Elementary arithmetic as semigroup \& category theory

Peter M. Hines Y.C.C.S.A. , Univ. York

Dept. of Mathematics Semigroup Seminars

York - June 2020

The overall topic:

Treating elementary arithmetic as inverse semigroup theory via the theory of (monotone) partial injections, and transformations of Cantor space.

One outcome :

Interesting (new?) inverse monoids that generalise
Nivat \& Perot's Polycyclic Monoids
(a.k.a. the logicians' dynamical algebra)
in a natural way.

Disclaimer: These slides have been updated following the talk, in order to correct some attributions / references.

Practical motivation (I)

A follow-up to a talk given at
International Conference on Mathematics, Engineering, \& Technology (ICoMET Jan. 2020 — Sukkur, Pakistan)
on practical \& useful applications of inverse semigroup theory.

Applied inverse semigroup theory??
Modeling security holes due to Race Conditions
via representations of polycyclic monoids as monotone partial injections on \mathbb{N}

Based on a very practical application :
"Hacking Starbucks for unlimited free coffee" - Egor Homakov

Practical motivation (II)

Today's topic appears to give a route towards:
provably post-quantum cryptography
Post-quantum crypto. searches for protocols that are believed not to be susceptible to attacks by quantum computers.

A more general / ambitious aim :
Can prove certain problems are necessarily immune to quantum attacks?

Not the subject of today's talk ...

A short digression

Category theory

Not a prerequisite of the rest of the talk!
Everything in this talk is very strongly categorical

- This is based on treating the natural numbers \mathbb{N} as a category.
- Many categorical properties are vast generalisations of properties of \mathbb{N}.
- Semigroup-theoretic constructions, and category-theoretic constructions often coincide.

I will do my best to hide the category theory

The natural numbers as a category (I)

Treating \mathbb{N} as a category :

- Objects - these are $\{0,1,2,3, \ldots\}$
- Arrows - there is a unique arrow $a \rightarrow b$ iff $a \leqslant b$.
($\mathbb{N},{ }_{-} \times{ }_{-}+_{-}$) is a distributive category :
- Two monoidal tensors (_ + _) and (_ × _)
- satisfying a distributive law

The natural numbers as a category (II)

Treating \mathbb{N} as a category :

- Objects - these are $\{0,1,2,3, \ldots\}$
- Arrows - there is a unique arrow $a \rightarrow b$ iff $a \leqslant b$.

As pointed out in
"Metric spaces, generalised logics \& closed categories" - W. Lawvere (1972)

We have monoidal closure :

- (${\left.\mathbb{N},{ }_{-}+{ }_{-}\right) \text {is monoidal closed }}^{2}$
- The internal hom functor [_ $\rightarrow_{\text {_ }}$] is given by monus

$$
x \dot{\bullet} y=\left\{\begin{array}{lr}
x-y & x \geqslant y \\
0 & \text { otherwise }
\end{array}\right.
$$

The natural numbers as a category (III)

Treating \mathbb{N} as a category :

- Objects - these are $\{0,1,2,3, \ldots\}$
- Arrows - there is a unique arrow $a \rightarrow b$ iff $a \leqslant b$.

We have categorical traces

- Both ($\mathbb{N},{ }_{-} \times{ }_{-}$) and ($\mathbb{N},{ }_{-}+_{-}$) are traced.
- The trace of $\left(\mathbb{N},{ }_{-} \times{ }_{-}\right)$is

$$
\operatorname{Tr}^{u}(x)=\left\{\begin{array}{lr}
\frac{x}{u} & x(\bmod u)=0 \\
\perp & \text { otherwise } .
\end{array}\right.
$$

- The trace of $\left(\mathbb{N},+_{-}\right)$is

$$
\operatorname{Tr}^{u}(x)=\left\{\begin{array}{lr}
x-u & x \geqslant u \\
\perp & \text { otherwise }
\end{array}\right.
$$

Back to semigroup theory!

The Category Theory

is now over ...
... at least, explicitly!

Our starting point :

Recall $\mathcal{I}(\mathbb{N})$, the inverse monoid of partial injections on the natural numbers.

- Everya $\in \mathcal{I}(\mathbb{N})$ has a unique generalised inverse a^{\ddagger} satisfying

$$
a a^{\ddagger} a=a \quad \text { and } \quad a^{\ddagger} a a^{\ddagger}=a^{\ddagger}
$$

- Uniqueness of generalised inverses \Leftrightarrow commutativity of idempotents.
- Idempotents are simply partial identities.
- $a a^{\ddagger}$ and $a^{\ddagger} a$ are partial identities on the domain and image of a, called the initial and final idempotents.

An interesting submonoid

Let us consider $m \mathcal{I}(\mathbb{N})$ - the submonoid of monotone partial injections.

$$
x \leqslant y \Rightarrow f(x) \leqslant f(y) \quad \forall x, y \in \operatorname{dom}(f)
$$

Basic properties :

(1) \mathbb{N} is totally ordered \Rightarrow
$m \mathcal{I}(\mathbb{N})$ is an inverse monoid
(2) \mathbb{N} is well-ordered \Rightarrow

Every element $f \in m \mathcal{I}(\mathbb{N})$ is uniquely determined by its initial and final idempotents, $f^{\ddagger} f$ and $f f^{\ddagger}$.

In particular, 2. is a very strong property!

A straightforward corollary ...

The kind of results that are immediate :

Let S be a (0 -)bisimple inverse submonoid of $m \mathcal{I}(\mathbb{N})$.
As every element $f \in m \mathcal{I}(\mathbb{N})$ is uniquely determined by its initial and final idempotents,
S is uniquely determined by its lattice of idempotents $E(S)$.

From $m \mathcal{I}(\mathbb{N})$ to Cantor space

Elements of $m \mathcal{I}(\mathbb{N})$ correspond to pairs of points of Cantor space \mathfrak{C}.

Formally, one-sided infinite strings over $\{0,1\}$,

$$
c=0100101101 \ldots
$$

or equivalently, functions from $c: \mathbb{N} \rightarrow\{0,1\}$.

Idempotents as Cantor points

Elements of $m \mathcal{I}(\mathbb{N})$ are in bijective correspondence with balanced pairs of Cantor points.
i.e. pairs $\left(c_{d}, c_{a}\right)$ satisfying :

$$
\sum_{r=0}^{\infty} c_{a}(r)=\sum_{r=0}^{\infty} c_{d}(r) \in \mathbb{N} \cup\{\infty\}
$$

Given $e^{2}=e \in m \mathcal{I}(\mathbb{N})$, consider its indicator function

$$
c_{e}(n)=\left\{\begin{array}{rr}
1 & \exists e(n) \\
0 & \text { otherwise }
\end{array}\right.
$$

as a point of Cantor space.
For arbitrary $a \in m \mathcal{I}(\mathbb{N})$, we have initial and final Cantor points, $c_{f \ddagger f}$ and $c_{f f \ddagger}$, which are balanced, since f is partial injective.

A composition on balanced Cantor pairs

Given balanced Cantor points $(v, u),(t, s)$, define a composition by:

$$
(x, w)=(v, u) \cdot(t, s)
$$

where $w(n)=s(n) \cdot u(j) \cdot t(j) \in\{0,1\}$,

$$
j=\min _{j \in \mathbb{N}}\left\{\sum_{\alpha=0}^{j} t(\alpha)=\sum_{\alpha=0}^{n} \boldsymbol{s}(\alpha)\right\}
$$

and similarly, $x(n)=v(n) \cdot u(k) \cdot t(k) \in\{0,1\}$,

$$
k=\min _{k \in \mathbb{N}}\left\{\sum_{\alpha=0}^{k} u(\alpha)=\sum_{\alpha=0}^{n} v(\alpha)\right\}
$$

Some more implicit category theory

Another digression ...

what we could, but will not do!

Fun \& games with Fractals

The Cantor set \mathfrak{C} is

- by construction isomorphic to two copies of itself.

Why pairs of Cantor points?

Using the Cantor pairing

Given a Cantor point, $c: \mathbb{N} \rightarrow\{0,1\}$ form two new Cantor points

$$
c_{a}, c_{d}: \mathbb{N} \rightarrow\{0,1\}
$$

by looking at its behaviour on the odd \& even numbers respectively.

$$
c_{a}(r)=c(2 r) \text { and } c_{d}(r)=c(2 r+1)
$$

Elements of $m \mathcal{I}(\mathbb{N})$ as Cantor points

There is a bijective correspondence between :

- Monotone partial injections on \mathbb{N}
(i.e. elements of $m \mathcal{I}(\mathbb{N})$)
- Cantor points satisfying

$$
\sum_{r=0}^{\infty} c(2 r)=\sum_{r=0}^{\infty} c(2 r+1)
$$

Fun exercise: Write down the composition of such Cantor points!

Cantor's is not the only pairing

More generally, we can use any pairing ${ }^{1} \phi: \mathbb{N} \cong \mathbb{N} \uplus \mathbb{N}$ to determine a bijection $\Phi: \mathfrak{C} \cong \mathfrak{C} \times \mathfrak{C}$.

Note the "logarithmic" effect
Bijections on the natural numbers $\mathbb{N} \cong \mathbb{N} \uplus \mathbb{N}$
Uniquely determine / are determined by
Bijections on the Cantor set $\mathfrak{C} \cong \mathfrak{C} \times \mathfrak{C}$

There is - of course !(..) - a great deal of category theory behind this.

[^0]
Back to the inverse semigroup theory

... which, nevertheless, remains closely connected to the category theory.

A simple arithmetic starting point :

Addition on \mathbb{N} is monotone.
We 'curry' this to get a family of partial injections :

$$
\left\{\operatorname{add}_{a}(n)=n+a\right\}_{a \in \mathbb{N}} \subseteq m \mathcal{I}(\mathbb{N})
$$

along with their generalised inverses

$$
\operatorname{add}_{a}^{\ddagger}(n)=\left\{\begin{array}{lr}
n-a & n \geqslant a \\
\perp & \text { otherwise }
\end{array}\right.
$$

For category theorists

- add $_{a}$ is the functor $a \oplus_{\mathrm{L}}$: nat \rightarrow nat,
- add $_{a}^{\ddagger}$ is a categorical trace.

What submonoid of $m \mathcal{I}(\mathbb{N})$ is generated by these elements?

A well-known monoid

Not a surprise to anybody!

An un-needed reminder ...

The bicyclic inverse monoid B has a single generator, and a single relation:

$$
\mathcal{B}=\left\langle s: s s^{\ddagger}=1\right\rangle
$$

The bisimple submonoid of $m \mathcal{I}(\mathbb{N})$ uniquely specified by the idempotents $\left\{1_{\mathbb{N}+a}: a \in \mathbb{N}\right\}$.

From idempotents to arrows

Every pair of idempotents $\left(1_{\mathbb{N}+b}, 1_{\mathbb{N}+a}\right)$ uniquely specifies an element

$$
(b, a)=a d d_{b} a d d_{a}^{\ddagger} \in m \mathcal{I}(\mathbb{N})
$$

"The unique monotone partial injection that maps

$$
N+a \text { to } \mathbb{N}+b^{\prime \prime}
$$

This corresponds to the normal form for B, with composition

$$
(d, c)(b, a)=(d+[b \stackrel{\bullet}{-c}],[c-b]+a)
$$

Successor is not the only generator

Question : For fixed $x>0 \in \mathbb{N}$, which inverse monoid is generated by addx ?

A clue: self-embeddings of B

The homomorphism self $: \mathcal{B} \hookrightarrow \mathcal{B}$, defined by its action on the unique generator as $s \mapsto s^{k}$, is a self-embedding, for all $k>0$.

Unsurprising Answer : Yet another copy of B.

How may we map between these embeddings?

Self-embeddings of \mathbf{B}

For all $k>0$, define the injection $\eta_{k}: \mathcal{B} \rightarrow m \mathcal{I}(\mathbb{N})$ by

$$
\eta_{k}(s)=a d d_{k}^{\ddagger}
$$

For all $k>0$, we have a commuting diagram :

together with the inclusions

$$
\eta_{y}(\mathcal{B}) \subseteq \eta_{x}(\mathcal{B}) \text { iff } \quad y(\bmod x)=0
$$

An (inverse) category of inverse monoids :

Let us apply the notions of partiality and reversibility to mappings between monoids.

A partial embedding $f: M \rightarrow N$ of inverse monoids is a a partial injective function on underlying sets, satisfying
(1) $f\left(1_{M}\right)=1_{N}$
(2) $a, b \in \operatorname{dom}(f) \Rightarrow a b \in \operatorname{dom}(f)$
(3) $a \in \operatorname{dom}(f) \Rightarrow a^{\ddagger} \in \operatorname{dom}(f)$
(1) f^{\ddagger} also satisfies 2 . and 3 .

The class of all inverse monoids, with this notion of homomorphism, forms an inverse category p/MMs.
"Partial Inverse Monoid Monics"

A multiplicity of monoids

A fun game to play :
(1) Start with an inverse monoid X.
(2) Consider its endomorphism monoid $X^{(1)}=p / M M s(X, X)$... this is also an inverse monoid.
(3) Repeat the process : $X^{(n+1)}=\operatorname{pIMMs}\left(X^{(n)}, X^{(n)}\right)$

Derive a countable set of inverse monoids $\left\{X^{(j)}\right\}_{j \in \mathbb{N}}$.

A non-trivial question

Define Ω_{X} to be the full subcategory of $p / M M s$ whose objects are $\left\{X^{(j)}\right\}_{j \in \mathbb{N}}$.
What can we say about the structure of this?
Can we ever have $X^{(i)} \cong X^{(j)}$, for $i \neq j$?

Categorical reflexivity and the bicyclic monoid

We can prove a few facts about this construction, applied to the bicyclic monoid.

There exists an embedding of the bicyclic monoid into its own endomorphism monoid

$$
\mathcal{B} \hookrightarrow \mathcal{B}^{(1)}=\operatorname{pIMMs}(\mathcal{B}, \mathcal{B})
$$

This is given by : $s^{\ddagger} \mapsto$ self $_{1} \in \mathcal{B}^{(1)}$.
As a corollary, \mathcal{B} is a retract of $\mathcal{B}^{(n)}$, for all $n \in \mathbb{N}$.

Back to concrete monoids!

We can consider partial embeddings of $m \mathcal{I}(\mathbb{N})$ that map $\eta_{j}(\mathcal{B})$ to $\eta_{k}(\mathcal{B})$

None of these can be inner automorphisms.

How about on the semi-lattice of idempotents?
Recall : Each submonoid $\eta_{j}(\mathcal{B}) \subseteq m \mathcal{I}(\mathbb{N})$ is uniquely determined by its (distinct) idempotents.

Claim : Yes, whenever $j=0(\bmod k)$.

Moving from elements to idempotents

The simple (key) case :

Where times ${ }_{k}$ is given by currying multiplication times $_{k}=k \times{ }_{-}$ and its generalised inverse is :

$$
\operatorname{times}_{k}^{\ddagger}(n)=\left\{\begin{array}{lr}
\frac{n}{k} & n(\bmod k)=0 \\
\perp & \text { otherwise. }
\end{array}\right.
$$

Ceci n'est pas un monoïde bicyclic

Consider the inverse submonoid of $m \mathcal{I}(\mathbb{N})$ generated by $\left\{\text { times }_{n}\right\}_{n>0 \in \mathbb{N}}$.

Question : "Which inverse monoid is this?"

Euclid proved this is not finitely generated!
A minimal generating set is given by

$$
\left\{\text { times }_{p}: p \text { is prime. }\right\} \subseteq m \mathcal{I}(\mathbb{N})
$$

Idempotents and elements

- The idempotents are the partial identities : $1_{a N}$ for all $a>0 \in \mathbb{N}$
- Composition of idempotents is simply:

$$
1_{a \mathbb{N}} 1_{b \mathbb{N}}=1_{\operatorname{lcm}(a, b) \mathbb{N}}
$$

- The arrows are, for all $a, b>0 \in \mathbb{N}$,
"The unique monotone partial injection that maps $a \mathbb{N}$ onto $b \mathbb{N}$, and is undefined elsewhere."
This is given by $[b, a]=$ times $_{b}$ times ${ }_{a}^{\ddagger}$.
- Composition?

Composition \& normal forms

By either :
(1) Elementary number theory, or
(2) The 'composing Cantor pairs' formulæ
we may give composition explicitly, as

$$
[d, c][b, a]=\left[d \times \frac{\operatorname{lcm}(c, b)}{b}, \frac{\operatorname{Icm}(b, c)}{c} \times a\right]
$$

This looks familiar(!)

An interesting special case :

$$
\left[p^{d}, p^{c}\right]\left[p^{b}, p^{a}\right]=\left[p^{d+(b-c)}, p^{(\dot{-}-b)+a}\right]
$$

for fixed $p \in \mathbb{N}^{+}$

An inverse monoid

"On the foundations of inverse monoids \& algebras" J. Leech (1998)

- Underlying set $\mathbb{N}^{+} \times \mathbb{N}^{+}$, with composition given by

$$
[d, c][b, a]=\left[d \times \frac{\operatorname{Icm}(c, b)}{b}, \frac{\operatorname{Icm}(b, c)}{c} \times a\right]
$$

Basic properties :

- Identity is $[1,1]$.
- Generalised inverses given by $[b, a]^{\ddagger}=[a, b]$.
- Minimal generating set given by $\{[1, p]: p$ is prime. $\}$.
- $E(\mathcal{T}) \cong\left(\mathbb{N}^{+}, \operatorname{lcm}(),\right)$.

A general construction :

J. Leech called this monoid P.
— we will use \mathcal{T}, to avoid confusion with the (upcoming) polycyclic monoids.

For category theorists ...

Consider \mathcal{T} to be :
the result of applying some 'bicyclic construction' to the category $\left(\mathbb{N},{ }_{-} \times{ }_{-}\right)$, instead of $\left(\mathbb{N},{ }_{-}+_{-}\right)$.

Self-embeddings of \mathcal{T}

There is an obvious \mathbb{N}^{+}-indexed family of self-embeddings :

$$
\operatorname{Self}_{n}([b, a])=\left[b^{n}, a^{n}\right] \quad \forall[b, a] \in \mathcal{T}
$$

These satisfy familiar properties ...

$$
\text { Self }_{m} \text { Self }_{n}=\text { Self }_{m \times n}
$$

Within the inverse category pIMMs of partial embeddings, we also have their generalised inverses

$$
\operatorname{Self} f_{n}^{\ddagger} \in \operatorname{pIMMs}(\mathcal{T}, \mathcal{T})
$$

Similarly to the bicyclic monoid ...
Perhaps unsurprisingly, we have a reflexivity property

$$
\mathcal{T} \hookrightarrow \operatorname{pIMMs}(\mathcal{T}, \mathcal{T})
$$

so \mathcal{T} is a retract of every object of $\Omega_{\mathcal{T}}$.

Embedding \mathcal{B} into \mathcal{T}

For all $n>1 \in \mathbb{N}$, there exists an embedding $n^{(-)} \mathcal{B}: \hookrightarrow \mathcal{T}$.
This is best defined on normal forms, by $(a, b) \mapsto\left[n^{a}, n^{b}\right]$.
Recall :

$$
\left[n^{d}, n^{c}\right]\left[n^{b}, n^{a}\right]=\left[n^{d+(b-c)}, n^{(c-b)+a}\right]
$$

These embeddings have generalised inverses within $p / M M s$, that we denote $\log _{n}: \mathcal{T} \rightarrow \mathcal{B}$.

An eternal recurrence?

We could carry on, and look at :
The inverse submonoid of $m \mathcal{I}(\mathbb{N})$ generated by $\left\{()^{n}: n \in \mathbb{N}^{+}\right\}$... and continue indefinitely ...

To do so would be to miss something interesting on the way!

Une generalisation des monoïdes polycyclique?

Nivat \& Perot famously introduced the polycyclic monoids as, "A generalisation of the bicyclic monoid" (1972)

Can we derive polycylic monoids by in a similar way?

Recall :

Given a set X, the polycyclic monoid P_{X} is the inverse monoid generated by X, with relations

$$
x y^{\ddagger}=\left\{\begin{array}{rr}
1 & x=y \\
0 & \text { otherwise. }
\end{array}\right.
$$

Not quite! Instead, we a monoid arising from 'combining' \mathcal{B} and \mathcal{T} that generalises them in a natural way.

We work in the concrete settings of $m \mathcal{I}(\mathbb{N})$.
For all $a>b \in \mathbb{N}$, we define

$$
R_{a, b}^{\ddagger}(n)=a n+b \quad \forall n \in \mathbb{N}
$$

with generalised inverse given by

$$
R_{a, b}(n)=\left\{\begin{array}{lr}
\frac{n-a}{b} & n(\bmod b)=a \\
\perp & \text { otherwise }
\end{array}\right.
$$

This gives $R_{c, d}^{\ddagger} R_{a, b}$ as the unique monotone partial injection with

- Domain : $a \mathbb{N}+b$
- Image : $c \mathbb{N}+d$

The monoid $\mathcal{T B C}$

Denote by $\mathcal{T B C}$ the inverse submonoid of $m \mathcal{I}(\mathbb{N})$ generated by

$$
\left\{R_{a, b}: a>b \in \mathbb{N}\right\} \subseteq m \mathcal{I}(\mathbb{N})
$$

Some claims :

(1) $\mathcal{T B C}$ contains a copy of \mathcal{T} (and hence a copy of \mathcal{B}).
(2) $\mathcal{T B C}$ contains a copy of every finite polycyclic monoid.
(3) Elements of $\mathcal{T B C}$ have normal form :

$$
\left\{R_{c, d}^{\ddagger} R_{a, b}: c>d, a>b \in \mathbb{N}\right\} \cup\{0\}
$$

Some simple properties :

As a very basic identity,

$$
R_{c, d} R_{a, b}=R_{a c, a d+b} \quad \forall c>d, a>b \in \mathbb{N}
$$

As a simple corollary,

$$
R_{x, 0} R_{y, 0}=R_{x y, 0}
$$

giving a natural embedding $T \hookrightarrow \mathcal{T B C}$.

Embedding f.g. polycyclic monoids

Embedding P_{a} into $\mathcal{T B C}$

Fix arbitrary $a>1$, and consider the subset

$$
\left\{R_{a, 0}, R_{a, 1}, \ldots, R_{a, a-1}\right\}
$$

Direct calculations give, for all $n \in \mathbb{N}$:

$$
R_{a, b} R_{a, b}^{\ddagger}(n)= \begin{cases}n & b=b^{\prime} \\ \perp & b \neq b^{\prime}\end{cases}
$$

since $n(\bmod a)=b \Rightarrow n(\bmod a) \neq b^{\prime}$ for all $b \neq b^{\prime}$.
An embedding of the a-generator polycyclic monoid into $\mathcal{T B C}$.

Note this is a strong embedding, since $\bigcup_{b=0}^{n-1} \operatorname{dom}\left(R_{a, b}\right)=\operatorname{dom}(I)$.

Normal forms?

We need to show :
Normal forms are closed under composition. The composite

$$
\left(R_{r, s}^{\ddagger} R_{p, q}\right)\left(R_{c, d}^{\dagger} R_{a, b}\right)
$$

is of the form $R_{v, w}^{\ddagger} R_{t, u}$.
(Ideally, give explicit formulæ for $x>y, u>v \in \mathbb{N}$).

The key case :

We first do this for idempotents - this leads to the general formula.

The idempotent $R_{a, b}^{\ddagger} R_{a, b}$ is the partial identity on $a \mathbb{N}+b$.

From basic number theory :

Undergraduate modular arithmetic :

The Chinese Remainder Theorem allows us to compute

$$
a \mathbb{N}+b \cap c \mathbb{N}+d=x \mathbb{N}+y
$$

when a and c are co-prime.

The extended CRT allows us to work generally.
There are two cases: $a \mathbb{N}+b \cap c \mathbb{N}+d$ is
(1) $\operatorname{Icm}(a, c) \mathbb{N}+y$ when

$$
(b \dot{-} d)+(d \dot{\bullet}-b) \in \operatorname{gcd}(a, c) \mathbb{N}
$$

(2) \varnothing otherwise.

A formula for composition

With a 'little' more work

$$
\begin{gathered}
\left(R_{r, s}^{\ddagger} R_{p, q}\right)\left(R_{c, d}^{\dagger} R_{\mathrm{a}, b}\right)= \\
\begin{cases}R_{v, w}^{\ddagger} R_{t, u} & (q-d)+(d \dot{-}-q) \in \operatorname{gcd}(p, c) \mathbb{N} \\
0 & \text { otherwise. }\end{cases}
\end{gathered}
$$

Should we so wish ..
we may give $R_{v, w}^{\ddagger} R_{t, u}$ explicitly.

Via repeated applications of CRT

When the composite is non-zero :

$$
R_{(r, s)}^{\ddagger} R_{(p, q)} R_{(c, d)}^{\ddagger} R_{(a, b)}=R_{v, w}^{\ddagger} R_{t, u}
$$

with coefficients given by :

- $v=\frac{r . \operatorname{lcm}(c, p)}{p}$
- $w=r\left(\frac{x-q}{p}\right)+s$
- $t=\frac{a . l c m(c, p)}{c}$
- $u=a\left(\frac{x-d}{c}\right)+b$
where x is the solution to

$$
\operatorname{lcm}(c, p) \mathbb{N}+x=p \mathbb{N}+q \cap c \mathbb{N}+d
$$

given by the extended Chinese Remainder Theorem

A purely abstract $\mathcal{T B C}$?

We can now give $\mathcal{T B C}$ as an abstract inverse monoid :

- Underlying set : $\{((c, d),(a, b): d<c, b<a \in \mathbb{N}\}$
- Identity : $((1,0),(1,0))$,
- Generalised inverses : $((c, d),(a, b))^{\ddagger}=((a, b),(c, d))$,
- Idempotents : $((a, b),(a, b))$
- Composition : something non-trivial ...

Sometimes, representation within $m \mathcal{I}(\mathbb{N})$ is better!

Why the interest?

What is appealing about $\mathcal{T B C}$ in terms of

logic / computability / foundations ?

We are actually interested in a monoid derived from $\mathcal{T B C}$

Joins and partial orders

Inverse semigroups have a natural partial order:

$$
a \leqslant b \text { iff } a=b e \text { for some } e^{2}=e
$$

In $\mathcal{I}(\mathbb{N})$, this is simply set-theoretic inclusion.
$\mathcal{I}(\mathbb{N})$ is also closed under arbitrary joins of orthogonal elements.

A Reminder ...

An indexed set $\left\{f_{j}\right\}_{j \in J}$ is orthogonal iff

$$
f_{j}^{\ddagger} f_{i}=0=f_{j} f_{i}^{\ddagger} \quad \forall i \neq j \in J
$$

(i.e. f_{i} and f_{j} have disjoint domains \& images).

Joins of orthogonal monotone elements?

Consider the orthogonal monotone partial injections :

$$
R_{2,0}^{\ddagger} R_{3,0}, \quad R_{4,1}^{\ddagger} R_{3,1}, \quad R_{4,3}^{\ddagger} R_{3,2}
$$

Their join is a bijection on \mathbb{N}

$$
\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \ldots \\
1 & 3 & 2 & 5 & 7 & 4 & 9 & 11 & 6 & \ldots
\end{array}\right)
$$

... but not the unique monotone bijection on \mathbb{N}.

Historical background

The above bijection is found in unpublished 1932 notes of Collatz (creator of the famous " $3 n+1$ problem"). It is the basis of a -still unsolved- problem now called "the original Collatz conjecture".

Piece-wise monotone partial injections

Consider an inverse monoid $X \subseteq m \mathcal{I}(\mathbb{N}) \subseteq \mathcal{I}(\mathbb{N})$.
The set of all finite joins (within $\mathcal{I}(\mathbb{N})$) of orthogonal elements is an inverse monoid.

Call this the piecewise-monotone closure of X, denoted $p m X$.

The real object of interest is $p m \mathcal{T B C}$.

Possibly relevant :

- J. Conway (1972) " Unpredictable Iterations"
- E. Lehtonen (2008) "Two undecidable variants of Collatz's problem"
- A. Caraiani (2010) "Multiplicative semigroups related to the $3 x+1$ problem"

[^0]: ${ }^{1}$ We prefer monotone pairings - expressible as pairs of monotone partial injections.

