Semigroups from digraphs

Maximilien Gadouleau
Durham University
With Peter J. Cameron, Alonso Castillo-Ramirez, James East, and James D. Mitchell

2016-11-09

Outline

Arcs, digraphs, and semigroups

Length of words: results

Length of words: conjectures

Outline

Arcs, digraphs, and semigroups

Length of words: results

Length of words: conjectures

Arcs

We are in Sing_{n}, the semigroup of singular transformations of $[n]=\{1, \ldots, n\}$.

An are is any transformation of the form $(a \rightarrow b)$ for distinct $a, b \in[n]$, such that for any $v \in[n]$:

$$
v(a \rightarrow b)= \begin{cases}b & \text { if } v=a \\ v & \text { otherwise }\end{cases}
$$

Let D be a digraph on $[n]$. We then view $D \subseteq \operatorname{Sing}_{n}$ and we are interested in $\langle D\rangle$.

Example 1

Let D be the transitive tournament on n vertices.

Then $\langle D\rangle=\mathrm{OI}_{n}=\{\alpha: v \leq v \alpha\}$.
E.g. $\alpha=(5,2,4,5,5)=(1 \rightarrow 5)(4 \rightarrow 5)(3 \rightarrow 4)$.

Example 2

Let D be the undirected path on n vertices.
Then $\langle D\rangle=\mathrm{O}_{n}=\{\alpha: u \leq v \Rightarrow u \alpha \leq v \alpha\}$.

Let D be the directed path on n vertices.

Then $\langle D\rangle=\mathrm{C}_{n}=\{\alpha: v \leq v \alpha, u \leq v \Rightarrow u \alpha \leq v \alpha\}$.

$$
1 \longrightarrow 2 \longrightarrow 4 \longrightarrow 5
$$

Example 3

Let $D=K_{n}$ be the clique on n vertices.

Theorem (Howie 66)
$\left\langle K_{n}\right\rangle=\operatorname{Sing}_{n}$.

Previous results

(You, Yang 02; Yang, Yang 06; Yang, Yang 09)
Different properties of $\langle\boldsymbol{D}\rangle$, such as:

- $\operatorname{Arcs}(\langle D\rangle)=D \cup\{(a \rightarrow b):(b \rightarrow a)$ lies in a cycle of $D\}$.
- When $\left\langle D_{1}\right\rangle=\left\langle D_{2}\right\rangle$.
- When $\left\langle D_{1}\right\rangle \cong\left\langle D_{2}\right\rangle$ as semigroups.
- Classification of when $\langle D\rangle$ is regular.

More classifications

(East, G, Mitchell -in preparation)
Classification of when $\langle D\rangle$

- is inverse, or completely regular, or commutative, or simple, or 0 -simple;
- is a semilattice, or a band, or a rectangular band;
- is \mathscr{H}-trivial, or \mathscr{L}-trivial, or \mathscr{R}-trivial, or \mathscr{J}-trivial;
- has a unique \mathscr{L}-class, or has a unique \mathscr{R}-class;
- has a left zero, a right zero, a zero.

Example of classification

Theorem (East, G, Mitchell)

Let D be a connected digraph. Then the following are equivalent:
(i) $\langle D\rangle \cong\left(2^{[n-1]} \backslash \varnothing, \cup\right)$;
(ii) $\langle D\rangle$ is a semilattice;
(iii) $\langle D\rangle$ is inverse;
(iv) $\langle D\rangle$ is commutative;
(v) D is a fan.

Outline

Arcs, digraphs, and semigroups

Length of words: results

Length of words: conjectures

Length of words

We study the length of words $w \in D^{*}$ that express $\alpha \in\langle D\rangle$.
For any D and $\alpha \in\langle D\rangle$, let

$$
\ell(D, \alpha):=\min \left\{\operatorname{length}(w): w \in D^{*}, w=\alpha\right\}
$$

We are interested in the longest elements:

$$
\ell(D):=\max \{\ell(D, \alpha): \alpha \in\langle D\rangle\} .
$$

Acyclic digraphs

Let Q_{n} be the following acyclic digraph.

Theorem (Cameron, Castillo-Ramirez, G, Mitchell 16)
For any acyclic digraph A on [n],

$$
\ell(A) \leq \ell\left(Q_{n}\right)=\frac{1}{2}\left(n^{2}-3 n+4\right)
$$

Results for the clique K_{n}

Theorem (Iwahori 77; Howie 80)

$$
\ell\left(K_{n}, \alpha\right)=n-\operatorname{fix}(\alpha)+\operatorname{cycl}(\alpha),
$$

where $\operatorname{fix}(\alpha)=\{v: v \alpha=v\}$ and $\operatorname{cycl}(\alpha)$ is the number of cyclic components of α.
Easy to maximise:

$$
\ell\left(K_{n}\right)=\left\lfloor\frac{3 n-3}{2}\right\rfloor .
$$

In (Cameron, Castillo-Ramirez, G, Mitchell 16), we characterise the digraphs D such that $\ell(D, \alpha)=\ell\left(K_{n}, \alpha\right)$ for all $\alpha \in\langle D\rangle$.

Strong tournaments

Theorem (Howie 78)

For any $n \geq 3,\langle D\rangle=\operatorname{Sing}_{n}$ iff D contains a strong tournament.

Hence, strong tournaments are the "almighty" ones: the minimal arc generating sets of Sing_{n}. Let

$$
\begin{aligned}
& \ell_{\min }(n):=\min \{\ell(D): D \text { is a strong tournament on }[n]\}, \\
& \ell_{\max }(n):=\max \{\ell(D): D \text { is a strong tournament on }[n]\} .
\end{aligned}
$$

Theorem (Cameron, Castillo-Ramirez, G, Mitchell 16)

For any $n \geq 3$,

$$
\begin{aligned}
& 2 n-3 \leq \ell_{\text {min }}(n) \leq 10 n-8, \\
& \frac{1}{4} n^{2}-2 \leq \ell_{\max }(n) \leq 6 n^{2}-15 n+1 \text {. }
\end{aligned}
$$

Outline

Arcs, digraphs, and semigroups

Length of words: results

Length of words: conjectures

The "bad" tournament

Let π_{n} be the tournament below.

Conjecture (Cameron, Castillo-Ramirez, G, Mitchell 16)
For any $n \geq 3$,

$$
\ell_{\max }(n)=\ell\left(\pi_{n}, \alpha\right)=\frac{n^{2}+3 n-6}{2}
$$

where $\alpha=(n, n-1, \ldots, 2, n)$.

The "good" tournament

Let $n=2 m+1$ and κ_{n} be the circulant tournament $\{(v \rightarrow v+[m])\}$.

Conjecture (Cameron, Castillo-Ramirez, G, Mitchell 16)
For any $n \geq 3, \ell\left(\kappa_{n}\right)=\ell_{\text {min }}(n)$.

More general conjectures and open problems

Conjecture (Cameron, Castillo-Ramirez, G, Mitchell 16)

The diameter of any semigroup generated by a digraph is polynomial.
More precisely, $\exists \mathrm{c}$ such that for any D on n large enough, $\ell(D) \leq n^{c}$.

Question (G)
The diameter of any transformation semigroup generated by idempotents is polynomial.
For any set $T \subseteq E\left(\right.$ Sing $\left._{n}\right)$ (n large enough), $\ell(T) \leq n^{c}$.
Question (Kornhauser, Miller, Spirakis 84)
The diameter of any permutation group is polynomial.

