Introduction/Motivation
00
0000
00

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Regular semigroups weakly generated by idempotents

Luís Oliveira (CMUP & Univ. Porto)

Semigroup Seminar, University of York March 16, 2022

Introduction

S - semigroup.

E(S) - set of idempotents of the semigroup S.

The (von Neumann) inverses of $x \in S$ are the elements $x' \in S$ such that

$$xx'x = x$$
 and $x'xx' = x'$.

V(x) - set of inverses of $x \in S$.

S is regular \Leftrightarrow $V(x) \neq \emptyset$ for all $x \in S$.

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 - のへぐ

Introduction

S - regular semigroup.

S is weakly generated by $A \subseteq S$ if S has no proper regular subsemigroup containing A.

• S may not be generated by A .

The "red" semigroup is weakly generated by $\{a\}$, but $\langle a \rangle = \{a, 0\}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Introduction

S - regular semigroup.

S is weakly generated by $A \subseteq S$ if S has no proper regular subsemigroup containing A.

- S may not be generated by A .
- There may exist more than one subsemigroup weakly generated by A.

The "red" subsemigroup is weakly generated by $\{a\}$.

The "blue" subsemigroup is also weakly generated by $\{a\}$.

・ロト ・ 聞 ・ ・ 聞 ・ ・ 聞 ・ ・ 日 ・

Motivation

E-variety V of regular semigroups: class of regular semigroups closed for homomorphic images, direct products and regular subsemigroups.

X': disjoint copy of X. $\theta: X \cup X' \to S \text{ <u>matched</u>}: x'\theta \in V(x\theta).$

However, not all e-varieties have bifree objects.

Motivation

 $A \subseteq S$ matched: $A \cap V(x) \neq \emptyset$ for all $x \in A$.

Proposition (Yeh'92) The following conditions are equivalent for $|X| \ge 2$:

- a) BFV(X) exists.
- b) For every $S \in \mathbf{V}$ and every $A \subseteq S$ matched with $|A| \leq |X|$, there exists a unique subsemigroup of S weakly generated by A.

Theorem (Yeh'92) For $|X| \ge 2$, BFV(X) exists if and only if V is an e-variety of locally inverse semigroups or of regular *E*-solid semigroups.

Motivation

Question: Is there a "free" regular semigroup F(X) weakly generated by X, in the sense that all regular semigroups weakly generated by X are homomorphic images of F(X)?

If F(X) exists, it has the following property

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 - のへぐ

Motivation

Free objects in varieties of algebras:

 \cdots and for e-varieties:

If BFV(X) exists, then $BFV(X) \cong FV(X)$.

alternative definition

alternative notion

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | 置|| のへの

Regular semigroups weakly generated by idempotents

We will focus only on regular semigroups weakly generated by idempotents in this talk.

Trivial observation: Any regular semigroup weakly generated by a set X of idempotents is idempotent generated (not necessarily by X).

Proof: S regular $\implies \langle E(S) \rangle$ is a regular subsemigroup containing X. Thus $S = \langle E(S) \rangle$ if S is weakly generated by X.

Regular semigroups weakly generated by idempotents

Question: Is there a

free regular semigroup FI(X) weakly generated by |X| idempotents?

(in the sense that all regular semigroups weakly generated by |X| idempotents are homomorphic images of FI(X).)

Answer: Yes, and it is unique up to isomorphism.

In this talk we will:

- Introduce FI(X) by a presentation $\langle G, R \rangle$ with both G and R infinite.
- Present a solution to the word problem for this presentation (there is a "canonical form" despite *G* and *R* being infinite sets).
- Give some details about the structure of FI(X).

The presentation $\langle G, R \rangle$

Notation:

- if $g \in L \times C \times R$, then $g = (g^{l}, g^{c}, g^{r})$.
- $g^{l^2} = (g^l)^l; g^{rl} = (g^r)^l; g^{lr} = (g^l)^r.$

Recursive definition of G: $G = \cup G_i$ where

• $G_0 = \{1\}$ and $G_1 = X$;

• we identify each $x \in X$ with the triple (1, x, 1);

• if G_{i-1} and G_i are defined, then let $G_{i+1} \subseteq G_i \times G_{i-1} \times G_i$ such that

$$g \in \mathcal{G}_{i+1} \quad \Longleftrightarrow \quad g' \neq g^r \text{ and } g^c \in \{g^{l^2}, g^{lr}\} \cap \{g^{r^2}, g^{rl}\}$$

For example:

•
$$G_2 = \{(x_1, 1, x_2) \mid x_1, x_2 \in X \text{ with } x_1 \neq x_2\}.$$

The presentation $\langle G, R \rangle$

The relation R: $R = \rho_e \cup \rho_s$ where

- $\rho_e = \{(1g,g), (g1,g), (g^2,g) \mid g \in G\}.$
- $\rho_s = \{(g^c g^l g, g), (gg^r g^c, g), (g^r g^c gg^c g^l, g^r g^c g^l) | g \in G_i, i \ge 2\}.$

Then $FI^{1}(X) = G^{+}/\rho$ where ρ is the congruence generated by R.

•
$$\rho_e \Rightarrow \begin{cases} 1\rho \text{ is the identity element ;} \\ G\rho \text{ is a set of idempotents of } FI^1(X) . \end{cases}$$

• $FI^1(X)$ is an idempotent generated monoid with identity element 1ρ .

The presentation $\langle G, R \rangle$

The sandwich set S(e, f) of $e, f \in E(S)$ is the set

 $S(e, f) = \{g \in E(S) : ge = g, fg = g \text{ and } egf = ef\}.$

Proposition: An idempotent generated semigroup S is regular if and only if $S(e, f) \neq \emptyset$ for all $e, f \in E(S)$.

- ρ_e and $\rho_s \Rightarrow g^c g^l, g^r g^c \in E(Fl^1(X)).$
- Then $\rho_s \Leftrightarrow g \in S(g^r g^c, g^c g^l)$.

FI(X)

Structure 0000 00

The word problem for $\langle G, R \rangle$

The height of $g \in G$ is the index v(g) = i such that $g \in G_i$.

For $v = g_1 \cdots g_n \in G^+$, let $\beta_1(v) = \beta_1(g_1) \cdots \beta_1(g_n)$ Proposition: $g \rho \beta_1(g)$ and $v \rho \beta_1(v)$.

 $\begin{array}{l} \mbox{The word problem for } \left\langle G, R \right\rangle \\ \mbox{Landscape: word } u = g_1 \cdots g_n \in G^+ \mbox{ such that} \\ g_{i-1} \in \{g_i^l, g_i^r\} \mbox{ or } g_i \in \{g_{i-1}^l, g_{i-1}^r\} \mbox{ for all } i \,. \end{array}$

We represent the landscapes in drawings that include information about the height of the letters:

$$g_i$$

$$g_{i+1} \in \{g_i', g_i'\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

The word problem for $\langle G, R \rangle$ Landscape: word $u = g_1 \cdots g_n \in G^+$ such that $g_{i-1} \in \{g_i^l, g_i^r\}$ or $g_i \in \{g_{i-1}^l, g_{i-1}^r\}$ for all i.

We represent the landscapes in drawings that include information about the height of the letters:

valley downhill uphill

The word problem for $\langle G, R \rangle$ Landscape: word $u = g_1 \cdots g_n \in G^+$ such that $g_{i-1} \in \{g_i^l, g_i^r\}$ or $g_i \in \{g_{i-1}^l, g_{i-1}^r\}$ for all i.

We represent the landscapes in drawings that include information about the height of the letters:

The word problem for $\langle G, R \rangle$ Landscape: word $u = g_1 \cdots g_n \in G^+$ such that $g_{i-1} \in \{g_i^l, g_i^r\}$ or $g_i \in \{g_{i-1}^l, g_{i-1}^r\}$ for all i.

We represent the landscapes in drawings that include information about the height of the letters:

Mountain range: landscape u with $\sigma(u) = \tau(u) = 1$ (examples: $\beta_1(v)$). Mountain: mountain range with no rivers (examples: $\beta_1(g)$).

Uplifting of rivers

 $u \rightarrow v$: v is obtained from u by uplifting a river.

 $\xrightarrow{*}$: reflexive and transitive closure of \rightarrow .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The solution to the word problem

Proposition: Applying uplifting of rivers to a mountain range u, we must always stop with the same mountain independently of the order we choose to apply the upliftings.

 $\beta_2(u)$: unique mountain such that $u \xrightarrow{*} \beta_2(u)$ (*u* is a mountain range).

Proposition: $u \rho \beta_2(u)$ for any mountain range u.

• show that u
ho v if u
ightarrow v, and use transitivity.

 $\beta(v) = \beta_2(\beta_1(v))$ for any $v \in G^+$.

Proposition: $v_1 \rho v_2 \iff \beta(v_1) = \beta(v_2)$ for any $v_1, v_2 \in G^+$.

- $v \ \rho \ \beta(v)$ for any $v \in G^+$.
- $\beta(v)$ is the only mountain in $v\rho$.

The semigroup FI(X)

 $FI(X) = FI^1(X) \setminus \{1\rho\}.$

M(X): set of all non-trivial mountains of G^+ .

Proposition: $FI(X) \cong (M(X), \odot)$, where $u \odot v = \beta_2(u * v)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

The semigroup FI(X)

 $FI(X) = FI^1(X) \setminus \{1\rho\}.$

M(X): set of all non-trivial mountains of G^+ .

Proposition: $FI(X) \cong (M(X), \odot)$, where $u \odot v = \beta_2(u * v)$.

If $u = g_0 g_1 \cdots g_{n-1} g_n \in M(X)$, then

- $\lambda_l(u)$: "left hill" of u;
- $\lambda_r(u)$: "right hill" of u;

•
$$\overline{u} = g_n g_{n-1} \cdots g_1 g_0 \in M(X).$$

The semigroup FI(X)

Proposition: FI(X) is a regular semigroup weakly generated by $X\rho$.

- $\overline{u} \in V(u)$ for any $u \in M(X)$.
- $S(\beta(g^rg^c), \beta(g^cg^l)) = \{\beta_1(g)\}$ in M(X).

Theorem: Any regular semigroup weakly generated by a set X of idempotents is a homomorphic image of FI(X).

However, not all homomorphic images of FI(X) are weakly generated by X.

• Can we (partially) characterize which homomorphic images of *FI*(*X*) are weakly generated by *X*? Is this problem decidable?

Skeletons

Skeleton mapping: $\varphi: G \setminus \{1\} \to E(S)$ "respecting" the structure of G

 $\varphi_{|X} \text{ is one-to-one} \quad \text{ and } \quad g\varphi \in S((g^r)\varphi(g^c)\varphi,(g^c)\varphi(g^l)\varphi).$

Skeleton of *S* (induced by *X*): $(G \setminus \{1\})\varphi$.

Proposition: Let S be a regular semigroup.

- (*i*) The subsemigroup generated by a skeleton is always regular.
- (*ii*) If S is weakly generated by |X| idempotents, then S is generated by any of its skeletons (it can have distinct skeletons).

Open questions:

- When is the semigroup generated by a skeleton weakly generated by X? Is this question decidable?
- When do two skeletons generate the same subsemigroup?

Introduction/Motivation 00 0000 00 FI(X)

Structure •000 00

Green's relations

S: regular semigroup

 $s \leq_{\mathscr{J}} t \Leftrightarrow SsS \subseteq StS;$ $\mathscr{J} = \leq_{\mathscr{J}} \cap \geq_{\mathscr{J}};$ $\mathscr{D} = \mathscr{R} \lor \mathscr{L}.$

Proposition: For $u, v \in M(X)$, (i) $u \leq_{\mathscr{R}} v \Leftrightarrow \lambda_{l}(v)$ prefix of $\lambda_{l}(u)$; (ii) $u \mathscr{R} v \Leftrightarrow \lambda_{l}(u) = \lambda_{l}(v)$; (iii) $u \leq_{\mathscr{L}} v \Leftrightarrow \lambda_{r}(v)$ suffix of $\lambda_{r}(u)$; $\lambda_{l}(v)$ (iv) $u \mathscr{L} v \Leftrightarrow \lambda_{r}(u) = \lambda_{r}(v)$; 1• (v) $u \leq_{\mathscr{H}} v \Leftrightarrow \lambda_{l}(v)$ prefix of $\lambda_{l}(u)$ and $\lambda_{r}(v)$ suffix of $\lambda_{r}(u)$; (vi) $u \mathscr{H} v \Leftrightarrow u = v$.

FI(X)

Structure

Green's relations

 $\kappa(u)$: peak of $u \in M(X)$.

Ground of $g \in G$: defined recursively by $\epsilon(g) = \epsilon(g') \cup \{g\} \cup \epsilon(g^r)$.

Ground of $u \in M(X)$: $\epsilon(u) = \epsilon(\kappa(u))$.

Proposition: For $u, v \in M(X)$ (i) $u \leq \mathscr{J} v \Leftrightarrow \kappa(v) \in \epsilon(u)$; (ii) $\mathscr{D} = \mathscr{J}$ and $u \mathscr{D} v \Leftrightarrow \kappa(u) = \kappa(v)$.

Corollary: $G \setminus \{1\}$ is a transversal set for the \mathcal{D} -classes of FI(X).

Open questions:

- What is the structure of the biordered set E(FI(X))?
- When is a regular biordered set *E* the biordered set of some regular semigroup weakly generated by |X| idempotents?

The \mathscr{D} -class D_g

There is a natural way to order the $\mathscr L$ and $\mathscr R$ -classes of D_g such that

The \mathscr{D} -class D_g

There is a natural way to order the \mathscr{L} and \mathscr{R} -classes of D_g such that

Introduction/Motivation 00 0000 00

Structure

FI(X) for X finite

 $FI_n = FI(X)$ for |X| = n.

Proposition: FI_2 contains copies of all FI_n as subsemigroups.

Corollary: Every regular semigroup weakly generated by a finite set of idempotents strongly divides FI_2 .

The previous corollary applies, in particular, to

(*i*) regular semigroups generated by a finite set of idempotents.

(*ii*) finite idempotent generated regular semigroups.

FI(X) for X finite

Theorem [Gray & Ruškuc 2012]: Every group is a maximal subgroup of some free regular idempotent generated semigroup.

Question: What kind of groups can we get as maximal subgroups of free regular idempotent generated semigroups that are also weakly generated by two idempotents?

"Returning to the starting point":

- Is there a free regular semigroup F(X) weakly generated by |X| elements (non-idempotent case)?
- If F(X) exists, what kind of impact can it have in the theory of e-varieties of regular semigroups?

Introduction/Motivation	
00	
00	

The results presented here can be found in:

L.O., Regular semigroups weakly generated by idempotents, preprint

Thank you for your attention