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My Agenda

Some of the most profound and famous theorems in
mathematics and computer science of the past 150 years are
instances of self-referential paradoxes.

Georg Cantor's theorem that shows there are di�erent
levels of in�nity;

Bertrand Russell's paradox which proves that simple set
theory is inconsistent;

Kurt Gödel's famous incompleteness theorems that
demonstrates a limitation of the notion of proof;

Alan Turing's realization that some problems can never be
solved by a computer;

and much more.

Amazingly, all these diverse theorems can be seen as instances
of a single simple theorem of basic category theory. We describe
this theorem and show some of the instances. No category
theory is needed for this talk.
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My Hidden Agenda

This talk is a single section (of 58) of an introductory category
theory textbook I am writing called

MONOIDAL CATEGORIES
A Unifying Concept in Mathematics, Physics, and Computing

The goal is to show the power of category theory (and to get
you to buy the book!!!) The point is that with a little category
theory, one can know a hell-of-a-lot of mathematics, physics,
and computers.
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Some Preliminaries

Before we leap into all the examples, there are some technical
ideas about sets.

Let 2 = {0, 1} be a set with two values which correspond
to true and false.

Let S be a set. A function g : S −! 2 is a characteristic
function and describes a subset of S .

Consider a set function f : S × S −! 2. The f accepts two
elements of S and outputs either 0 or 1. Think of

f (a, b) = 1

meaning �a is a part of b� or �a is described by b.�
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Some Preliminaries

For any element s0 of S , consider the function f where the
second input is always s0. We say that s0 is �hardwired into
the function.� This gives us a function

f ( , s0) : S −! 2

with only one input. Since this function goes from S to 2,
it also is a characteristic function and describes a subset of
S . The subset is

{s ∈ S : f (s, s0) = 1}.

It is all the elements that are �part of s0� or all the
elements that are �described by s0.�
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Some Preliminaries

For di�erent f 's and various elements of S , there are
di�erent characteristic functions which describe various
subsets.

We now ask a simple question: given g : S −! 2 and
f : S × S −! 2, is there an s0 in S such that g
characterizes the same subset as f ( , s0)?

To restate, for a given g and f , does there exist an s0 ∈ S
such that g( ) = f ( , s0)? If such an s0 exists, then we
say g can be represented by f .
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Some Preliminaries

For every set S there is a set map ∆: S −! S × S called
the diagonal map that takes an element t to the ordered
pair (t, t). This is the core of self reference.

If f : S × S −! 2 is a function that evaluates the
relationship of S elements to S elements, then

S × S
f // 2

S

∆
<<

takes every element t ∈ S as follows

t 7−! (t, t) 7−! f (t, t).

This evaluates t with itself.
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The Barber Paradox

Bertrand Russell was a great expositor. The barber paradox is
attributed to Russell and is used to explain some of the central
ideas of self-referential systems. Imagine an isolated village in
the Austrian alps where it is di�cult for villagers to leave and
for itinerant barbers to come to the village. This village has
exactly one barber and there is a strict rule that is enforced:

A villager cuts his own hair i� he does not go to the barber.

If the villager will cut his own hair, why should he go to the
barber? On the other hand, if the villager goes to the barber,
he will not need to cut his own hair. This works out very well
for the villagers except for one: the barber. Who cuts the
barber's hair? If the barber cuts his own hair, then he is
violating the village ordinance by cutting his own hair and
having his hair cut by the barber. If he goes to the barber, then
he is also cutting his own hair. This is illegal!
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The Barber Paradox

Let us formalize the problem. Let the set Vill consist of all the
villagers in the village. The function

f : Vill × Vill −! 2

describes who cuts whose hair in the village. It is de�ned for
villagers v and v ′ as

f (v , v ′) =

 1 : if the hair of v is cut by v ′

0 : if the hair of v is not cut by v ′.

We can now express the village ordinance as saying that for all v

f (v , v) = 1 if and only if f (v , barber) = 0.

This is true for all v including v = barber. In this case we get:

f (barber, barber) = 1 if and only if f (barber, barber) = 0.

This is a contradiction!
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The Barber Paradox

Let us be more categorical. There is

The diagonal set function ∆: Vill −! Vill × Vill that is
de�ned as ∆(v) = (v , v).

There is also a negation function NOT : 2 −! 2 de�ned as
NOT (0) = 1 and NOT (1) = 0.

Composing f with ∆ and NOT gives us g : Vill −! 2 as
in the following commutative diagram:

Vill × Vill
f // 2

NOT

��
Vill

∆
99

g
// 2

g = NOT ◦ f ◦∆.
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The Barber Paradox

For a villager v ,

g(v) == NOT (f (∆(v))) = NOT (f (v , v)).

So
g(v) = 1

if and only if
NOT (f (v , v)) = 1

if and only if
f (v , v) = 0

if and only if
the hair of v is not cut by v .
In other words g(v) = 1 if and only if v does not cut his own
hair.
g is the characteristic function of the subset of villagers who do
not cut their own hair.
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The Barber Paradox

We now ask the simple question: can g be represented by f ? In
other words, is there a villager v0 such that g( ) = f ( , v0)? It
stands to reason that the barber is the villager who can
represent g . After all, f ( , barber) describes all the villagers
who get their hair cut by the barber.

g(v) = f (v , barber)

What about v = barber.

g(barber) = f (barber, barber).

But the de�nition of g is given as
g(barber) = NOT (f (barber, barber)). We conclude that g is
not represented by f ( , barber) That is, the set of villagers
who do not cut their own hair can not be the same as the set of
villagers who get their hair cut by anyone.
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The Barber Paradox � Matrix Form

It is helpful to describe this problem in matrix form. Let us
consider the set Vill as {v1, v2, v3, . . . , vn}. We can then
describe the function f : Vill × Vill −! 2 as a matrix. Let us
say that the barber is v4. Notice that every row has exactly one
1 (every villager gets their haircut in only one place): either
along the diagonal (the villager cuts their own hair) or in the v4
column (the villager goes to the barber.) Since it can only be
one or the other, the numbers along the diagonal
1, 0, 1, ?, 0, . . . , 1 are almost the exact opposite of the numbers
along the v4 column 0, 1, 0, ?, 1, . . . , 0. This is a restatement of
the rule of the village. There is only one problem: what is in the
(v4, v4) position. We put a question mark because that entry
cannot be the opposite of itself. This way of seeing the problem
will arise over and over again. Here we can see why these
paradoxes are related to proofs called diagonal arguments.



Self-
Referential
Paradoxes

Noson S.
Yanofsky

Preliminaries

Three
Motivating
Examples

Philosophical
Interlude

Cantor's
Inequalities

Main
Theorem

Turing's
Halting
Problem

Fixed Points
in Logic

Two Other
Paradoxes

Further
Reading

The Barber Paradox � Matrix Form

Cutter

f v1 v2 v3 v4 v5 · · · vn

C
u
tt
e
e
v1 1 0 0 0 0 · · · 0

v2 0 0 0 1 0 · · · 0

v3 0 0 1 0 0 · · · 0

v4 0 0 0 ? 0 · · · 0

v5 0 0 0 1 0 · · · 0

...
...

...
...

vn 0 0 0 0 0 · · · 1
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The Barber Paradox � Avoiding Contradictions

What is the resolution to this paradox? There are many
attempts to solve this paradox, but they are not very successful.
For example, the barber resigns as barber before cutting his own
hair. (But that means that there is no barber in the town). Or
the wife of the barber cuts the barber's hair. (But that means
that there are two barbers in the town.) Or the barber is bald.
Or the barber is a long-haired hippie. Or the rule is ignored
while the barber cuts his own hair, etc. All these are saying the
same thing: the village with this important rule cannot exist.
Because if the village with this rule existed, there would be a
contradiction. There are no contradictions in the physical world.
The only way the world can be free of contradictions is if this
proposed village with this strict rule does not exist.
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Russell's Paradox

This paradox concerns sets which are considered the foundation
of much of mathematics. As is known, sets contain elements.
The elements can be anything. In particular an element in a set
can be a set itself. A set containing itself is also not so strange.
Here are three examples of sets that contain themselves:

The set of all ideas discussed in this talk

The set that contains all the sets that have more than
three objects

The set of abstract ideas.
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Russell's Paradox

If you do not like sets that contain themselves, you might want
to consider �Russell's set� which is the set of all sets that do not
contain themselves. Formally,

R = {set S : S does not contain S} = {S : S /∈ S}.

Now ask yourself the simple question: does R contain itself? In
symbols, we ask if R ∈ R? Let us consider the possible answers.
If R ∈ R , then since R fails to satisfy the requirements of being
a member of R , we get that R /∈ R . In contrast, if R /∈ R , then
since R satis�es the requirement of belonging to R , we have
that R ∈ R . This is a contradiction.
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Russell's Paradox

Let us formulate this. There is a collection of all sets called Set.
There is also a two-place function f : Set × Set −! 2 that
describes which sets are elements of which other sets.

f (S , S ′) =

 1 : if S ∈ S ′

0 : if S 6∈ S ′.

Set × Set
f // 2

NOT

��
Set

∆
99

g
// 2

The value g(S) = NOT (f (S , S)). This means g(S) = 1 if and
only if f (S ,S) = 0. g is the characteristic function of those sets
that do not contain themselves.
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Russell's Paradox

Now we ask the simple question: does there exist a set R such
that g( ) is represented by f as f ( ,R). That is, we want a
set R such that

g(S) = 1 if and only if f (S ,R) = 1

and
g(S) = 0 if and only if f (S ,R) = 0.

This means that R contains only the sets that do not contain
themselves. The problem is that if such a set R exists, then we
can ask about g(R), i.e., is R ∈ R . On the one hand g(R) is
de�ned as NOT (f (R,R)) and on the other hand, if f
represents g with R , then g(R) = f (R,R). That is,

f (R,R) = g(R) = NOT (f (R,R)).

This is a contradiction.
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Russell's Paradox � Matrix Form

Let us look at Russell's paradox from a matrix point of view.
Consider the in�nite collection Set as {S1, S2, S3, . . .}. We can
then describe the function f : Set × Set −! 2 as a matrix.
Notice that the diagonal is di�erent than every column of the
array. This is a way of saying that that the diagonal (which is
g) cannot be represented by any column of the array.



Self-
Referential
Paradoxes

Noson S.
Yanofsky

Preliminaries

Three
Motivating
Examples

Philosophical
Interlude

Cantor's
Inequalities

Main
Theorem

Turing's
Halting
Problem

Fixed Points
in Logic

Two Other
Paradoxes

Further
Reading

Russell's Paradox � Matrix Form

Subset

f S1 S2 S3 S4 S5 · · ·

E
le
m
e
n
t

S1 ¬1 = 0 0 0 0 1 · · ·

S2 0 ¬0 = 1 0 1 0 · · ·

S3 0 0 ¬1 = 0 0 0 · · ·

S4 1 0 0 ¬1 = 0 0 · · ·

S5 0 1 0 1 ¬0 = 1 · · ·
...

...
...

. . .
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Russell's Paradox � Avoiding Contradictions

The only way to avoid this contradiction is to accept that the
function g cannot be represented by any element of Set. This
translates into meaning that the collection of all sets that do
not contain themselves does not form a set, i.e., this collection
is not an element of Set. While such a collection seems to be a
well-de�ned notion, we have shown that if we say that this
collection is an element of Set, then there is a contradiction.
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Heterological Paradox

Now for a linguistic paradox. The heterological paradox, also
called Grelling's paradox after Kurt Grelling, who �rst
formulated it, is about adjectives (words that modify nouns).
Consider several adjectives and ask if they describe themselves.

�English� is English.

�French� is not French (�francais� is francais.)

�German� is not German (�Deutsch� is Deutsch.)

�abbreviated� is not abbreviated,

�unabbreviated� is unabbreviated

�hyphenated� is not hyphenated, etc.

Call all adjectives that describe themselves �autological.� In
contrast, call all adjectives that do not describe themselves as
�heterological.�
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Heterological Paradox

autological heterological

English non-English

French

German

noun verb

unhyphenated hyphenated

unabbreviated abbreviated

polysyllabic monosyllabic

...
...
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Heterological Paradox

Let us ask a simple question? Is �heterological� heterological?
That is, does it belong on the left side or the right side of the
table? Let us go through the two possibilities.

If �heterological� is not heterological, then it does not
describe itself and therefore it is heterological.

If �heterological� is heterological, then it does describe
itself and therefor is not heterological.

This is a contradiction.
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Heterological Paradox

Let us formulate this paradox categorically. There is a set Adj
of adjectives and a function f : Adj × Adj −! 2 which is
de�ned for adjectives a and a′ as follows:

f (a, a′) =

 1 : if a is described by a′

0 : if a is not described by a′.

Use f to formulate g as as the composition of the following
three maps:

Adj × Adj
f // 2

NOT

��
Adj

∆
99

g
// 2.

The function g is the characteristic function of those adjectives
that do not describe themselves.
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Heterological Paradox

Can g be represented by some element in Adj? Is there some
adjective, say �heterological,� that we can use in f to represent
g? That is, is it true that g( ) = f ( , �heterological�)?

g(A) = f (A, �heterological�).

For all A including A =�heterological�

g(�heterological�) = f (�heterological�, �heterological�).

But that would give a contradiction because by the de�nition of
g we have

g(�heterological�) = NOT (f (�heterological�, �heterological�)).

The only conclusion we can come to is that g( ) cannot be
represented by f . That is, the set of all adjectives that do not
describe themselves cannot be represented by �heterological�.
However, that is exactly the de�nition of �heterological�!
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Heterological Paradox � Matrix Form

The hetrological paradox can be described with a matrix similar
to the earlier matrices. The set Adj = {A1,A2,A3, . . .}. Again
we would have a changed diagonal that would be di�erent than
every column in the array.
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Heterological Paradox � Avoiding Contradictions

How do we avoid this little paradox? There are two possible
ways of resolving this paradox.

Many philosophers say that the word �heterological� cannot
exist. After all, we just showed that it is not always
well-de�ned. We cannot determine if a certain adjective
(�hetrological�) is heterological or not.

Another more obvious solution is to just ignore the
problem. Human language is inexact and full of
contradictions. Every time we use an oxymoron, we are
stating a contradiction. Every time we ask for another
piece of cake while lamenting the fact that we cannot lose
weight, we are stating a contradiction. We can safely
ignore the fact that heterological is not well-de�ned for
only one adjective.
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A philosophical interlude on paradoxes

A paradox is a process where an assumption is made, and
through valid reasoning, a contradiction is derived.

Assumption =⇒ Contradiction.

The logician then concludes that since the reasoning was valid
and the contradiction cannot happen, it must be that the
assumption was wrong. This is very similar to what
mathematicians call �proof by contradiction� and philosophers
call �reductio ad absurdum.� A paradox is a method of showing
that the assumption is not part of rational thought.

We have so far seen the same pattern of proof in three di�erent
areas: (i) villagers, (ii) sets, and (iii) adjectives. The
assumption is that the g function can be represented by the f
function. A contradiction is then derived and we conclude that
g is not represented by f . These three examples highlight three
di�erent areas where the alleged contradictions might be found.
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A philosophical interlude on paradoxes

The Physical Universe. A village with a particular rule is part
of the physical universe. The physical universe does not have
any contradictions. Facts and properties simply are and no
object can have two opposing properties. Whenever we come to
such contradictions, we have no choice but to conclude that the
assumption was wrong.
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A philosophical interlude on paradoxes

The Mental and Linguistic Universe. In contrast to the
physical universe, the human mind and human language � that
the mind uses to express itself � are full of contradictions. We
are not perfect machines. We have a lot of di�erent
contradictory parts and desires. We all have con�icting thoughts
in our head and these thoughts are expressed in our speech. So
when an assumption brings us to a contradiction in our thought
or language, we do not need to take it very seriously. If an
adjective is in two opposite classi�cations, it does not really
bother us. In such a case, we cannot go back to our assumption
and say it is wrong. The entire paradox can be ignored.
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A philosophical interlude on paradoxes

Science and Mathematics. There are, however, parts of
human thought and language which cannot tolerate
contradictions: science and mathematics. These areas of exact
thought are what we use to discuss the physical world (and
more). If science and math are to discuss / describe / model /
predict the contradiction-free physical universe, then we better
make sure that no contradictions occur there. We �rst saw this
in the early years of elementary school when our teachers
proclaimed that we are not permitted to divide by zero. Since
math and science cannot have contradictions, young �edglings
are not permitted to divide by zero. To summarize, science and
mathematics are products of the human mind and language
which we do not permit to have contradictions. If an
assumption leads us to a contradiction in science or
mathematics, then we must abandon the assumption.
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A philosophical interlude: Where contradictions can

occur.

The Physical
Universe

The Mental and
Linguistic Universe

Science and
Mathematics
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A philosophical interlude � Why categories?

Many have felt that these di�erent instances of self reference
have a similar pattern (witness Bertrand Russell supposedly
inventing the barber paradox to illustrate Russell's paradox.)
The major advance that category theory has to o�er the subject
of self-referential paradoxes is to actually show that all these
di�erent self-referential paradoxes are really instances of the
same categorical theorem. F. William Lawvere described a
simple formalism that showed many of the major self-referential
paradoxes and more. This shows that the logic of self-referential
paradoxes is inherent in many systems. This also shows the
unifying power of category theory.
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A philosophical interlude � Why categories?

There is, however, another positive aspect of our formalism.
Lawvere showed us how to have an exact mathematical
description of the paradoxes while avoiding messy statements
about what exists and what does not exist. In the categorical
setting,

The barber paradox does not say that a village with a rule
does not exists.

With Russell's paradox, a category theorist does not say
that a certain collection does not form a set.

In the heterological paradox, we avoid the silly analysis as
to whether a word exists or not.

In our categorical discussion, we successfully avoid metaphysical
gobbledygook. For this alone, we should be appreciative of the
categorical formalism.
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Cantor's Inequalities

At the end of the 19th century Georg Cantor proved some
important theorems about the sizes of sets.

He showed that every set is smaller than its powerset.

Every set S is smaller than the set P(S).

A more categorical way of saying this is that for any set S ,
there cannot exist a surjection h : S −! P(S).

Yet another way of saying this, is that for every purported
surjection h : S −! P(S), there is some subset of S ,
denoted Ch, that is not in the image of h.

This is proven with a proof by contradiction: we are going to
assume (wrongly) that there is such a surjection and derive a
contradiction. Since this is formal mathematics, no such
contradiction can exist and hence our assumption that such a
surjection exists must be false.
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Cantor's Inequalities

Given such an h, let us de�ne fh : S × S −! 2 for s, s ′ ∈ S as
follows

fh(s, s ′) =

 1 : s ∈ h(s ′)

0 : s /∈ h(s ′)

Use fh to construct gh as follows

S × S
fh // 2

NOT

��
S

∆
<<

gh
// 2

The function gh is the characteristic function of the subset
Ch ⊆ S where each element s does not belong to h(s), i.e.,

Ch = {s ∈ S : s /∈ h(s)} ⊆ S .
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Cantor's Inequalities

We claim that the subset Ch of S is not in the image of h, i.e.,
Ch is a �witness� or a �certi�cate� that h is not surjective. If Ch

was in the image of h, there would be some s0 ∈ S such that
h(s0) = Ch. In that case gh would be represented by fh with s0.
That is, for all s ∈ S

gh(s) = fh(s, s0)

but this would also be true for s0 ∈ S which would mean that

gh(s0) = fh(s0, s0)

However, by the de�nition of gh, we have that

gh(s0) = NOT (fh(s0, s0)).

Since this cannot be, our assumption that h(s0) = Ch is wrong
and there is a subset of S that is not in the image of h.
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Cantor's Inequalities � Avoiding Contradictions

This is part of mathematics and the only resolution is to accept
the fact no such surjective h exists and that |S | < |P(S)|.
Notice that this applies to any set. For �nite S , this is obvious
since |S | = n implies |P(S)| = 2n. However, this is true for
in�nite S also. What this shows is that P(S) is a di�erent level
of in�nity than S . One can iterate this process and get

P(S),

P(P(S)),

P(P(P(S))),

. . .

This gives many di�erent, unequal levels of in�nity.
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Cantor's Inequalities

Related to the above theorem of Cantor, is the theorem that
the natural numbers N is smaller than the interval of all real
numbers between 0 and 1, i.e., (0, 1) ⊆ R.
This proof is slightly di�erent than the previous examples that
we saw. We include it because it has features in it that are
closer to the upcoming general theorem. Rather than working
with the set 2 = {0, 1}, this proof works with the set
10 = {0, 1, 2, 3, . . . 9}. Also, rather than working with the
function NOT : 2 −! 2, we now work with the function
α : 10 −! 10 which is de�ned as follows:

α(0) = 1, α(1) = 2, α(2) = 3, . . . , α(8) = 9, α(9) = 0,

i.e., α(n) = n + 1 Mod 10. The most important feature of α
is that, every output is di�erent than its input. There are many
such functions from 10 to 10. We choose this one.
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Cantor's Inequalities � Matrix Form

The proof that |N| < |(0, 1)| is, again, a proof by contradiction.
We assume (wrongly) that there is a surjection h : N −! (0, 1)
and come to a contradiction which proves that no such h can
possibly exist. With such an h we can de�ne a function
fh : N× N −! 10 which depends on h. For m, n ∈ N,

fh(m, n) = the mth digit of h(n).

This means that fh gives every digit of the purported function
h. The next slide will help explain fh. The natural numbers are
on the left tell you the position. The function h assigns to every
natural number on the top, a real number below it. The
numbers on the left are the �rst inputs to fh and the numbers
on the top are the second inputs to fh.
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Cantor's Inequalities � Matrix Form

Real Number

fh 0 1 2 3 4 5 6 · · ·

D
ig
it

0 0 0 0 0 0 0 · · ·

. . . . . . . · · ·

0 0 0 7 2 7 7 4 · · ·

1 0 1 2 2 7 6 7 · · ·

2 5 3 0 3 0 0 0 · · ·

3 0 6 2 0 1 2 0 · · ·

4 0 1 0 2 3 1 3 · · ·

5 0 1 0 3 0 1 5 · · ·
...

...
...

... · · ·
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Cantor's Inequalities

With such an fh, one can go on to describe a function gh with
the � by now familiar � construction

N× N
fh // 10

α

  
N

∆
<<

gh
// 10

The function gh also depends on h. The next matrix will help
explain the function gh. That is, the nth digit of the nth
number is changed. The changed numbers are the outputs to
the function gh. Thinking of the outputs of gh as the digits of a
real number, we are describing a real number between 0 and 1.
We call this number Gh. In our case,

Gh = 0.121126 . . .
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Cantor's Inequalities � Matrix Form

Real Number

fh 0 1 2 3 4 5 6 · · ·

D
ig
it

0 0 0 0 0 0 0 · · ·

. . . . . . . · · ·

0 α(0) = 1 0 7 2 7 7 4 · · ·

1 0 α(1) = 2 2 2 7 6 7 · · ·

2 5 3 α(0) = 1 3 0 0 0 · · ·

3 0 6 2 α(0) = 1 1 2 0 · · ·

4 0 1 0 2 3 α(1) = 2 3 · · ·

5 0 1 0 3 0 1 α(5) = 6 · · ·
...

...
...

... · · ·
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Cantor's Inequalities

The claim is that gh is not represented by fh. This means that
the number represented by gh will not be the number
represented by fh( , n0) for any n0. Another way to say this is
that the number Gh will not be any column in the scheme
described by the matrix. This is obviously true because Gh was
formed to be di�erent than the �rst column because the �rst
digit is di�erent. It is di�erent than the second column because
it was formed to be di�erent at the second digit. It is di�erent
than the third column because it was formed to be di�erent at
the third digit, etc.
Gh is saying

�I am not on column n because my nth digit is di�erent from
the nth column's nth digit.�

or

�I am not in the image of h.�

Conclusion: Gh is not on our list and hence h is not surjective.
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Cantor's Inequalities

Let us show the end of the proof formally. If there was some n0
that represented gh, then for all m

gh(m) = fh(m, n0)

(i.e., Gh is the same as column no .) But if this was true for all
m, then it is true for n0 also (that is, it is true by every digit
including the one on the diagonal.) But that says that

gh(n0) = fh(n0, n0).

However gh was de�ned for n0 as

gh(n0) = α(fh(n0, n0)).

We conclude that no such n0 exists and gh describes a number
in (0, 1) but is not in the image of h. That is, h cannot be
surjective and |N| < |(0, 1)|.
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Main Theorem � Some Preliminaries

De�nition. First a simple de�nition in Set. Consider a set Y
and a set function α : Y −! Y . We call s0 ∈ Y a �xed point

of α if α(s0) = s0. That is, the output is the same (or �xed) as
the input. We can write the element s0 by talking about a
function p : {∗} −! Y such that p(∗) = s0. Saying that s0 is a
�xed point of α amounts to saying that α ◦ p = p, i.e., the
following diagram commutes:

{∗} p //

p
!!

Y

α
~~

Y .

Let us generalize this to any category A with a terminal object
1. Let y be an object in A and α : y −! y be a morphism in
A. Then we say p : 1 −! y is a �xed point of α if α ◦ p = p.
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Lawvere's Theorem

Now for the main theorem as given by Lawvere in 1969.

Lawvere's Theorem. Let A be a category with a terminal
object and binary products. Let y be an object in the category
and α : y −! y be a morphism in the category. If α does not
have a �xed point, then for all objects a and for all
f : a× a −! y there exists a g : a −! y such that g is not
representable by f .
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Lawvere's Theorem

Proof. Let α : y −! y not have a �xed point, then for any a
and for any f : a× a −! y we can compose f with ∆ and α to
form g as below.

a× a
f // y

α

��
a

∆
<<

g
// y .

g is not representable by f .
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Turing's Halting Problem

In the early 1930's, long before the engineers actually created
computers, Alan Turing, the �father of computer science,�
showed what computers cannot do. Loosely speaking, he proved
that no program can decide whether or not any program will go
into an in�nite loop or not. Already from this inexact statement
one can see the self reference: programs deciding properties of
programs.
Let us state a more exact version of Turing's theorem. First
some preliminaries. Programs come in many di�erent forms.
Here we are concerned with programs that only accept a single
natural number. To every such program, there is a unique
natural number that describes that program. This fact that
programs that act on numbers can be represented by numbers
shows that programs can be self referential.
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Turing's Halting Problem

Programs that accept a single number can take an input and
halt or they can go into an in�nite loop. The halting problem
asks for (i) a number of a program that accepts a single number
and (ii) an input to that program. It returns 1 or 0 depending
on if it halts or goes into an in�nite loop. Turing's Halting
theorem says that no such program can possibly exist. This is
not a limitation of modern technology or of our current ability.
Rather, this is an inherent limitation of computation.
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Turing's Halting Problem

The proof is, once again, a proof by contradiction. Assume
(wrongly) that there does exist a program that accepts a
program number and an input, and can determine if that
program will halt or go into an in�nite loop when that number
is entered into that program. Formally, such a program
describes a total computable function. The function is named
Halt : N× N −! Bool de�ned on natural numbers m, n ∈ N is

Halt(m, n) =

 1 : if input m into program n halts

0 : if input m into program n goes into a loop
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Turing's Halting Problem � Matrix Form

Program

Halt 0 1 2 3 4 5 · · ·

In
p
u
t

0 0 1 0 0 0 1 · · ·

1 1 1 1 1 1 1 · · ·

2 0 1 0 0 0 0 · · ·

3 0 1 0 0 1 0 · · ·

4 0 0 1 1 1 1 · · ·

5 1 0 1 0 1 1 · · ·
...

...
. . .
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Turing's Halting Problem

It is not hard to see that the function ∆: N −! N× N de�ned
as ∆(n) = (n, n) is a computable function. Consider the partial
NOT function ParNOT : Bool −! Bool de�ned as follows:

ParNOT (n) =

 1 : if n = 0

" : if n = 1

where " means it goes into an in�nite loop. It is not hard to see
that ParNOT is a computable function. Since Halt is assumed
computable, and the function ∆ and ParNOT are computable,
then their composition as follows is also computable function.

N× N
Halt // Bool

ParNOT

##
N

∆
<<

Halt′
// Bool
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Turing's Halting Problem � Matrix Form

The new computable function, Halt ′, accepts a number n as
input and does the opposite of what program n on input n
does. That is, if program n on input n halts, then Halt ′(n) will
go into an in�nite loop. Otherwise, if program n on input n
goes into an in�nite loop, then Halt ′(n) will halt. We can see
the way Halt ′ is de�ned in the next slide.
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Turing's Halting Problem � Matrix Form

Program

Halt 0 1 2 3 4 5 · · ·

In
p
u
t

0 α(0) = 1 1 0 0 0 1 · · ·

1 1 α(1) =" 1 1 1 1 · · ·

2 0 1 α(0) = 1 0 0 0 · · ·

3 0 1 0 α(0) = 1 1 0 · · ·

4 0 0 1 1 α(1) =" 1 · · ·

5 1 0 1 0 1 α(1) =" · · ·
...

...
. . .
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Turing's Halting Problem

Since Halt ′ is a computable function, the program for this
computable function must have a number and be somewhere on
our list of computable functions. However, it is not. Halt ′ was
formed to be di�erent than every column in the chart. What is
wrong? We know that ∆ and ParNOT are computable. We
assumed that Halt was computable. It must be that our
assumption about Halt was wrong. Halt is not computable.
Let us formally show that Halt ′ is di�erent than every column
in the chart. Imagine that Halt ′ is computable and the number
of Halt ′ is n0. This means that Halt ′ is the n0 column of our
chart. Another way to say this is that Halt ′ is representable by
Halt( , n0), i.e., for all n,

Halt ′(n) = Halt(n, n0).

Now let us ask about Halt ′(n0)? We get

Halt ′(n0) = Halt(n0, n0).

But we de�ned Halt ′(n0) to be

Halt ′(n0) = ParNOT (Halt(n0, n0)).

This is a contradiction.
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Turing's Halting Problem

In a sense, we can say that the computational task that Halt ′

(and in particular Halt ′(n0)) performs is:

�If you ask me whether I will halt or go into an in�nite loop,
then I will give the wrong answer.�

Since computers cannot give the wrong answer, Halt ′ cannot
exist and hence Halt cannot exist.
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Fixed Points in Logic

The Contrapositive of Lawvere's Theorem. Let A be a
category with a terminal object and binary products. Let y be
an object in the category and α : y −! y be a morphism in the
category. If there is an object a and a morphism
f : a× a −! y , such that g = α ◦ f ◦∆ is representable by f ,
then α has a �xed point.
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Fixed Points in Logic � Matrix Form

Second Input

f p · · ·
F
ir
st

In
p
u
t

α f ( , p) · · ·

α f ( , p) · · ·

α f ( , p) · · ·

α f ( , p) · · ·

p αf (p, p) = f (p, p) · · ·

f ( , p) α · · ·
...

...
... f ( , p)

. . .

The crossing point is a �xed point.
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Fixed Points in Logic

Now apply this theorem to logic. We use the contrapositive of
Lawvere's Theorem to �nd �xed points in logic. First, some
elementary logic. We are working in a system that can handle
basic arithmetic. We will deal with logical formulas that accept
at most one value which is a number.

A(x),B(x), C(x), . . .

A logical formula that accepts no value, sentences,

A,B,C , . . .

We are interested in equivalence classes of these sets: two
formulas are equivalent if they are provably logically equivalent.
We will call the equivalence classes of predicates Lind1 for the
�Lindenbaum� classes of predicates. The equivalence classes of
sentences will be denoted Lind0.
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Fixed Points in Logic

All logical formulas can be encoded as a natural number. We
will write the natural number of a logical formula A(x) as
pA(x)q and the number of a sentence A is pAq. Logical
formulas about numbers will be able to evaluate logical
formulas about numbers. It is these numbers that will help
logical formulas be self-referential.
We are going to get �xed points of logical predicates. For every
predicate, E(x), there is a way of constructing a �xed point
which is a logical sentence C such that

E(pCq) ≡ C

The process that goes from a E(x) to C will be called a ��xed
point machine.� C is a logical sentence that says

�I have property E .�
With this �xed point machine we will �nd some of the most
fascinating aspects of logic.
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Back to the contrapositive of the Lawvere Theorem.

The category is Set.

The a of the theorem is the set of equivalence classes
Lind1.

The y of the theorem is the set of equivalence classes
Lind0.

There is a function f : Lind1 × Lind1 −! Lind0 de�ned as
follows:

f (A(x),B(x)) = B(pA(x)q).

The α of the theorem depends on some predicate E so we
write it as αE . The function αE applies the predicate to
the number of a sentence A. It is a function
αE : Lind0 −! Lind0 which is de�ned for the sentence A as

αE(A) = E(pAq).
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Fixed Points in Logic � Matrix Form

Second Input

f A0(x) A1(x) A2(x) · · · A5(x) · · ·

F
ir
st

In
p
u
t

A0(x) E(A0(pA0(x)q) A1(pA0(x)q) A2(pA0(x)q) · · · Ap(pA0(x)q) · · ·

A1(x) A0(pA0(x)q) E(A1(pA1(x)q) A2(pA1(x)q) · · · Ap(pA1(x)q) · · ·

A2(x) A0(pA2(x)q) A1(pA2(x)q) E(A2(pA2(x)q) · · · Ap(pA2(x)q) · · ·
...

...
...

...
. . . Ap(pA3(x)q) · · ·

Ap(x) A0(pAp(x)q) A1(pAp(x)q) A2(pAp(x)q) · · · E(Ap(pAp(x)q) · · ·
...

...
...

...
. . .
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Application: Gödel's Incompleteness Theorem

We use the �xed point machine to make interesting
self-referential statements. Let Prov(x , y) be the two place
predicate that is true when �y is the Gödel number of a proof of
a statement whose Gödel number is x�. Now we form the
statement

E(x) = (∀y)¬Prov(y , x).

G ≡ E(pGq) = (∀y)¬Prov(y , pGq)

G is a logical statement that essentially says

�I am a statement for which any y is not a proof of me�

�I am unprovable.�

If G was false then there would be a proof of G and hence there
would be a proof of a false statement. In that case the system
is not consistent. On the other hand, if G is true, then it
essentially says that G is true but unprovable.
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Application: Gödel's Incompleteness Theorem

True = Provable True

Provable

Gödel sentence

What was believed before and after Gödel's Theorem.
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Application: Tarski's Theorem

Alfred Tarski's theorem shows that a logical system cannot tell
which of its predicates are true. Assume (wrongly) that there is
some logical formula T (x) that accepts a number and tells if
the statement is true. This formula will be true when �x is the
Gödel number of a true statement in the theory�. We can then
use T (x) to form the statement

E(x) = ¬T (x)

This says that E(x) is true when T (x) is false. Now place E(x)
into the �xed point machine. We will get a statement C such
that

C ≡ E(pCq) = ¬T (pCq).

The logical sentence C essentially says

�I am false.�

It is a logical version of the liar paradox.



Self-
Referential
Paradoxes

Noson S.
Yanofsky

Preliminaries

Three
Motivating
Examples

Philosophical
Interlude

Cantor's
Inequalities

Main
Theorem

Turing's
Halting
Problem

Fixed Points
in Logic

Two Other
Paradoxes

Further
Reading

Application: Parikh Sentences

Rohit Parikh used the �xed point machine to formulate some
fascinating sentences that express properties about the length
of its own proof. Consider the two-place predicate Pr�en(m, x)
which is true if �there exists a proof of length m (in symbols) of
a statement whose Gödel number is x .�

En(x) = ¬(∃m < n Pr�en(m, x)).

Cn ≡ En(pCnq) = ¬(∃m < n Pr�en(m, pCnq)).

The logical sentence Cn essentially says

�I do not have a proof of length less than n.�

As long as the logical system is consistent, Cn will be true and
will not have a proof of length less than n. Parikh showed that
although Cn does not have a short proof (you can make n as
large as you want), there does exist a short proof of the fact
that Cn is provable.
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Epimenides and the Liar

Before we close this talk it pays to look at two famous
paradoxes that are not exactly instances of Cantor's theorem
but are close enough that they are easy to describe. The two
examples are (i) the Epimenides paradox (the liar's paradox)
and (ii) time travel paradoxes.

Chronologically, the granddaddy of all the self-referential
paradoxes is the Epimenides paradox. Epimenides (6th or 7th
century BC), a philosopher from Crete was a curmudgeon who
did not like his neighbors in Crete. He is quoted as saying that
�All Cretans are liars.� The problem is that he is a Cretan. He is
talking about himself and his statement. If his statement is
true, then this very utterance is also a lie and hence is not true.
On the other hand, if what he is saying is false, then he is not a
liar and what he said is true. This seems to be a contradiction.
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Epimenides and the Liar

There is a set of English sentences which we call Sent.
f : Sent × Sent −! 2. The function f is de�ned for sentences s
and s ′ as

f (s, s ′) =

 1 : s is negated by s ′

0 : s is not negated s ′.

Sent × Sent
f // 2

NOT

��
Sent

∆
88

g
// 2

g is the characteristic function of the subset of sentences that
negate themselves. Till here, we have been mimicking the
set-up of Lawvere's theorem. It is not clear what we would
mean by talking about g being representable by f . What would
it mean for a sentence S to represent a subset of sentences?
Nevertheless, the sentences that negate themselves are
declarative sentences that are contradictions.
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Time Travel Paradoxes

If time travel was possible, a time traveler might go back in
time and shoot his bachelor grandfather, guaranteeing that the
time traveler was never born. Homicidal behavior is not
necessary to achieve such paradoxical results. The time traveler
might just make sure that his parents never meet, or he might
simply go back in time and make sure that he does not enter
the time machine. These actions would imply a contradiction
and hence cannot happen. The time traveler should not shoot
his own grandfather (moral reasons notwithstanding) because if
he shoots his own grandfather, he will not exist and will not be
able to travel back in time to shoot his own grandfather. So by
performing an action he is guaranteeing that the action cannot
be performed. Here an event negatively a�ects itself. Since the
physical universe does not permit contradictions, we must deny
the assumption that time travel exists.
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Time Travel Paradoxes

There is a collection of all physical events, Events.
f : Events × Events −! 2 is de�ned for two events e, and e ′ as

f (e, e ′) =

 1 : if e is negated by e ′

0 : if e is not negated e ′.

Events × Events
f // 2

NOT

��
Events

∆
66

g
// 2

g is the characteristic function of those events that negate
themselves. Such events cannot exist. Till here the pattern has
been the same with Lawvere's theorem. However, we do not go
on to talk about representing g by f . What would it mean for
f ( , e) to represent a subset of events?
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The End

Thank You
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