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The overall topic:

Treating elementary arithmetic as inverse semigroup theory
via the theory of (monotone) partial injections,
and transformations of Cantor space.

One outcome :

Interesting (new?) inverse monoids that generalise

Nivat & Perot’s Polycyclic Monoids
(a.k.a. the logicians’ dynamical algebra)

in a natural way.

Disclaimer : These slides have been updated following the
talk, in order to correct some attributions / references.
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Practical motivation (I)

A follow-up to a talk given at

International Conference on Mathematics,
Engineering, & Technology
(ICOMET Jan. 2020 — Sukkur, Pakistan)

on practical & useful applications of inverse semigroup theory.

Applied inverse semigroup theory??

Modeling security holes due to Race Conditions
via representations of polycyclic monoids
as monotone partial injections on N

Based on a very practical application :
“Hacking Starbucks for unlimited free coffee” — Egor Homakov
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Practical motivation (ll)

Today’s topic appears to give a route towards:
provably post-quantum cryptography

Post-quantum crypto. searches for protocols that are believed
not to be susceptible to attacks by quantum computers.

A more general / ambitious aim :

Can prove certain problems are
necessarily immune to quantum attacks?

Not the subject of today’s talk ...
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A short digression

Category theory

Not a prerequisite of the rest of the talk!

Everything in this talk is very strongly categorical

@ This is based on treating the natural numbers N as a category.

@ Many categorical properties are vast generalisations of
properties of N.

@ Semigroup-theoretic constructions, and
category-theoretic constructions often coincide.

| will do my best to hide the category theory
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The natural numbers as a category (l)

Treating N as a category :

@ Objects — these are {0,1,2,3,...}
@ Arrows — there is a unique arrow a — b iff a < b.

(N, - x _,_+ _) is a distributive category :
@ Two monoidal tensors (_+ _) and (- x _)
@ satisfying a distributive law
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The natural numbers as a category (ll)

Treating N as a category :

@ Objects —these are {0,1,2,3,...}
@ Arrows — there is a unique arrow a — b iff a < b.

As pointed out in
“Metric spaces, generalised logics & closed cate-
gories” — W. Lawvere (1972)
We have monoidal closure :
@ (N,_+ _) is monoidal closed
@ The internal hom functor [- — _] is given by monus

: _ X—y X>ya
A {0 otherwise.
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The natural numbers as a category (llI)

Treating N as a category :

@ Objects —these are {0,1,2,3,...}

@ Arrows — there is a unique arrow a — b iff a < b.

We have categorical traces
@ Both (N,_x _)and (N, _+ _) are traced.
@ The trace of (N,_x _) is
x (mod u) =0

=

—

=

[
i
— < Ix

otherwise.

@ Thetrace of (N,_+_) is
X—U X=>Uu

T (x) =
4 otherwise.
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Back to semigroup theory!

The Category Theory

iS now over ...

... at least, explicitly!
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Our starting point :

Recall Z(N), the inverse monoid of partial injections on the
natural numbers.

@ Everyae Z(N) has a unique generalised inverse a
satisfying
aata=a and &'aa' = &

@ Uniqueness of generalised inverses < commutativity of
idempotents.

@ |dempotents are simply partial identities.

@ aa' and a'a are partial identities on the domain and image
of a, called the initial and final idempotents.
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An interesting submonoid

Let us consider mZ(N) — the submonoid of monotone partial
injections.

x<y = f(x)<f(y) ¥x,yedom(f)

@ N is totally ordered =
mZ(N) is an inverse monoid
© N is well-ordered =

Every element f € mZ(N) is uniquely determined by
its initial and final idempotents, f*f and ff*,

In particular, 2. is a very strong property!
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A straightforward corollary ...

The kind of results that are immediate :

Let S be a (0-)bisimple inverse submonoid of mZ(N).

As every element f € mZ(N) is uniquely determined by its initial
and final idempotents,

S is uniquely determined by its lattice of idempotents E(S).
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From mZ(N) to Cantor space

Elements of mZ(N) correspond to pairs of points of Cantor space €.

Formally, one-sided infinite strings over {0, 1},
c=0100101101...

or equivalently, functions from ¢ : N — {0, 1}.
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ldempotents as Cantor points

Elements of mZ(N) are in bijective correspondence with
balanced pairs of Cantor points.

i.e. pairs (cy, c4) satisfying :

o0

ca(r) = Y, ca(r) € Nu {0}
r=0 r=0

Given €2 = e e mZ(N), consider its indicator function
T Je(n)
Ce(n) = { 0  otherwise.

as a point of Cantor space.

For arbitrary a€ mZ(N), we have initial and final Cantor
points, c;:; and ¢y, which are balanced, since f is partial
injective.
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A composition on balanced Cantor pairs

Given balanced Cantor points (v, u), (t, s), define a composition by:
(x,w) = (v,u) - (t,8)
where w(n) = s(n).u(j).t(j) € {0, 1},

j n
j = miney { Do) = S(a)}
a=0

a=

o

and similarly, x(n) = v(n).u(k).t(k) € {0, 1},

u(a) = ) V(f%)}
0 a=0

D=

«

K = Minken {
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Some more implicit category theory

Another digression ...

what we could, but will not do!

Fun & games with Fractals

The Cantor set € is
— by construction —
isomorphic to two copies of itself.
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Why pairs of Cantor points?

Using the Cantor pairing
Given a Cantor point, ¢ : N — {0, 1} form two new Cantor points

Ca, Cq: N — {0,1}

by looking at its behaviour on the odd & even numbers
respectively.

Ca(r) = c(2r) and cq(r) = c(2r+1)
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Elements of mZ(N) as Cantor points

There is a bijective correspondence between :

@ Monotone partial injections on N
(i.e. elements of mZ(N))

@ Cantor points satisfying

0 0
Yc@r) = Yl c@r+1)
r=0 r=0

Fun exercise: Write down the composition of such Cantor points!
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Cantor’s is not the only pairing

More generally, we can use any pairing' ¢ : N =~ Nw N
to determine a bijection ¢ : ¢ =~ ¢ x €.

Note the “logarithmic” effect

Bijections on the natural numbers N =~ NwN
Uniquely determine / are determined by

Bijections on the Cantor set ¢ ~ ¢x¢

There is — of course !( ..) — a great deal of category theory
behind this.

"We prefer monotone pairings — expressible as pairs of monotone partial
injections.
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End of digression

Back to the inverse semigroup theory

... which, nevertheless, remains closely connected to the
category theory.
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A simple arithmetic starting point :

Addition on N is monotone.
We ‘curry’ this to get a family of partial injections :

{adda(n) = n+ alaen < MZI(N)
along with their generalised inverses

3 B n—a n=a,
aada(n) = { 1 otherwise.

For category theorists

@ add, is the functor a® _ : nat — nat,

@ add} is a categorical trace.

What submonoid of mZ(N) is generated by these elements?
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A well-known monoid

Not a surprise to anybody!

An un-needed reminder ...

The bicyclic inverse monoid B has a single generator, and a
single relation:
B=(s:sst=1)

The bisimple submonoid of mZ(N) uniquely specified by the
idempotents {1n,5 : @€ N}.
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From idempotents to arrows

Every pair of idempotents (1n.p, 1n+2) Uniquely specifies an

element
(b,a) = addy,addi e mZ(N)
“The unique monotone partial injection that maps
N+atoN+ b”

This corresponds to the normal form for B, with composition

(d,c)(b,a) = <d+[blc],[cib]+a)
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Successor is not the only generator

Question : For fixed x > 0 € N, which inverse
monoid is generated by addy ?

A clue: self-embeddings of B

The homomorphism self, : B — B, defined by its action on the
unique generator as s — s, is a self-embedding, for all k > 0.

Unsurprising Answer : Yet another copy of B.

How may we map between these embeddings?
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Self-embeddings of B

For all k > 0, define the injection 7 : B — mZ(N) by

m(s) = add}

For all Kk > 0, we have a commuting diagram :

B selfy B
S
mZ(N)

together with the inclusions

ny(B) < nx(B) iff y (mod x) =0
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An (inverse) category of inverse monoids :

Let us apply the notions of partiality and reversibility to
mappings between monoids.

A partial embedding f : M — N of inverse monoids is a a
partial injective function on underlying sets, satisfying

Q (1) =1n

©Q a,be dom(f) = abe dom(f)
© ac dom(f) = a' e dom(f)
Q f* also satisfies 2. and 3.

The class of all inverse monoids, with this notion of
homomorphism, forms an inverse category p/MMs.

“Partial Inverse Monoid Monics”
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A multiplicity of monoids

A fun game to play :

@ Start with an inverse monoid X.

@ Consider its endomorphism monoid X" = pIMMs(X, X)
... this is also an inverse monoid.

© Repeat the process : X(™1) — pIMMs(X(", X(M)

Derive a countable set of inverse monoids { X"} cy.

A non-trivial question

Define Qx to be the full subcategory of p/MMs
whose objects are {XU)}cy.

What can we say about the structure of this?

Can we ever have X() ~ XU), for j = j?
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Categorical reflexivity and the bicyclic monoid

We can prove a few facts about
this construction, applied to the bicyclic monoid.

There exists an embedding of the bicyclic monoid into its own
endomorphism monoid

B — BY) = pIMMs(B, B)
This is given by : st — selfy e B(1),

As a corollary, 53 is a retract of B, for all n e N.
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Back to concrete monoids!

We can consider partial embeddings of mZ(N) that map 7;(13)
to 1k (B)

None of these can be inner automorphisms.

How about on the semi-lattice of idempotents?

Recall : Each submonoid 7;(B) = mZ(N) is uniquely
determined by its (distinct) idempotents.

Claim : Yes, whenever j = 0 (mod k).
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Moving from elements to idempotents

The simple (key) case :

B<~—E(B)~———B
7Ikl lm
mZ(N) mZ(N)

t/'mes,f( )timesy

Where timesy is given by currying multiplication times, = k x _
and its generalised inverse is :

i n(mod k) =0
timesj(n) =

1 otherwise.
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Ceci n’est pas un monoide bicyclic

Consider the inverse submonoid of mZ(N) generated by
{timesn}n>0€,\|.

Question : “Which inverse monoid is this?”

Euclid proved this is not finitely generated!

A minimal generating set is given by

{times, : pisprime.} < mZ(N)
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ldempotents and elements

@ The idempotents are the partial identities : 1,y for all
a>0eN

@ Composition of idempotents is simply:

TanTon = 1/cm(a,b)N

@ The arrows are, forall a,b > 0€e N,

“The unique monotone partial injection that maps aN onto
bN, and is undefined elsewhere.”

This is given by [b,a] = timesptimess.
@ Composition?
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Composition & normal forms

By either :

@ Elementary number theory, or

© The ‘composing Cantor pairs’ formulee
we may give composition explicitly, as

[d, cl[b, a] = [d y /cm(bc, b) 7 /cm(cb./ C) y a}

This looks familiar(!)
An interesting special case :

[pdvpc] [,Ob,Pa] _ [pd+(b'c)7p(c.b)+a]

for fixed pe N*
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An inverse monoid

“On the foundations of inverse monoids & algebras”
J. Leech (1998)

@ Underlying set N* x N, with composition given by

[d.clb.a] = |dx Iem(c,b) Iem(b,c) y a]

b ’ ©

Basic properties :

@ Identity is [1,1].

@ Generalised inverses given by [b, a]* = [a, b].

@ Minimal generating set given by {[1,p] : p is prime.}.
@ E(T) =~ (Nt lem(,)).
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A general construction :

J. Leech called this monoid P.

— we will use T, to avoid confusion with the (upcoming)
polycyclic monoids.

For category theorists ...

Consider 7T to be :

the result of applying some ‘bicyclic construction’

to the category (N, - x _), instead of (N, _+ _).

Open Question : How general can this be made?
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Self-embeddings of T

There is an obvious N*-indexed family of self-embeddings :
Selfy([b,a]) = [b",a"] V[b,ale T
These satisfy familiar properties ...
Self,Self, = Selfmxn

Within the inverse category pIMMs of partial embeddings,
we also have their generalised inverses

Selfi € pIMMs(T, T)

Similarly to the bicyclic monoid ...

Perhaps unsurprisingly, we have a reflexivity property
T — pIMMs(T,T)

so 7 is a retract of every object of Q.
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Embedding B into T

For all n > 1 € N, there exists an embedding n)3 :— 7.

This is best defined on normal forms, by (a, b) — [n?, n®].

[nd7 nc] [nb7 na] _ [nd+(b'c)7 n(c'b)+a]

These embeddings have generalised inverses within p/MMs,
that we denote log, : T — B.
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An eternal recurrence ?

We could carry on, and look at :

The inverse submonoid of mZ(N) generated by {( )" : ne N*}
...and continue indefinitely ...

To do so would be to miss something interesting on the way!

www.peterhines.info



Une generalisation des monoides polycyclique ?

Nivat & Perot famously introduced the polycyclic monoids as,
“A generalisation of the bicyclic monoid” (1972)

Can we derive polycylic monoids by in a similar way?

Recall :

Given a set X, the polycyclic monoid Py is the inverse monoid
generated by X, with relations

1 X =
T y
V= { 0  otherwise.

Not quite! Instead, we a monoid arising from ‘combining’ 3 and
T that generalises them in a natural way.
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T and B, Combined

We work in the concrete settings of mZ(N).
For all a > b e N, we define

Ri,(n) = an+b VYneN
with generalised inverse given by
=8 n(modb) = a
1 otherwise.

This gives Rz_d/-?a,b as the unique monotone partial injection
with ’

@ Domain: aN+ b

@ Image : cN + d
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The monoid 7BC

Denote by 7 5C the inverse submonoid of mZ(N) generated by

{Rap : @a>beN} < mI(N)

Some claims :

@ 7 5C contains a copy of 7 (and hence a copy of B).
© 7 BC contains a copy of every finite polycyclic monoid.
© Elements of 7C have normal form :

{R:yRap : ¢>d,a>beN} U {0}
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Some simple properties :

As a very basic identity,
RcdRap = Racad+b VC>d,a>beN
As a simple corollary,
RxoRyo = Rxyo

giving a natural embedding T — T 5C.
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Embedding f.g. polycyclic monoids

Fix arbitrary a > 1, and consider the subset

{Ra,Oa Ra,1 PRI Ra,aq}

Direct calculations give, forall ne N :

n b="b
Ra,b’R;b(n) = { L b+b

since n (mod a) =b = n(mod a) # b forall b+ b'.

An embedding of the a-generator polycyclic monoid into 75C.

Note this is a strong embedding, since | J]_, dom (Rap) = dom(l).
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Normal forms?

We need to show :

Normal forms are closed under composition. The
composite

( R} sRog ) ( Rl aFab )

is of the form Ry, , Ry .
(Ideally, give explicit formulee for x > y,u > v € N).

The key case :

We first do this for idempotents — this leads to the general
formula.

The idempotent A% , R, is the partial identity on aN + b.
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From basic number theory :

Undergraduate modular arithmetic :
The Chinese Remainder Theorem allows us to compute

aN+b ncN+d = xN+y

when a and c are co-prime.

The extended CRT allows us to work generally.
There aretwo cases: aN +b n cN +dis

©Q /cm(a, c)N + y when

(b= d)+(d=b) e ged(a,c)N

Q@ U otherwise.



A formula for composition

With a ‘little’ more work

(Rf,st7q) (Rz,dRa,b) -

{ RiwRiu (@ d)+(d=q) € ged(p,c)N

0 otherwise.

Should we so wish ..

we may give R}, R, explicitly.
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Via repeated applications of CRT

When the composite is non-zero :
i it o
R(r,s)R(PaQ)R(c,d)R(a,b) = Ry whRtu

with coefficients given by :

__ r.lem(c,p)
Q V= —0p

_ X=q
o W= r( 2 ) T S
o f— a.lem(c,p)

° u=a(f‘cd)+b

where x is the solution to
lem(c,p)N+x = pN+qg n cN+d

given by the extended Chinese Remainder Theorem
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A purely abstract 7BC?

We can now give 7 BC as an abstract inverse monoid :
@ Underlying set : {((c,d),(a,b) : d <c, b<aeN}
@ Identity : ((1,0),(1,0)),
@ Generalised inverses : ((c,d), (a,b))* = ((a,b),(c,d)),
@ Idempotents : ((a, b), (a, b))
@ Composition : something non-trivial ...

Sometimes, representation within mZ(N) is better! |
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Why the interest ?

What is appealing about 7 5C in terms of

logic / computability / foundations ?

We are actually interested in a monoid derived from 7 5C
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Joins and partial orders

Inverse semigroups have a natural partial order:
a<b iff a=be forsomee’®=e

In Z(N), this is simply set-theoretic inclusion.

Z(N) is also closed under arbitrary joins of orthogonal
elements.

A Reminder ...
An indexed set {f;};c, is orthogonal iff

fifi=0=fff Vizjed

(i.e. f and f; have disjoint domains & images).
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Joins of orthogonal monotone elements?

Consider the orthogonal monotone partial injections :

RioRso . R Rsi . RisRsz
Their join is a bijection on N

12 3 456 7 8 9 ..

13257 49 11 6 ...

... but not the unique monotone bijection on N.

Historical background

The above bijection is found in unpublished 1932 notes of Collatz
(creator of the famous “3n + 1 problem”). It is the basis of a —still
unsolved— problem now called “the original Collatz conjecture”.
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Piece-wise monotone partial injections

Consider an inverse monoid X € mZ(N) < Z(N).

The set of all finite joins (within Z(N))
of orthogonal elements is an inverse monoid.

Call this the piecewise-monotone closure of X, denoted pmX.

The real object of interest is pm7 5C.

Possibly relevant :
@ J. Conway (1972) “ Unpredictable Iterations”

@ E. Lehtonen (2008) “Two undecidable variants of Collatz’s
problem”

@ A. Caraiani (2010) “Multiplicative semigroups related to the
3x + 1 problem”
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