Semigroups from digraphs

Maximilien Gadouleau Durham University

With Peter J. Cameron, Alonso Castillo-Ramirez, James East, and James D. Mitchell

2016 - 11 - 09

Arcs, digraphs, and semigroups

Length of words: results

Arcs, digraphs, and semigroups

Length of words: results

Arcs

We are in Sing_n , the semigroup of singular transformations of $[n] = \{1, ..., n\}.$

An **arc** is any transformation of the form $(a \rightarrow b)$ for distinct $a, b \in [n]$, such that for any $v \in [n]$:

$$v(a \to b) = \begin{cases} b & \text{if } v = a, \\ v & \text{otherwise.} \end{cases}$$

Let *D* be a **digraph** on [n]. We then view $D \subseteq \text{Sing}_n$ and we are interested in $\langle D \rangle$.

Example 1

Let D be the transitive tournament on n vertices.

Then $\langle D \rangle = OI_n = \{\alpha : v \le v\alpha\}.$

E.g. $\alpha = (5, 2, 4, 5, 5) = (1 \rightarrow 5)(4 \rightarrow 5)(3 \rightarrow 4).$

Example 2

Let D be the undirected path on n vertices.

Then
$$\langle D \rangle = \mathcal{O}_n = \{ \alpha : u \le v \Rightarrow u \alpha \le v \alpha \}.$$

$$1 - - 2 - - 3 - - 4 - - 5$$

Let D be the directed path on n vertices.

Then
$$\langle D \rangle = \mathbb{C}_n = \{ \alpha : v \le v \alpha, u \le v \Rightarrow u \alpha \le v \alpha \}.$$

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5$$

Example 3

Let $D = K_n$ be the clique on n vertices.

```
Theorem (Howie 66)
\langle K_n \rangle = \operatorname{Sing}_n.
```


(You, Yang 02; Yang, Yang 06; Yang, Yang 09) Different properties of $\langle D \rangle$, such as:

- Arcs($\langle D \rangle$) = $D \cup \{(a \rightarrow b) : (b \rightarrow a) \text{ lies in a cycle of } D\}$.
- When $\langle D_1 \rangle = \langle D_2 \rangle$.
- When $\langle D_1 \rangle \cong \langle D_2 \rangle$ as semigroups.
- Classification of when $\langle D \rangle$ is regular.

More classifications

(East, G, Mitchell -in preparation) Classification of when $\langle D \rangle$

- is inverse, or completely regular, or commutative, or simple, or 0-simple;
- ▶ is a semilattice, or a band, or a rectangular band;
- is \mathcal{H} -trivial, or \mathcal{L} -trivial, or \mathcal{R} -trivial, or \mathcal{J} -trivial;
- ▶ has a unique \mathscr{L} -class, or has a unique \mathscr{R} -class;
- ▶ has a left zero, a right zero, a zero.

Example of classification

Theorem (East, G, Mitchell)

Let D be a connected digraph. Then the following are equivalent:

- (i) $\langle D \rangle \cong (2^{[n-1]} \setminus \emptyset, \cup);$
- (ii) $\langle D \rangle$ is a semilattice;
- (iii) $\langle D \rangle$ is inverse;
- (iv) $\langle D \rangle$ is commutative;
- (v) D is a fan.

Arcs, digraphs, and semigroups

Length of words: results

Length of words

We study the length of words $w \in D^*$ that express $\alpha \in \langle D \rangle$.

For any *D* and $\alpha \in \langle D \rangle$, let

$$\ell(D,\alpha) := \min \left\{ \operatorname{length}(w) : w \in D^*, w = \alpha \right\}.$$

We are interested in the longest elements:

 $\ell(D) := \max\{\ell(D,\alpha) : \alpha \in \langle D \rangle\}.$

Acyclic digraphs

Let Q_n be the following acyclic digraph.

Theorem (Cameron, Castillo-Ramirez, G, Mitchell 16) For any acyclic digraph A on [n],

$$\ell(A) \le \ell(Q_n) = \frac{1}{2}(n^2 - 3n + 4).$$

13/19

Results for the clique K_n

Theorem (Iwahori 77; Howie 80)

$$\ell(K_n, \alpha) = n - \operatorname{fix}(\alpha) + \operatorname{cycl}(\alpha),$$

where $fix(\alpha) = \{v : v\alpha = v\}$ and $cycl(\alpha)$ is the number of cyclic components of α .

Easy to maximise:

$$\ell(K_n) = \left\lfloor \frac{3n-3}{2} \right\rfloor.$$

In (Cameron, Castillo-Ramirez, G, Mitchell 16), we characterise the digraphs *D* such that $\ell(D, \alpha) = \ell(K_n, \alpha)$ for all $\alpha \in \langle D \rangle$.

Strong tournaments

Theorem (Howie 78)

For any $n \ge 3$, $\langle D \rangle = \text{Sing}_n$ iff D contains a strong tournament.

Hence, strong tournaments are the "almighty" ones: the minimal arc generating sets of $Sing_n$. Let

 $\ell_{\min}(n) := \min\{\ell(D) : D \text{ is a strong tournament on } [n]\},$ $\ell_{\max}(n) := \max\{\ell(D) : D \text{ is a strong tournament on } [n]\}.$

Theorem (Cameron, Castillo-Ramirez, G, Mitchell 16) For any $n \ge 3$,

$$2n - 3 \le \ell_{\min}(n) \le 10n - 8,$$

$$\frac{1}{4}n^2 - 2 \le \ell_{\max}(n) \le 6n^2 - 15n + 1.$$

Arcs, digraphs, and semigroups

Length of words: results

The "bad" tournament

Let π_n be the tournament below.

Conjecture (Cameron, Castillo-Ramirez, G, Mitchell 16) For any $n \ge 3$,

$$\ell_{\max}(n) = \ell(\pi_n, \alpha) = \frac{n^2 + 3n - 6}{2},$$

where $\alpha = (n, n - 1, ..., 2, n)$.

17/19

The "good" tournament

Let n = 2m + 1 and κ_n be the circulant tournament { $(v \rightarrow v + [m])$ }.

Conjecture (Cameron, Castillo-Ramirez, G, Mitchell 16) For any $n \ge 3$, $\ell(\kappa_n) = \ell_{\min}(n)$. More general conjectures and open problems

Conjecture (Cameron, Castillo-Ramirez, G, Mitchell 16) The diameter of any semigroup generated by a digraph is polynomial. More precisely, $\exists c$ such that for any D on n large enough, $\ell(D) \leq n^c$.

Question (G)

The diameter of any transformation semigroup generated by idempotents is polynomial. For any set $T \subseteq E(\operatorname{Sing}_n)$ (n large enough), $\ell(T) \leq n^c$.

Question (Kornhauser, Miller, Spirakis 84) The diameter of any permutation group is polynomial.