:

...

size: $|U| = \sum_{x \in \mathfrak{R}} |R_x|;$

membership: $x \in U$ if and only $(x)\lambda \in (U)\lambda$ and $(x'y)|_{L_y^S} \in U_{L_y^S}$ for some $y \in \mathfrak{R}$;

factorisation: pay very very very close attention!