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Some questions?

Aim: to present some algorithms to compute finite semigroups.

We must address the following questions:

• how is the semigroup given?

• what are we trying to compute?

• what is the complexity of the algorithms?

Some things the talk is not about:

• programming issues;

• data structures;

• implementations;

• user interfaces.

J. D. Mitchell (St Andrews) Computing with semigroups 4th of February, 2014 2 / 24



GAP
A prelude to some answers

GAP is a free, open system for computational discrete
mathematics, in particular group theory.

free GAP is can be downloaded from www.gap-system.org

free GAP (as of version 4.3) is released under the GPL.

open the source code is completely available.

open mechanism for third-party contributions, and distribution.

GAP runs on (almost) every platform.

Estimated to have thousands of users world-wide.
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Why compute?

• perform low-level calculations such as
multiplication, inversion, and so
on;

• suggests new theoretical results;

• obtain counter-examples;

• gain more detailed understanding
of the objects under consideration;

• perform more intricate calculations
than possible by hand.

Even computing small examples by hand can exceed human patience.
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Insert semigroup into computer...
How is a semigroup given?

There are 3 main ways to define a semigroup to a computer:

Cayley table: ...;

Finite presentation: words in generators and relations i.e.

〈e, f | e2 = e, efe = fe, f2e = fe, f3 = f, fef2 = fe〉.

Generators: as a subsemigroup of a larger semigroup such as
transformations, matrices, binary relations, partitions,
and so on ...

In this talk, we will deal (almost) exclusively with the latter.
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Enumeration of semigroups

n number of semigroups
0 1
1 1
2 4
3 18
4 126 (Forsythe ’54)
5 1160 (Motzkin-Selfridge ’56)
6 15 973 (Plemmons ’66)
7 836 021 (Jürgensen-Wick ’76)
8 1 843 120 128 (Satoh-Yama-Tokizawa ’94)
9 52 989 400 714 478 (Distler-Kelsey ’11)
10 12 418 001 077 381 302 684 (Distler-Kelsey ’13)
11 ?? (Everyone ’13)

The semigroups of orders 1 to 8 are available in the GAP package
Smallsemi available at tinyurl.com/smallsemi.
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The semigroups of order 2, 3 and 4
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Fundamental tasks
What are we trying to compute anyway?

INPUT: a list of x1, . . . , xm (in the universe) generating a semigroup
U .

OUTPUT/TEST:

• the size of U ;

• membership in U ;

• factorise elements over the generators;

• the number of idempotents (x2 = x);

• the maximal subgroups;

• the ideal structural of U (i.e. Green’s relations);

• is U a group? an inverse semigroup? a regular semigroup?
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The universe
Transformations, partial perms, matrices, partitions...

The full transformation monoid is just the monoid of all
transformations under composition of functions.

A symmetric inverse monoid is just the monoid of all partial
permutations under composition of functions.

A general linear monoid of n× n matrices over a finite field.

A partition monoid is the monoid of partitions...

A Rees 0-matrix semigroup ...
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Excluded middle

Exhaustive: store the elements

• be happy with relatively small semigroups

• SgpWin by Don McAlister (2006?)

• Semigroupe by Jean-Eric Pin (2009)

Non-exhaustive: don’t store the elements

• Lallement-McFadden (1990)

• Monoid package for GAP3 by
Linton-Pfeiffer-Robertson-Ruškuc (1997)

• Semigroups package for GAP4 by me (2013)
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The limitations of exhaustive enumeration

n # transformations memory unit

1 1 16 bits
2 4 16 bytes
3 27 162 bytes
4 256 2 kb
5 3 125 ∼ 30 kb
6 46 656 ∼ 546 kb
7 823 543 ∼ 10 mb
8 16 777 216 ∼ 256 mb
9 387 420 489 ∼ 6 gb
10 10 000 000 000 ∼ 186 gb
11 285 311 670 611 ∼ 6 tb
12 8 916 100 448 256 ∼ 194 tb
13 302 875 106 592 253 ∼ 7 pb

Storing the elements of a semigroup internally quickly
becomes impractical.
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A simple example

Let S be the semigroup generated by the transformations

x1 =

(
1 2 3
3 2 3

)
and x2 =

(
1 2 3
3 3 1

)
.

• How many elements does S have?

• How many idempotents does S have?

• What are its maximal subgroups?
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An exhaustive algorithm
S acting on itself by right multiplication

Input: A subsemigroup S = 〈 x1, x2, . . . , xm 〉 of a larger semigroup.

Output: The elements of S.

Suppose x1, x2, . . . , xm are distinct. Here’s the algorithm:

1: X := [x1, x2, . . . , xm]
2: for y ∈ X do
3: for i ∈ {1, . . . ,m} do
4: if yxi 6∈ X then
5: append yxi to X
6: end if
7: end for
8: end for
9: return X
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Pay closer attention...
...and we’ve found the Cayley graphs and a presentation
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The right Cayley graph. The left Cayley graph.

〈e, f | e2 = e, efe = fe, f2e = fe, f3 = f, fef2 = fe〉...
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... and the Green’s structure

What’s not so great, is that the algorithm spends lots of time:

• checking yxi 6∈ X;

• multiplying elements;

• uses too much memory.

The algorithm takes no advantage of the structure or representation of
the semigroup.
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Non-exhaustive
Overview

Let S be a finite regular semigroup and let U = 〈 x1, . . . , xm 〉 ≤ S.

We consider S known and U unknown.

We don’t want to find or store the elements of U .

We want to decompose S into blocks so that:

• the blocks have some uniform structure;

• the blocks are easy to compute from the given generators;

• the structure of S is used;

• we take advantage of computational group theory.

Blocks = Green’s R-classes
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Actions and stabilisers
Suppose S acts on the right on a set Ω. The natural induced
right action of S on the power set P(Ω) is:

Σ · s = { α · s : α ∈ Σ } for Σ ⊆ Ω and s ∈ S

and we define s|Σ : Σ −→ Σ · s by s|Σ : α 7→ α · s.
The stabiliser of Σ under S is

StabS(Σ) = { s ∈ S1 : Σ · s = Σ }.

Then the quotient of StabS(Σ) by the kernel of its action is isomorphic
to

SΣ = { s|Σ : s ∈ StabS(Σ) }

which is a subgroup of the symmetric group Sym(Σ) on Σ.
The strongly connected component (s.c.c.) of α ∈ Ω is

{ β ∈ Ω : ∃s, t ∈ S1, β = α · s, α = β · t }.
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Schreier’s Theorem for Semigroups Actions

Suppose that S acts on the right on a set Ω, and U is a
subsemigroup of S.

If Σ ⊆ Ω, then
SΣ = { s|Σ : s ∈ StabS(Σ) }.

Proposition (Linton-Pfeiffer-Robertson-Ruškuc ’98)

Let {Σ1, . . . ,Σn} be an s.c.c. of the action of U on P(Ω). Then:

(i) for every i > 1, there exist ui, vi ∈ U such that Σ1 · ui = Σi,
Σi · vi = Σ1, (uivi)|Σ1 = idΣ1 and (viui)|Σi = idΣi;

(ii) UΣi and UΣj are isomorphic as permutation groups;

(iii) UΣ1 = 〈 (uisvj)Σ1 : 1 ≤ i, j ≤ n, s ∈ X, Σi · s = Σj 〉.
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Action on L -classes

Let S be a finite regular semigroup and let U ≤ S. Then U acts freely
on the L -classes of S by right multiplication (L is a right
congruence).

Proposition (East-Egri-Nagy-M-Péresse ’13)

Let x, y ∈ U be arbitrary and let x′ ∈ S such that xx′x = x. Then:

(i) { LS
y : y ∈ RU

x } is an s.c.c. of the action of U on S/L ;

(ii) LS
x ∩RU

x is a group under s ∗ t = sx′t that is isomorphic to ULS
x

;

(iii) xRUy implies ULS
x

∼= ULS
y

;

(iv) |RU
x | = |ULS

x
| · |{ LS

y : y ∈ RU
x }|;

(v) If LS
x belongs to the s.c.c. of LS

y under the action of U on S/L ,

then |RU
x | = |RU

y |.
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So what?

For an R-class of U ≤ S, there are the actions of:

• U on the L -classes of S by right multiplication;

• the group UL where L is an L -class of S.

Suppose that Ω is a set and λ : S −→ Ω such that:

(i) |Ω| = |S/L |;
(ii) (x)λ = (y)λ if and only if LS

x = LS
y for all x, y ∈ S;

(iii) S acts on Ω such that (x · u)λ = (x)λ · u for all x ∈ S and u ∈ U .

Then the actions of U on S/L and Ω are isomorphic via λ.
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Transformation semigroups

Proposition

Let U be any subsemigroup of some Tn where n ∈ N. Then:

(i) the action of U on Tn/L is isomorphic to the action of U on
P({1, 2, . . . , n}) defined by

X · f = { (x)f : x ∈ X };

(ii) if L ∈ Tn/L , then UL acts faithfully on im(x) for all x ∈ L.

This is what:

(i) Subsets of {1, . . . , n} are easier to compute with than Tn/L ;

(ii) For example, if x ∈ T10 and | im(x)| = 5, then

|L| = 5! ∗ S(10, 5) = 5103000.

It is much easier to compute the action of UL on im(x) than on L.
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Rees 0-matrix semigroups

Let S =M0[T : I, J ;P ] be a regular Rees 0-matrix semigroup over
a permutation group G ≤ Sn and |J | × |I| matrix P = (pj,i)j∈J,i∈I .

Proposition

Let U be any subsemigroup of S. Then:

(i) the action of U on S/L is isomorphic the action of U on J ∪ {0}
defined by

0 · (j, g, k) = 0 · 0 = 0 = i · 0, i · (j, g, k) =

{
k if pi,j 6= 0

0 if pi,j = 0

(ii) if L is any L -class of S, then UL acts faithfully on {1, . . . , n} by

m · (i, g, j)|L = m · pj,ig for all m ∈ {1, 2, . . . , n}

is faithful.
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An algorithm
Let U = 〈X 〉 be a subsemigroup of a finite regular semigroup S.

Green’s R-relation is a left congruence on S and so S acts by left
multiplication on R-classes.

1: find (U)λ = {(u)λ : u ∈ U} . the standard orbit algorithm
2: find the s.c.c.s of (U)λ . standard graph algorithms
3: R← X . R-class reps
4: for r ∈ R do
5: identify the s.c.c. of (r)λ in (U)λ
6: compute ULS

x
. if we didn’t already

7: for x ∈ X do
8: if (xr, y) 6∈ RU for any y ∈ R then
9: append xr to R

10: end if
11: end for
12: end for
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Return

The output is:

• R - the R-class representatives of U ;

• data structures for the R-classes;

The latter lets us calculate/test:

size: |U | =
∑

x∈R |Rx|;

membership: x ∈ U if and only (x)λ ∈ (U)λ and (x′y)|LS
y
∈ ULS

y
for

some y ∈ R;

factorisation: pay very very very close attention!

...
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