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What and Why

Study of a new-ish monoid of binary relations (or {0, 1} square
matrices, or ....) appearing from the study of the

Complexity of evaluating positive equality-free sentences of first
order logic over a fixed finite structure B

{3, ¥, A, V} — FO(B)



Logical setting

The evaluation problem under a logic £, takes as input a
structure (model) B and a sentence ¢ of £, and asks whether
B = .

Example

{3, A} —FO
is the equivalent of the CSP

{3, V, A} —FO
is the equivalent of the QCSP, quantified CSP



Complexity

e Complexity of CSP uses polymorphisms;
o Complexity of QCSP uses surjective polymorphisms;

o Complexity of positive first order logic without equality uses
Shops: surjective hyper-operations.
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Disclaimer

The Galois Connection that appears with this logic asks for
closure under "sub-shops", down-closure, but we first want to
understand the monoids in its simplest form.

Although it is still unclear if it makes a massive difference...

Madeleine & Martin 2015



Semigroup of binary relations

Let X ={1,2,...,n} and B, = Bx be the semigroup of binary
relations on the set X, with multiplication

af ={(a,b):(arc)ea,l(cb)ec pforsomecec X}.
It was widely studied under several representations (tuples,

matrices, lattice isomorphisms), as were some of its
subsemigroups.



Shops

Are subsemigroups of B, whose relations p satisfy

eVac X dbe X (a,b)ep
eVbe X Jac X (a,b)ep

Considered in one paper by B. Schein ('87), named them
multipermutations
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Multipermutations
Theorem (B. Schein ’63)

Every semigroup is isomorphic to a semigroup of
multipermutations.

He then studied semigroups of multipermutations that satisfy
the extra identities

) =x () =y X

which he called multigroups, and proved that

e The class of all multigroups do not form a variety (not
closed under homomorphisms

e The class of all multigroups is not finitely axiomatizable

e Every inverse semigroup is a multigroup
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Monois of multipermutations

Let M, denote the monoid of all multipermutations on
X={1,2,...,n}

monoid of all n x n binary matrices with at least one 1 in every
row and every column,

1+1=1,0+1=1+0=1,0+0=0

so, square matrices over the Boolean semi-ring {0, 1}, without
0 row or column
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e S, (symmetric group) is a submonoid of M;

e T, (transformation semigroup, all maps from X to X) is not
a submonoid of M, since not all transformations are
surjective.

e H, (Hall monoid, every relation contains a permutation) is

a submonoid of M,

started looking at it from a semigroup theory point of view
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Green’s equivalences

In a semigroup S we have
e aRb < aS' = bS', is a right congruence
aLcb < S'a= S'b, is a left congruence
H=RNL
D=RoL=LoR
ajJb < S'aS' = S'bS’, for finite semigroups J = D

Example
Inagroup Gwehave R=L=H=D=J=Gx G
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In the semigroup of transformations T,, we have
e alf & ima =img
e RSB < kera = kerf
e oDf & |ima| = |imp|

ker¢p = po ¢~ ={(ab): ¢(a) = ¢(b)}

For By it is not as simple, the relations were characterized by
e Zaretskii ('62, '63) in terms of lattices;
e Plemmons and West (’70) in terms of boolean matrices

e Adu (’86) using direct composition (and skeletons of the
relations)
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Given a € By, let V(«) be the row space of «, i.e. the set of all
sums of rows of «, with 0 vector

W («) be the column space of a

Lemma (Zaretskii)

For any a, 8 € By

1. alf < V(a) = V(p)
2. aRB & W(a) = W(p)
3. aDp & V(a) = V(B)
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Green’s relations for multipermutations

Given a € My, let R(«) to be the set of rows of «,

(R(a)) = {p € V(x)\{0} : 3aj € R(a) : p < oy}

C(«) the set of columns of «

Lemma
For any «, 8 € M, we have

1. aLB < (R(a)) = (R(B))
2. aRB & (C(a)) = (C(B))
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Examples

o] o o] o 0] 0,1
i 0 ¢ 1[ot2 R 1[01,2
2[0,1,2 2]0,1,2 2]0,1,2

0y 0 010
1] 1,2 and 1[12
2[0,1,2 2[1,2
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example
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Claim
aDB & (R(a)) = (R(B)) and (C(a)) = (C(B))
joint work with M. Hughes

Several people worked on binary relations....
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Kim

Hang Kim was borm in Anju, North Korea in 1934, the oldest san of a small indepen-
dent farmer, He grew up within a loving family stressing strict Contucian values and the

imporlance of education. By age 12, Kim already knew some Chinese, Japanese, English
and Russian, and had skipped a couple grades of school.

These were hard times in Korea, Japan mled Korea 19101945, In Kim's childhoad,

rAan anfrarmed povasa Sectrrmuaanie mf aeliageel moofoaTleato ™ LR —
il:ldﬁ.’inulh K(J]r'll:a.rl forees. Tn Oolober 1950, China entered the war, and those foroes with-
dreve. Kim had acted as an informal interpreter for American troops. Several friendly 115,
airmen invited Kim to occupy an empty LS. Air Force plane seat, and leave with them for
the south. At age 14, Kim had six hours to decide. His father urged him w go. Kim tock the
plane. e would not see his mother and siblings for 30 vears, and he would never see his
father again. il
Commander, As the war's end approached, the Celenel and his family offersl w bring Kim
1o the United States and provide for an education, With ditficulty, a passport wus secunel.

- PO I B
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Regular elements

An element a of a semigroup S is called regular if there exists
x € Ss.t. a= axa, x is called an inverse of a.

Lemma (Schein)

Let p be a binary relation. Then p is regular iff
pCpolpopfopt)op.

Example
0| o,1
1 2 is regular as a binary relation, but not as a

2(0,1,2
multipermutation
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Algorithm (Kim & Roush)

Let A € B, be a matrix

e V(A) is the row space of A
r(A) the basis for V(A)

I(v)={u:u<w & v<w, forwe r(A)} vectores u
have exactly one 1

A« denotes the i row of A
p(t) ={infw e V(A) : t < w}.

Lemma (Kim& Roush)

Matrix A has an inverse iff I(v) # 0 for each v € r(A).

22/31



Ao~

Algorithm for multipermutations

find r(A);
find I(v) for each v € r(A);
for each v € r(A), choose a vector u € I(v);

for each u, choose a vector s s.t. s; =1 only if Aix < v and
such that s; = 1 for at least one i s.t. Ay = v;

choose any vector t with exactly one 1 entry other than the
u’s chosen in step 3, if t is not less than any row vector,
send f to an arbitrary vector. Otherwise send t to a vector
bs.t. bj=1onlyif A < p(t);

write the vectors s and b in the order of the u’s and .
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Inverses for multipermutations

Theorem

A multipermutation A has an inverse iff r(A) = R(A), I(v) # 0
for each v € r(A), and p(t) # 0.

Using Schein’s condition we can also easily check if a
multipermutation p has an inverse, just check if

(popop )opo(popop e,
the greatest inverse of p, is a multipermutation.
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Generating sets

e Spisgeneratedby (12)and (12 ... n);

e T,is generated by (12), (12 ... n)and any map with
rank (image size) n—1;

e What about M,?
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Not polynomially generated

The number of prime D-classes grows exponentially with n
Generators of B,: 2 generators of Sy, +2 generators, to
generate all regular binary relations, + one representative of
each prime D-class;

Generators of M,: 2 generators of S;, +1 generator from
above, + one representative of each prime D-class, + k more.
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And subclasses?

Are there natural subclasses (*) that are closed under
composition and down-closure that might have this property of
polynomial generation?

It holds for reflexive, symmetric multipermutations, any other
interesting classes?

1. class of regular multipermutations is not closed under
composition;

2. class of idempotent multipermutation is not closed under
composition.
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Open questions

e What are the maximal subgroups of the semigroup of
multipermutations?

¢ Which semigroups are isomorphic to transitive semigroups
of multipermutations? (McKenzie, Schein)

They prove that every semigroup is isomorphic to a semigroup
of binary relations on a finite set.

A subset ® C By is called transitive if [ J® = A x A, that is, for
any a, b € Athere exists ¢ € ¢ with (a, b) € ¢.
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The lattice structure

We ask for down-closure here, i.e. closure under
submultipermutations

Example
0[1.2
( 1] 0 )pswm is the monoid containing the following
2| 1

multipermutations

0/1,2 0|2 o0]01,2 0

il o0 , 1(0 , 1] 12 , 1|2 ,id,
2| 1 2|1 2 0 2|0 2
plus

—_
o

—
o|o|o
— | —h
[SITVINN
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Similar to the lattice of permutation groups (under inclusion),
minimal element contains only the identity permutation, and
maximal element contains all the multipermutations.

(442)
TN
(e} (at) (ae)
~N 17
(45)

Figure: The lattice on 2 elements.
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Figure: The lattice on 3 elements.



