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The overall topic:

Treating elementary arithmetic as inverse semigroup theory
via the theory of (monotone) partial injections,

and transformations of Cantor space.

One outcome :
Interesting (new?) inverse monoids that generalise

Nivat & Perot’s Polycyclic Monoids
(a.k.a. the logicians’ dynamical algebra)

in a natural way.

Disclaimer : These slides have been updated following the
talk, in order to correct some attributions / references.
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Practical motivation (I)

A follow-up to a talk given at

International Conference on Mathematics,
Engineering, & Technology

(ICoMET Jan. 2020 — Sukkur, Pakistan)

on practical & useful applications of inverse semigroup theory.

Applied inverse semigroup theory??

Modeling security holes due to Race Conditions
via representations of polycyclic monoids
as monotone partial injections on N

Based on a very practical application :
“Hacking Starbucks for unlimited free coffee” – Egor Homakov
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Practical motivation (II)

Today’s topic appears to give a route towards:

provably post-quantum cryptography

Post-quantum crypto. searches for protocols that are believed
not to be susceptible to attacks by quantum computers.

A more general / ambitious aim :

Can prove certain problems are
necessarily immune to quantum attacks?

Not the subject of today’s talk ...
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A short digression

Category theory

Not a prerequisite of the rest of the talk!

Everything in this talk is very strongly categorical

This is based on treating the natural numbers N as a category.

Many categorical properties are vast generalisations of
properties of N.

Semigroup-theoretic constructions, and
category-theoretic constructions often coincide.

I will do my best to hide the category theory
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The natural numbers as a category (I)

Treating N as a category :

Objects – these are t0,1,2,3, . . .u
Arrows – there is a unique arrow a Ñ b iff a ď b.

pN, ˆ , ` q is a distributive category :
Two monoidal tensors p ` q and p ˆ q

satisfying a distributive law
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The natural numbers as a category (II)

Treating N as a category :

Objects – these are t0,1,2,3, . . .u
Arrows – there is a unique arrow a Ñ b iff a ď b.

As pointed out in

“Metric spaces, generalised logics & closed cate-
gories” – W. Lawvere (1972)

We have monoidal closure :
pN, ` q is monoidal closed
The internal hom functor r Ñ s is given by monus

x
‚

´ y “

"

x ´ y x ě y ,
0 otherwise.
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The natural numbers as a category (III)

Treating N as a category :

Objects – these are t0,1,2,3, . . .u

Arrows – there is a unique arrow a Ñ b iff a ď b.

We have categorical traces

Both pN, ˆ q and pN, ` q are traced.

The trace of pN, ˆ q is

Trupxq “

$

&

%

x
u x pmod uq “ 0

K otherwise.

The trace of pN, ` q is

Trupxq “

$

&

%

x ´ u x ě u

K otherwise.
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Back to semigroup theory!

The Category Theory

is now over ...

... at least, explicitly!
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Our starting point :

Recall IpNq, the inverse monoid of partial injections on the
natural numbers.

Everya P IpNq has a unique generalised inverse a;

satisfying
aa;a “ a and a;aa; “ a;

Uniqueness of generalised inverses ô commutativity of
idempotents.
Idempotents are simply partial identities.
aa; and a;a are partial identities on the domain and image
of a, called the initial and final idempotents.
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An interesting submonoid

Let us consider mIpNq — the submonoid of monotone partial
injections.

x ď y ñ f pxq ď f pyq @x , y P dompf q

Basic properties :
1 N is totally ordered ñ

mIpNq is an inverse monoid
2 N is well-ordered ñ

Every element f P mIpNq is uniquely determined by
its initial and final idempotents, f ;f and ff ;.

In particular, 2. is a very strong property!
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A straightforward corollary ...

The kind of results that are immediate :

Let S be a (0-)bisimple inverse submonoid of mIpNq.

As every element f P mIpNq is uniquely determined by its initial
and final idempotents,

S is uniquely determined by its lattice of idempotents EpSq.
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From mIpNq to Cantor space

Elements of mIpNq correspond to pairs of points of Cantor space C.

Formally, one-sided infinite strings over t0,1u,

c “ 0100101101 . . .

or equivalently, functions from c : N Ñ t0,1u.
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Idempotents as Cantor points

Elements of mIpNq are in bijective correspondence with
balanced pairs of Cantor points.

i.e. pairs pcd , caq satisfying :
8
ÿ

r“0

caprq “
8
ÿ

r“0

cdprq P NY t8u

Given e2 “ e P mIpNq, consider its indicator function

cepnq “
"

1 Depnq
0 otherwise.

as a point of Cantor space.

For arbitrary a P mIpNq, we have initial and final Cantor
points, cf ;f and cff ; , which are balanced, since f is partial
injective.
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A composition on balanced Cantor pairs

Given balanced Cantor points pv ,uq, pt , sq, define a composition by:

px ,wq “ pv ,uq ¨ pt , sq

where wpnq “ spnq.upjq.tpjq P t0,1u,

j “ minjPN

#

j
ÿ

α“0

tpαq “
n
ÿ

α“0

spαq

+

and similarly, xpnq “ vpnq.upkq.tpkq P t0,1u,

k “ minkPN

#

k
ÿ

α“0

upαq “
n
ÿ

α“0

vpαq

+
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Some more implicit category theory

Another digression ...

what we could, but will not do!

Fun & games with Fractals

The Cantor set C is
– by construction –

isomorphic to two copies of itself.
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Why pairs of Cantor points?

Using the Cantor pairing

Given a Cantor point, c : N Ñ t0,1u form two new Cantor points

ca, cd : N Ñ t0,1u

by looking at its behaviour on the odd & even numbers
respectively.

caprq “ cp2rq and cdprq “ cp2r ` 1q
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Elements of mIpNq as Cantor points

There is a bijective correspondence between :
Monotone partial injections on N
(i.e. elements of mIpNq)
Cantor points satisfying

8
ÿ

r“0

cp2rq “
8
ÿ

r“0

cp2r ` 1q

Fun exercise: Write down the composition of such Cantor points!
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Cantor’s is not the only pairing

More generally, we can use any pairing1 φ : N – NZ N
to determine a bijection Φ : C – Cˆ C.

Note the “logarithmic” effect
Bijections on the natural numbers N – NZN

Uniquely determine / are determined by

Bijections on the Cantor set C – CˆC

There is – of course !( ..) – a great deal of category theory
behind this.

1We prefer monotone pairings – expressible as pairs of monotone partial
injections.
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End of digression

Back to the inverse semigroup theory

... which, nevertheless, remains closely connected to the
category theory.
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A simple arithmetic starting point :

Addition on N is monotone.
We ‘curry’ this to get a family of partial injections :

taddapnq “ n ` auaPN Ď mIpNq

along with their generalised inverses

add;apnq “
"

n ´ a n ě a,
K otherwise.

For category theorists

adda is the functor a‘ : nat Ñ nat ,

add;a is a categorical trace.

What submonoid of mIpNq is generated by these elements?
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A well-known monoid

Not a surprise to anybody!

An un-needed reminder ...
The bicyclic inverse monoid B has a single generator, and a
single relation:

B “ xs : ss; “ 1y

The bisimple submonoid of mIpNq uniquely specified by the
idempotents t1N`a : a P Nu.
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From idempotents to arrows

Every pair of idempotents p1N`b,1N`aq uniquely specifies an
element

pb,aq “ addbadd;a P mIpNq

“The unique monotone partial injection that maps
N` a to N` b”

This corresponds to the normal form for B, with composition

pd , cqpb,aq “
´

d ` rb
‚

´ cs, rc
‚

´ bs ` a
¯
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Successor is not the only generator

Question : For fixed x ą 0 P N, which inverse
monoid is generated by addx ?

A clue: self-embeddings of B
The homomorphism selfk : B ãÑ B, defined by its action on the
unique generator as s ÞÑ sk , is a self-embedding, for all k ą 0.

Unsurprising Answer : Yet another copy of B.

How may we map between these embeddings?
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Self-embeddings of B

For all k ą 0, define the injection ηk : B Ñ mIpNq by

ηk psq “ add;k

For all k ą 0, we have a commuting diagram :

B selfk //

ηk ""

B

η1||
mIpNq

together with the inclusions

ηy pBq Ď ηxpBq iff y pmod xq “ 0
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An (inverse) category of inverse monoids :

Let us apply the notions of partiality and reversibility to
mappings between monoids.

A partial embedding f : M Ñ N of inverse monoids is a a
partial injective function on underlying sets, satisfying

1 f p1Mq “ 1N

2 a,b P dompf q ñ ab P dompf q
3 a P dompf q ñ a; P dompf q
4 f ; also satisfies 2. and 3.

The class of all inverse monoids, with this notion of
homomorphism, forms an inverse category pIMMs.

“Partial Inverse Monoid Monics”
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A multiplicity of monoids

A fun game to play :

1 Start with an inverse monoid X .
2 Consider its endomorphism monoid X p1q “ pIMMspX ,X q

. . . this is also an inverse monoid.
3 Repeat the process : X pn`1q “ pIMMspX pnq,X pnqq

Derive a countable set of inverse monoids tX pjqujPN.

A non-trivial question
Define ΩX to be the full subcategory of pIMMs
whose objects are tX pjqujPN.

What can we say about the structure of this?

Can we ever have X piq – X pjq, for i ‰ j?
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Categorical reflexivity and the bicyclic monoid

We can prove a few facts about
this construction, applied to the bicyclic monoid.

There exists an embedding of the bicyclic monoid into its own
endomorphism monoid

B ãÑ Bp1q “ pIMMspB,Bq

This is given by : s; ÞÑ self1 P Bp1q.

As a corollary, B is a retract of Bpnq, for all n P N.
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Back to concrete monoids!

We can consider partial embeddings of mIpNq that map ηjpBq
to ηk pBq

None of these can be inner automorphisms.

How about on the semi-lattice of idempotents?

Recall : Each submonoid ηjpBq Ď mIpNq is uniquely
determined by its (distinct) idempotents.

Claim : Yes, whenever j “ 0 pmod kq.
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Moving from elements to idempotents

The simple (key) case :

B
ηk

��

EpBq �
� //? _oo B

η1

��
mIpNq

times;k p qtimesk

// mIpNq

Where timesk is given by currying multiplication timesk “ k ˆ
and its generalised inverse is :

times;k pnq “

$

&

%

n
k n pmod kq “ 0

K otherwise.
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Ceci n’est pas un monoı̈de bicyclic

Consider the inverse submonoid of mIpNq generated by
ttimesnuną0PN.

Question : “Which inverse monoid is this?”

Euclid proved this is not finitely generated!

A minimal generating set is given by

ttimesp : p is prime.u Ď mIpNq
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Idempotents and elements

The idempotents are the partial identities : 1aN for all
a ą 0 P N

Composition of idempotents is simply:

1aN1bN “ 1lcmpa,bqN

The arrows are, for all a,b ą 0 P N ,
“The unique monotone partial injection that maps aN onto

bN, and is undefined elsewhere.”
This is given by rb,as “ timesbtimes;a.
Composition?
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Composition & normal forms

By either :
1 Elementary number theory, or
2 The ‘composing Cantor pairs’ formulæ

we may give composition explicitly, as

rd , csrb,as “
„

d ˆ
lcmpc,bq

b
,

lcmpb, cq
c

ˆ a


This looks familiar(!)
An interesting special case :

”

pd ,pc
ı ”

pb,pa
ı

“

„

pd`pb
‚
´cq,ppc

‚
´bq`a



for fixed p P N`
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An inverse monoid

“On the foundations of inverse monoids & algebras”
J. Leech (1998)

Underlying set N` ˆ N`, with composition given by

rd , csrb,as “
„

d ˆ
lcmpc,bq

b
,

lcmpb, cq
c

ˆ a


Basic properties :

Identity is r1,1s.
Generalised inverses given by rb,as; “ ra,bs.
Minimal generating set given by tr1,ps : p is prime.u.
EpT q – pN`, lcmp , qq.
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A general construction :

J. Leech called this monoid P.

— we will use T , to avoid confusion with the (upcoming)
polycyclic monoids.

For category theorists ...

Consider T to be :

the result of applying some ‘bicyclic construction’

to the category pN, ˆ q, instead of pN, ` q.

Open Question : How general can this be made?
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Self-embeddings of T
There is an obvious N`-indexed family of self-embeddings :

Selfnprb,asq “
“

bn,an‰ @rb,as P T

These satisfy familiar properties ...

SelfmSelfn “ Selfmˆn

Within the inverse category pIMMs of partial embeddings,
we also have their generalised inverses

Self ;n P pIMMspT , T q

Similarly to the bicyclic monoid ...
Perhaps unsurprisingly, we have a reflexivity property

T ãÑ pIMMspT , T q

so T is a retract of every object of ΩT .
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Embedding B into T

For all n ą 1 P N, there exists an embedding np qB :ãÑ T .

This is best defined on normal forms, by pa,bq ÞÑ
“

na,nb
‰

.

Recall :
”

nd ,nc
ı ”

nb,na
ı

“

„

nd`pb
‚
´cq,npc

‚
´bq`a



These embeddings have generalised inverses within pIMMs,
that we denote logn : T Ñ B.
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An eternal recurrence ?

We could carry on, and look at :

The inverse submonoid of mIpNq generated by tp qn : n P N`u
. . . and continue indefinitely ...

To do so would be to miss something interesting on the way!
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Une generalisation des monoı̈des polycyclique ?

Nivat & Perot famously introduced the polycyclic monoids as,

“A generalisation of the bicyclic monoid” (1972)

Can we derive polycylic monoids by in a similar way?

Recall :
Given a set X , the polycyclic monoid PX is the inverse monoid
generated by X , with relations

xy; “
"

1 x “ y
0 otherwise.

Not quite! Instead, we a monoid arising from ‘combining’ B and
T that generalises them in a natural way.
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T and B, Combined

We work in the concrete settings of mIpNq.
For all a ą b P N, we define

R;a,bpnq “ an ` b @n P N

with generalised inverse given by

Ra,bpnq “

$

&

%

n´a
b n pmod bq “ a

K otherwise.

This gives R;c,dRa,b as the unique monotone partial injection
with

Domain : aN` b
Image : cN` d
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The monoid T BC

Denote by T BC the inverse submonoid of mIpNq generated by

t Ra,b : a ą b P N u Ď mIpNq

.

Some claims :
1 T BC contains a copy of T (and hence a copy of B).
2 T BC contains a copy of every finite polycyclic monoid.
3 Elements of T BC have normal form :

tR;c,dRa,b : c ą d ,a ą b P Nu Y t0u
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Some simple properties :

As a very basic identity,

Rc,dRa,b “ Rac,ad`b @c ą d ,a ą b P N

As a simple corollary,

Rx ,0Ry ,0 “ Rxy ,0

giving a natural embedding T ãÑ T BC.
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Embedding f.g. polycyclic monoids

Embedding Pa into T BC
Fix arbitrary a ą 1, and consider the subset

tRa,0,Ra,1, . . . ,Ra,a´1u

Direct calculations give, for all n P N :

Ra,b1R;a,bpnq “
"

n b “ b1

K b ‰ b1

since n pmod aq “ b ñ n pmod aq ‰ b1 for all b ‰ b1.

An embedding of the a-generator polycyclic monoid into T BC.

Note this is a strong embedding, since
Ťn´1

b“0 dom pRa,bq “ dompIq.
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Normal forms?

We need to show :
Normal forms are closed under composition. The

composite
´

R;r ,sRp,q

¯´

R:c,dRa,b

¯

is of the form R;v ,wRt ,u.
(Ideally, give explicit formulæ for x ą y ,u ą v P N).

The key case :
We first do this for idempotents – this leads to the general
formula.

The idempotent R;a,bRa,b is the partial identity on aN` b.
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From basic number theory :

Undergraduate modular arithmetic :

The Chinese Remainder Theorem allows us to compute

aN` b X cN` d “ xN` y

when a and c are co-prime.

The extended CRT allows us to work generally.
There are two cases : aN` b X cN` d is

1 lcmpa, cqN` y when

pb
‚

´ dq ` pd
‚

´ bq P gcdpa, cqN

2 H otherwise.
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A formula for composition

With a ‘little’ more work
´

R;r ,sRp,q

¯´

R:c,dRa,b

¯

“

$

&

%

R;v ,w Rt,u pq
‚

´ dq ` pd
‚

´ qq P gcdpp, cqN

0 otherwise.

Should we so wish ..

we may give R;v ,w Rt,u explicitly.
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Via repeated applications of CRT

When the composite is non-zero :

R;
pr ,sqRpp,qqR

;

pc,dqRpa,bq “ R;v ,wRt ,u

with coefficients given by :

v “ r .lcmpc,pq
p

w “ r
´

x´q
p

¯

` s

t “ a.lcmpc,pq
c

u “ a
´

x´d
c

¯

` b

where x is the solution to

lcmpc,pqN` x “ pN` q X cN` d

given by the extended Chinese Remainder Theorem
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A purely abstract T BC?

We can now give T BC as an abstract inverse monoid :
Underlying set : tppc,dq, pa,bq : d ă c, b ă a P Nu

Identity : pp1,0q, p1,0qq,
Generalised inverses : ppc,dq, pa,bqq; “ ppa,bq, pc,dqq,
Idempotents : ppa,bq, pa,bqq
Composition : something non-trivial ...

Sometimes, representation within mIpNq is better!
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Why the interest ?

What is appealing about T BC in terms of

logic / computability / foundations ?

We are actually interested in a monoid derived from T BC
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Joins and partial orders

Inverse semigroups have a natural partial order:

a ď b iff a “ be for some e2 “ e

In IpNq, this is simply set-theoretic inclusion.

IpNq is also closed under arbitrary joins of orthogonal
elements.

A Reminder ...
An indexed set tfjujPJ is orthogonal iff

f ;j fi “ 0 “ fj f
;

i @i ‰ j P J

(i.e. fi and fj have disjoint domains & images).
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Joins of orthogonal monotone elements?

Consider the orthogonal monotone partial injections :

R;2,0R3,0 , R;4,1R3,1 , R;4,3R3,2

Their join is a bijection on N

ˆ

1 2 3 4 5 6 7 8 9 . . .
1 3 2 5 7 4 9 11 6 . . .

˙

. . . but not the unique monotone bijection on N.

Historical background

The above bijection is found in unpublished 1932 notes of Collatz
(creator of the famous “3n ` 1 problem”). It is the basis of a –still
unsolved– problem now called “the original Collatz conjecture”.
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Piece-wise monotone partial injections

Consider an inverse monoid X Ď mIpNq Ď IpNq.

The set of all finite joins (within IpNq)
of orthogonal elements is an inverse monoid.

Call this the piecewise-monotone closure of X , denoted pmX .

The real object of interest is pmT BC.

Possibly relevant :

J. Conway (1972) “ Unpredictable Iterations”

E. Lehtonen (2008) “Two undecidable variants of Collatz’s
problem”

A. Caraiani (2010) “Multiplicative semigroups related to the
3x ` 1 problem”
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