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Abstract. The study of the free idempotent generated semigroup IG(E) over a biordered

set E began with the seminal work of Nambooripad in the 1970s and has seen a recent revival

with a number of new approaches, both geometric and combinatorial. Here we study IG(E)

in the case E is the biordered set of a wreath product G ≀ Tn, where G is a group and Tn
is the full transformation monoid on n elements. This wreath product is isomorphic to the

endomorphism monoid of the free G-act EndFn(G) on n generators, and this provides us with

a convenient approach.

We say that the rank of an element of EndFn(G) is the minimal number of (free) generators

in its image. Let ε = ε2 ∈ EndFn(G). For rather straightforward reasons it is known that

if rank ε = n − 1 (respectively, n), then the maximal subgroup of IG(E) containing ε is free

(respectively, trivial). We show that if rank ε = r where 1 ≤ r ≤ n − 2, then the maximal

subgroup of IG(E) containing ε is isomorphic to that in EndFn(G) and hence to G ≀Sr, where

Sr is the symmetric group on r elements. We have previously shown this result in the case

r = 1; however, for higher rank, a more sophisticated approach is needed. Our current proof

subsumes the case r = 1 and thus provides another approach to showing that any group occurs

as the maximal subgroup of some IG(E). On the other hand, varying r again and taking G

to be trivial, we obtain an alternative proof of the recent result of Gray and Ruškuc for the

biordered set of idempotents of Tn.

1. Introduction

Let S be a semigroup and denote by 〈E〉 the subsemigroup of S generated by the set of

idempotents E = E(S) of S. If S = 〈E〉, then we say that S is idempotent generated. The

significance of such semigroups was evident at an early stage: in 1966 Howie [15] showed

that every semigroup may be embedded into one that is idempotent generated. To do so,

he investigated the idempotent generated subsemigroups of transformation monoids, showing

in particular that for the full transformation monoid Tn on n generators (where n is finite),

the subsemigroup of singular transformations is idempotent generated. Erdos [8] proved a

corresponding ‘linearised’ result, showing that the multiplicative semigroup of singular square

matrices over a field is idempotent generated (see also [19]). Fountain and Lewin [10] subsumed

these results into the wider context of endomorphism monoids of independence algebras. We
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note here that sets and vector spaces over division rings are examples of independence algebras,

as are free (left) G-acts over a group G.

For any set of idempotents E = E(S) there is a free object IG(E) in the category of

semigroups that are generated by E, given by the presentation

IG(E) = 〈E : ēf̄ = ef, e, f ∈ E, {e, f} ∩ {ef, fe} 6= ∅ 〉,

where here E = {ē : e ∈ E}. We say that IG(E) is the free idempotent generated semigroup

over E. The relations in the presentation for IG(E) correspond to taking basic products in E,

that is, products between e, f ∈ E where e and f are comparable under one of the quasi-orders

≤L or ≤R defined on S. In fact, E has an abstract characterisation as a biordered set, that

is, a partial algebra equipped with two quasi-orders satisfying certain axioms. Biordered sets

were introduced in 1979 by Nambooripad [21] in his seminal work on the structure of regular

semigroups, as was the notion of free idempotent generated semigroups IG(E). A celebrated

result of Easdown [6] shows every biordered set E occurs as E(S) for some semigroup S, hence

we lose nothing by assuming that our set of idempotents is of the form E(S) for a semigroup

S.

For any semigroup S and any idempotent e ∈ E(S), there is a maximal subgroup of S

(that is, a subsemigroup that is a group) having identity e; standard semigroup theory, briefly

outlined in Section 2, tells us that this group is the equivalence class of e under Green’s relation

H, usually denoted by He. The study of maximal subgroups of IG(E) has a somewhat curious

history. It was thought from the 1970s that all such groups would be free (see, for example,

[20, 22, 23]), but this conjecture was false. The first published example of a non-free group

arising in this context appeared in 2009 [1]; an unpublished example of McElwee from the

earlier part of that decade was announced by Easdown in 2011 [7]. Also, the paper [1] exhibited

a strong relationship between maximal subgroups of IG(E) and algebraic topology: namely, it

was shown that these groups are precisely fundamental groups of a complex naturally arising

from S (called the Graham-Houghton complex of S). The 2012 paper of Gray and Ruškuc

[13] showed that any group occurs as a maximal subgroup of some IG(E). Their approach is

to use existing machinery which affords presentations of maximal subgroups of semigroups,

itself developed by Ruškuc [24], refine this to give presentations of IG(E), and then, given a

group G, to carefully choose a biordered set E. Their techniques are significant and powerful,

and have other consequences in [13]; we use their presentation in this article. However, to

show that any group occurs as a maximal subgroup of IG(E), a simple approach suffices [12].

We also note here that any group occurs as IG(E) for some band, that is, a semigroup of

idempotents [5].

The approach of [12] is to consider the biordered set E of non-identity idempotents of a

wreath product G ≀ Tn or, equivalently, of the endomorphism monoid EndFn(G) of a free (left)

G-act on n generators {x1, . . . , xn} (see, for example, [18, Theorem 6.8]). It is known that for

a rank r idempotent ε ∈ EndFn(G) we have Hε
∼= G ≀ Sr. For a rank 1 idempotent ε ∈ E,

the maximal subgroup Hε is isomorphic to Hε and hence to G [12]. This followed a pattern

established in [2] and [14] showing (respectively) that the multiplicative group of non-zero

elements of any division ring Q occurs as a maximal subgroup of a rank 1 idempotent in
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IG(E), where E is the biordered set of idempotents of Mn(Q) for n ≥ 3, and that any Sr
occurs as a maximal subgroup of a rank r idempotent in IG(F ), where F is the biordered set

of idempotents of a full transformation monoid Tn for some n ≥ r+2. Another way of saying

this is that in both these cases, Hē
∼= He for the idempotent in question.

The aim of this current article is to extend the results of both [12] and [14] to show that

for a rank r idempotent ε ∈ EndFn(G), with 1 ≤ r ≤ n − 2, we have that Hε is isomorphic

to Hε and hence to G ≀ Sr. We proceed as follows. In Section 2 we recall some basics of

Green’s relations on semigroups, and specific details concerning the structure of EndFn(G).

In Section 3 we show how to use the generic presentation for maximal subgroups given in [13]

(restated here as Theorem 3.3) to obtain a presentation of Hε; once these technicalities are

in place we sketch the strategy employed in the rest of the paper, and work our way through

this in subsequent sections. By the end of Section 6 we are able to show that for 1 ≤ r ≤ n/3,

Hε
∼= Hε (Theorem 6.3), a result corresponding to that in [4] for full linear monoids. To

proceed further, we need more sophisticated analysis of the generators of Hε. Finally, in

Section 9, we make use of the presentation of G ≀ Sr given in [17] to show that we have the

required result, namely that Hε
∼= Hε, for any rank r with 1 ≤ r ≤ n−2 (Theorem 9.13). It is

worth remarking that if G is trivial, then Fn(G) is essentially a set, so that EndFn(G) ∼= Tn.

We are therefore able to recover, via a rather different strategy, the main result of [14].

2. Preliminaries: Green’s relations, and

endomorphism monoids of free G-acts

In the course of studying the general structural features of semigroups, amongst the most

basic tools are the five equivalence relations that capture the ideal structure of a given semi-

group S, called Green’s relations. We define for a, b ∈ S:

a R b⇔ aS1 = bS1, a L b⇔ S1a = S1b, a J b⇔ S1aS1 = S1bS1,

where S1 denotes S with an identity element adjoined (unless S already has one); hence, these

three relations record when two elements of S generate the same right, left, and two-sided

principal ideals, respectively. Furthermore, we let H = R ∩ L, while D = R ◦ L = L ◦ R is

the join of the equivalences R and L. As is well known, for finite semigroups we always have

D = J , while in general the inclusions H ⊆ R,L ⊆ D ⊆ J hold. The R-class of a is usually

denoted by Ra, and in a similar fashion we use the notation La, Ja, Ha and Da.

It is also well known that a single D-class consists either entirely of regular elements, or of

non-regular ones, see [16, Proposition 2.3.1]. If a ∈ S is regular, that is, a = aba for some

b ∈ S, then, for any such b, it is clear that ab, ba ∈ E(S) and ab R a L ba. Therefore, regular

D-classes are precisely those containing idempotents, and for each idempotent e, the H-class

He is a group with identity e. In fact, this is a maximal subgroup of the semigroup under

consideration and all maximal subgroups arise in this way.

There are natural orders on the set ofR- and L-classes of S, respectively, defined by Ra ≤ Rb

if and only if aS1 ⊆ bS1, and La ≤ Lb if and only if S1a ⊆ S1b. In turn, these orders induce

quasi-orders ≤R and ≤L on S (mentioned in the introduction), given by a ≤R b if and only
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if Ra ≤ Rb, and a ≤L b if and only if La ≤ Lb. Further details of Green’s relations and other

standard semigroup techniques may be found in [16].

Let S be a semigroup with E = E(S). The semigroup IG(E) defined in the introduction

has some pleasant properties, particularly with respect to Green’s relations. It follows from

the definition that the natural map φ : IG(E) → S, given by ēφ = e, is a morphism onto

S ′ = 〈E〉. Since any morphism preserves L-classes and R-classes, certainly so does φ. In fact,

the structure of the regular D-classes of IG(E) is closely related to that in S, as the following

result, taken from [9, 21, 6, 2, 13], illustrates.

Proposition 2.1. Let S, S ′, E = E(S), IG(E) and φ be as above, and let e ∈ E.

(i) The restriction of φ to the set of idempotents of IG(E) is a bijection onto E (and an

isomorphism of biordered sets).

(ii) The morphism φ induces a bijection between the set of all R-classes (respectively L-

classes) in the D-class of ē in IG(E) and the corresponding set in 〈E〉.

(iii) The restriction of φ to Hē is a morphism onto He.

We now turn our attention to Fn(G) and the structure of its endomorphism monoid. The

following notational convention will be useful: for any u, v ∈ N with u ≤ v we will denote

{u, u+ 1, · · · , v − 1, v} and {u+ 1, · · · , v − 1} by [u, v] and (u, v), respectively.

Let G be a group, n ∈ N, n ≥ 3, and let Fn(G) =
⋃n

i=1Gxi be a rank n free left G-act. We

recall that, as a set, Fn(G) consists of the set of formal symbols {gxi : g ∈ G, i ∈ [1, n]}, and

we identify xi with 1xi, where 1 is the identity of G. For any g, h ∈ G and 1 ≤ i, j ≤ n we

have that gxi = hxj if and only if g = h and i = j; the action of G is given by g(hxi) = (gh)xi.

Let End Fn(G) denote the endomorphism monoid of Fn(G) (with composition left-to-right).

The image of α ∈ EndFn(G) being a (free) G-subact, we can define the rank of α to be the

rank of imα.

Since Fn(G) is an independence algebra, a direct application of Corollary 4.6 [11] gives a

useful characterisation of Green’s relations on End Fn(G).

Lemma 2.2. [11] For any α, β ∈ EndFn(G), we have the following:

(i) imα = im β if and only if αL β;

(ii) kerα = ker β if and only if αR β;

(iii) rankα = rank β if and only if αD β if and only if αJ β.

Each α ∈ EndFn(G) depends only on its action on the free generators {xi : i ∈ [1, n]} and

it is therefore convenient to write

xjα = wαj xjα

for j ∈ [1, n]. This determines a function α : [1, n] −→ [1, n] and an element αG =

(wα1 , . . . , w
α
n) ∈ Gn. It will frequently be convenient to express α as above as

α =

(
x1 x2 . . . xn

wα1 x1α wα2 x2α . . . wαnxnα

)
.
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Theorem 2.3. [25, 18] The function

ψ : EndFn(G) 7→ G ≀ Tn, α 7→ (αG, α)

is an isomorphism.

Let 1 ≤ r ≤ n and set Dr = {α ∈ EndFn(G) | rank α = r}, that is, Dr is the D-class in

EndFn(G) of any rank r element. We let I and Λ denote the set of R-classes and the set of

L-classes of Dr, respectively. Thus, I is in bijective correspondence with the set of kernels, and

Λ with the set of images, of rank r endomorphisms, respectively. It is convenient to assume I

is the set of kernels of rank r endomorphisms, and that

Λ = {(u1, u2, . . . , ur) : 1 ≤ u1 < u2 < . . . < ur ≤ n} ⊆ [1, n]r.

Thus α ∈ Ri if and only if kerα = i and α ∈ L(u1,...,ur) if and only if

imα = Gxu1 ∪Gxu2 ∪ . . . ∪Gxur .

For every i ∈ I and λ ∈ Λ, we put Hiλ = Ri ∩ Lλ so that Hiλ is anH-class of Dr. Where Hiλ

is a subgroup, we denote its identity by εiλ. It is notationally standard to use the same symbol

1 to denote a selected element from both I and Λ. Here we let 1 = 〈(x1, xi) : r+1 ≤ i ≤ n〉 ∈ I,

that is, the congruence generated by {(x1, xi) : r + 1 ≤ i ≤ n}, and 1 = (1, 2, . . . , r) ∈ Λ.

Then H = H11 is a group H-class in Dr, with identity ε11.

A typical element of H looks like

α =

(
x1 x2 . . . xr xr+1 . . . xn

wα1 x1α wα2 x2α . . . wαr xrα wα1 x1α . . . wα1 x1α

)

which in view of the following lemma we may abbreviate without further remark to:

α =

(
x1 x2 . . . xr

wα1 x1α wα2 x2α . . . wαr xrα

)
,

where here we are regarding α as an element of Sr.

Lemma 2.4. The groups H and AutFr(G) are isomorphic under the map
(

x1 x2 . . . xr xr+1 . . . xn
wα1 x1α wα2 x2α . . . wαr xrα wα1 x1α . . . wα1 x1α

)
7→

(
x1 x2 . . . xr

wα1 x1α wα2 x2α . . . wαr xrα

)
.

Under this convention, the identity ε = ε11 of H becomes

ε =

(
x1 . . . xr
x1 . . . xr

)
.

With the aim of specialising the presentation given in Theorem 3.3, we locate and distinguish

elements in H1λ and Hi1 for each λ ∈ Λ and i ∈ I. For any equivalence relation τ on [1, n] with

r classes, we write τ = {Bτ
1 , · · · , B

τ
r } (that is, we identify τ with the partition on [1, n] that it

induces). Let lτ1 , · · · , l
τ
r be the minimum elements of Bτ

1 , · · · , B
τ
r , respectively. Without loss of

generality we suppose that lτ1 < · · · < lτr . Then l
τ
1 = 1 and lτj ≥ j, for any j ∈ [2, r]. Suppose

now that α ∈ EndFn(G) and rank α = r, that is, α ∈ Dr. Then kerα has r equivalence

classes. Where τ = kerα we simplify our notation by writing Bkerα
j = Bα

j and lkerαj = lαj . If

there is no ambiguity over the choice of α we may simplify further to Bj and lj.
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Lemma 2.5. Let α, β ∈ Dr. Then kerα = ker β if and only if kerα = ker β and for any

j ∈ [1, r] there exists gj ∈ G such that for any k ∈ Bα
j = Bj = Bβ

j , we have wαk = wβkgj.

Moreover, we can take gj = (wβlj)
−1wαlj for j ∈ [1, r].

Proof. If kerα = ker β, then clearly kerα = ker β. Now for any j ∈ [1, r] and k ∈ Bα
j = Bβ

j ,

we have that ((wαlj)
−1xlj)α = ((wαk )

−1xk)α and so ((wαlj)
−1xlj)β = ((wαk )

−1xk)β, giving that

wαk = wβk ((w
β
lj
)−1wαlj). We may thus take gj = (wβlj)

−1wαlj .

Conversely, suppose that kerα = ker β (and has blocks {B1, · · · , Br}) and for any j ∈ [1, r]

there exists gj ∈ G sastisfying the given condition. Let uxh, vxk ∈ Fn(G). Then

(uxh)α = (vxk)α ⇔ h, k ∈ Bj for some j ∈ [1, r] and uwαh = vwαk
⇔ h, k ∈ Bj for some j ∈ [1, r] and uwβhgj = vwβkgj
⇔ h, k ∈ Bj for some j ∈ [1, r] and uwβh = vwβk
⇔ (uxh)β = (vxk)β

,

so that kerα = ker β as required. �

For the following, we denote by P (n, r) the set of equivalence relations on [1, n] having r

classes. Of course, |P (n, r)| = S(n, r), where S(n, r) is a Stirling number of the second kind,

but we shall not need that fact here.

Corollary 2.6. The map τ : I → Gn−r × P (n, r) given by

iτ = ((wα2 , . . . , w
α
l2−1, w

α
l2+1, . . . , w

α
lr−1, w

α
lr+1, . . . , w

α
n), kerα)

where α ∈ Ri and w
α
lj
= 1G, for all j ∈ [1, r], is a bijection.

Proof. For i ∈ I choose β ∈ Ri and then define α ∈ EndFn(G) by xkα = wβk (w
β
lj
)−1xj,

where k ∈ Bβ
j . It is clear from Lemma 2.5 that kerα = ker β and so α ∈ Ri. Now xljα =

wβlj(w
β
lj
)−1xj = xj, so that iτ is defined. An easy argument, again from Lemma 2.5, gives that

τ is well defined and one-one.

For µ ∈ P (n, r) let νµ : [1, n] → [1, r] be given by kνµ = j where k ∈ Bµ
j . Now for

((h1, . . . , hn−r), µ) ∈ Gn−r × P (n, r), define

α = ((1G, h1, . . . , hlµ2−2, IG, hlµ2−1, . . . , hlµr−r, 1G, hlµr−r+1, . . . , hn−r), νµ)ψ
−1.

It is clear that if α ∈ Ri, then iτ = ((h1, . . . , hn−r), µ). Thus τ is a bijection as required. �

Corollary 2.7. Let Θ be the set defined by

Θ = {α ∈ Dr : xlαj α = xj, j ∈ [1, r]}.

Then Θ is a transversal of the H-classes of L1.

Proof. Clearly, imα = Gx1 ∪ · · · ∪Gxr, for any α ∈ Θ, and so that Θ is a subset of L1.

Next, we show that for each i ∈ I, |Hi1 ∩Θ| = 1. Suppose that α, β ∈ Θ and kerα = ker β.

Clearly kerα = ker β and so Bα
j = Bj = Bβ

j for any j ∈ [1, r], and by definition of Θ,

wαlj = wβlj = 1G. It is then clear from Lemma 2.5 that for any k ∈ Bj we have

xkα = wαkxj = wβkxj = xkβ,
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so that α = β.

It only remains to show that for any i ∈ I we have |Hi1∩Θ| 6= ∅. By Corollary 2.6, for i ∈ I

we can find α ∈ Ri such that wαlj = 1G for all j ∈ [1, r]. Composing α with β ∈ EndFn(G)

where xljαβ = xj for all j ∈ [1, r] and xkβ = x1 else, we clearly have that αβ ∈ Hi1 ∩Θ. �

For each i ∈ I, we denote the unique element in Hi1 ∩Θ by ri. Notice that r1 = ε.

On the other hand, for λ = (u1, u2, . . . , ur) ∈ Λ, we define

qλ = q(u1,··· ,ur) =

(
x1 x2 · · · xr xr+1 · · · xn
xu1 xu2 · · · xur xu1 · · · xu1

)
=

(
x1 x2 · · · xr
xu1 xu2 · · · xur

)
.

It is easy to see that qλ ∈ H1λ, as kerqλ = 〈(x1, xi) : r + 1 ≤ i ≤ n〉. In particular, we have

q1 = q(1,2,··· ,r) =

(
x1 x2 · · · xr
x1 x2 · · · xr

)
= ε.

At this point we invoke once more a little standard semigroup theory. Let K be a group,

let J,Γ be non-empty sets and let M = (mγj) be a Γ × J matrix with entries from K ∪ {0}

(where 0 is a new symbol), with the property that every row and column of M contains at

least one entry from K. A Rees matrix semigroup M0 = M0(K; J,Γ;M) has underlying set

(J ×K × Γ) ∪ {0}

with binary operation given by

(j, a, λ)(k, b, µ) = (j, amλkb, µ) if mλk 6= 0,

all other products being 0.

By [11, Theorem 4.9] if we put

D0
r = Dr ∪ {0}

and define a binary operation by

α · β =

{
αβ if α, β ∈ Dr and rankαβ = r

0 else
,

then D0
r is a semigroup under · which is completely 0-simple. We do not need to give the

specifics of what the latter property entails, since, by the Rees Theorem (see [16, Chapter III]),

D0
r is isomorphic to M0 = M0(H; I,Λ;P ), where P = (pλi) and pλi = (qλri) if rankqλri = r,

and is 0 else. Our choice of P will allow us at crucial points to modify the presentation given

in Theorem 3.3.

3. Presentation of maximal subgroups of IG(E)

Let E be a biordered set; from [6] we can assume that E = E(S) for some semigroup S.

An E-square is a sequence (e, f, g, h, e) of elements of E with e R f L g R h L e. We draw

such an E-square as

[
e f

h g

]
. The following results are folklore (cf. [12]).
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Lemma 3.1. The elements of an E-square

[
e f

h g

]
form a rectangular band (within S) if and

only if one (equivalently, all) of the following four equalities holds: eg = f , ge = h, fh = e or

hf = g.

Lemma 3.2. Let M0 = M0(K; J,Γ;M) be a Rees matrix semigroup over a group K with

sandwich matrix M = (mλj). For any j ∈ J, λ ∈ Γ write ejλ for the idempotent (j,m−1
λj , λ).

Then an E-square

[
eiλ eiµ
ejλ ejµ

]
is a rectangular band if and only if m−1

λi mλj = m−1
µi mµj.

An E-square (e, f, g, h, e) is singular if, in addition, there exists k ∈ E such that either:
{
ek = e, fk = f, ke = h, kf = g or

ke = e, kh = h, ek = f, hk = g.

We call a singular square for which the first condition holds an up-down singular square, and

that satisfying the second condition a left-right singular square.

For e ∈ E we let H be the maximal subgroup of e in IG(E), (that is, H = He). We now

recall the recipe for obtaining a presentation for H obtained by Gray and Ruškuc [13]; for

further details, we refer the reader to that article.

We use J and Γ to denote the set of R-classes and the set of L-classes, respectively, in the

D-class D = De of e in IG(E). In view of Proposition 2.1, J and Γ also label the set of R-

classes and the set of L-classes, respectively, in the D-class D = De of e in S. For every i ∈ J

and λ ∈ Γ, let H iλ and Hiλ denote, respectively, the H-class corresponding to the intersection

of the R-class indexed by i and the L-class indexed by λ in IG(E), respectively S, so that

H iλ and Hiλ are H-classes of D and D, respectively. Where H iλ (equivalently, Hiλ) contains

an idempotent, we denote it by eiλ (respectively, eiλ). Without loss of generality we assume

1 ∈ J ∩ Γ and e = e11 ∈ H11 = H, so that e = e11 ∈ H11 = H. For each λ ∈ Γ, we abbreviate

H1λ by Hλ, and H1λ by Hλ and so, H1 = H and H1 = H.

Let hλ be an element in E
∗
such that H1hλ = Hλ, for each λ ∈ Γ. The reader should be

aware that this is a point where we are most certainly abusing notation: whereas hλ lies in

the free monoid on E, by writing H1hλ = Hλ we mean that the image of hλ under the natural

map that takes E
∗
to (right translations in) the full transformation monoid on IG(E) yields

H1hλ = Hλ. In fact, it follows from Proposition 2.1 that the action of any generator f ∈ E

on an H-class contained in the R-class of e in IG(E) is equivalent to the action of f on the

corresponding H-class in the original semigroup S. Thus H1hλ = Hλ in IG(E) is equivalent to

the corresponding statement H1hλ = Hλ for S, where hλ is the image of hλ under the natural

map to 〈E〉1.

We say that {hλ | λ ∈ Γ} forms a Schreier system of representatives, if every prefix of hλ
(including the empty word) is equal to some hµ, where µ ∈ Γ. Notice that the condition that

hλeiµ = hµ is equivalent to saying that hλeiµ lies in the Schreier system.

Define K = {(i, λ) ∈ J ×Γ : Hiλ is a group H-class}. Since De is regular, for each i ∈ J we

can find and fix an element ω(i) ∈ Γ such that (i, ω(i)) ∈ K, so that ω : J → Γ is a function.

Again for convenience we take ω(1) = 1.
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Theorem 3.3. [13] The maximal subgroup H of e in IG(E) is defined by the presentation

P = 〈F : Σ〉

with generators:

F = {fi,λ : (i, λ) ∈ K}

and defining relations Σ:

(R1) fi,λ = fi,µ (hλeiµ = hµ);

(R2) fi,ω(i) = 1 (i ∈ J);

(R3) f−1
i,λ fi,µ = f−1

k,λfk,µ

([
eiλ eiµ
ekλ ekµ

]
is a singular square

)
.

For the remainder of this paper, E will denote E(EndFn(G)). In addition, for the sake

of notational convenience, we now observe the accepted convention of dropping the overline

notation for elements of E
∗
. In particular, idempotents of IG(E) carry the same notation as

those of EndFn(G); the context should hopefully prevent confusion.

In order to specialise the above presentation to E, our first step is to identify the singular

squares.

Lemma 3.4. An E-square

[
γ δ

ξ ν

]
is singular if and only if {γ, δ, ν, ξ} is a rectangular band.

Proof. The proof of necessity is standard. We only need to show the sufficiency. Let {γ, δ, ν, ξ}

be a rectangular band so that γν = δ, νγ = ξ, δξ = γ and ξδ = ν. Suppose im γ = im ξ =

〈xm〉m∈M and im δ = im ν = 〈xn〉n∈N , where |M | = |N | = r. Put L = M ∪ N . Define a

mapping θ ∈ EndFn(G) by

xiθ =

{
xi if i ∈ L;

xiν else.

Since im θ = 〈xl〉l∈L and for each l ∈ L, xlθ = xl, we see that θ is an idempotent. It is also

clear that γθ = γ and δθ = δ, as im γ ∪ im δ ⊆ im θ.

Next, we will show θγ = ξ. If i ∈M , then xiθγ = xiγ = xi = xiξ. If i ∈ N , but i /∈M , then

xiθγ = xiγ = xiνγ = xiξ. If i /∈ L, then xiθγ = xiνγ = xiξ. So, θγ = ξ. For the remaining

equality θδ = ν required in the definition of a singular square, observe that, for each i ∈ N ,

xiθδ = xi = xiν. On the other hand if i ∈ M , then xiθδ = xiδ = xiγν = xiν, since δ = γν by

assumption. For i /∈ L we have xiθδ = xiνδ = xiν, since δL ν.

We have proved that γθ = γ, δθ = δ, θγ = ξ and θδ = ν, so that

[
γ δ

ξ ν

]
is an up-down

singular square. �

The proof of Lemma 3.4 shows the following:

Corollary 3.5. An E-square is singular if and only if it is an up-down singular square.

The next corollary is immediate from Lemmas 3.2 and 3.4.
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Corollary 3.6. Let P = (pλi) be the sandwich matrix of any completely 0-simple semigroup

isomorphic to D0
r . Then (R3) in Theorem 3.3 can be restated as:

(R3) f−1
i,λ fi,µ = f−1

k,λfk,µ (p−1
λi pλk = p−1

µi pµk).

We focus on the idempotent ε = ε11 of Section 2. For the presentation P = 〈F : Σ〉 for our

particular H = Hε, we must define a Schreier system of words {hλ : λ ∈ Λ}. In this instance,

we can do so inductively, using the restriction of the lexicographic order on [1, n]r to Λ. Recall

that we are using the same notation for hλ ∈ E∗ and its image under the natural morphism

to the set of right translations of IG(E) and of EndFn(G).

First, we define h(1,2,··· ,r) = 1, the empty word in E∗. Now let (u1, u2, . . . , ur) ∈ Λ with

(1, 2, · · · , r) < (u1, u2, . . . , ur), and assume for induction that h(v1,v2,...,vr) has been defined for

all (v1, v2, . . . , vr) < (u1, u2, . . . , ur). Taking u0 = 0 there must exist some j ∈ [1, r] such that

uj − uj−1 > 1. Letting i be largest such that ui − ui−1 > 1 observe that

(u1, . . . , ui−1, ui − 1, ui+1, . . . , ur) < (u1, u2, . . . , ur).

We now define

h(u1,··· ,ur) = h(u1,··· ,ui−1,ui−1,ui+1,··· ,ur)α(u1,··· ,ur),

where

α(u1,··· ,ur) =

(
x1 · · · xu1 xu1+1 · · · xu2 · · · xur−1+1 · · · xur xur+1 · · · xn
xu1 · · · xu1 xu2 · · · xu2 · · · xur · · · xur xur · · · xur

)
;

notice that α(u1,··· ,ur) = εl(u1,...,ur) for some l ∈ I.

Lemma 3.7. For all (u1, . . . , ur) ∈ Λ we have εh(u1,...,ur) = q(u1,...,ur). Hence right translation

by h(u1,··· ,ur) induces a bijection from L(1,··· ,r) onto L(u1,··· ,ur) in both EndFn(G) and IG(E).

Proof. We prove by induction on (u1, . . . , ur) that εh(u1,...,ur) = q(u1,...,ur). Clearly the state-

ment is true for (u1, . . . , ur) = (1, . . . , r). Suppose now result is true for all (v1, . . . , vr) <

(u1, . . . , ur), so that εh(u1,··· ,ui−1,ui−1,ui+1,··· ,ur) = q(u1,··· ,ui−1,ui−1,ui+1,··· ,ur). Since xujα = xuj for

all j ∈ {1, . . . , r} and xui−1α = xui , it follows that

εh(u1,...,ur) = εh(u1,··· ,ui−1,ui−1,ui+1,··· ,ur)α(u1,...,ur) = q(u1,··· ,ui−1,ui−1,ui+1,··· ,ur)α(u1,...,ur) = q(u1,...,ur)

as required.

Since by definition, q(u1,...,ur) ∈ L(u1,··· ,ur), the result for EndFn(G) follows from Green’s

Lemma (see, for example, [16, Chapter II]), and that for IG(E) by the comments in Section 3.

�

It is a consequence of Lemma 3.7 that {hλ : λ ∈ Λ} forms the required Schreier system

for a presentation P for H. It remains to define the function ω: we do so by setting ω(i) =

(lri1 , l
ri

2 , . . . , l
ri
r ) = (1, lri2 , . . . , l

ri
r ) for each i ∈ I. Note that for any i ∈ I we have qω(i)ri = ε,

i.e. pω(i),i = ε.

Definition 3.8. Let P = 〈F : Σ〉 be the presentation of H as in Theorem 3.3, where ω and

{hλ : λ ∈ Λ} are given as above.



FREE IDEMPOTENT GENERATED SEMIGROUPS 11

Without loss of generality, we assume that H is the group with presentation P .

In later parts of this work we will be considering for a non-zero entry φ ∈ P , which i ∈

I, λ ∈ Λ yield φ = pλi. For this and other purposes it is convenient to define the notion of

district. For i ∈ I we say that ri lies in district (lri1 , l
ri

2 , · · · , l
ri
r ) (of course, 1 = lri1 ). Note that

lying in the same district induces a partition of Θ. The next lemma follows immediately from

the definition of ri, i ∈ I.

Lemma 3.9. For any i ∈ I, if ri lies in district (1, l2, · · · , lr), then ls ≥ s for all s ∈ [1, r].

Moreover, for k ∈ [1, n], if xkri = axj, then k ≥ lj, with k > lj if a 6= 1G.

We pause to consider which elements of H can occur as an entry φ of P ; with abuse of

terminology, we will say that φ ∈ P . As indicated before Lemma 2.4, we can write φ ∈ H as

φ =

(
x1 x2 . . . xr

a1x1φ a2x2φ . . . arxrφ

)

where φ ∈ Sr and (a1, . . . , ar) ∈ Gr. If φ = pλi ∈ P , where λ = (u1, . . . , ur) and ri lies in

district (l1, . . . , lr), then the ujs and lks are constrained by

1 = l1 < l2 < . . . < lr, u1 < u2 < . . . < ur,

ljφ ≤ uj for all j ∈ [1, r] with ljφ < uj if aj 6= 1G,

and

lk = uj implies k = jφ and aj = 1G for all k, j ∈ [1, r].

Conversely, if these constraints are satisfied by l1, . . . , lr, u1, . . . , ur ∈ [1, n] with respect to

some φ ∈ Sr and (a1, . . . , ar) ∈ Gr, then it is easy to see that if ξ ∈ EndFn(G) is defined by

xlkξ = xk, xukξ = akxkφ, k ∈ [1, r]

and

xjξ = x1 for j /∈ {l1, . . . , lr, u1, . . . , ur},

then ξ = ri for some i ∈ I, where ri lies in district (l1, l2, · · · , lr). Clearly, pλi = φ.

Lemma 3.10. If |G| > 1 then every element of H occurs as an entry in P if and only if

2r ≤ n. If |G| = 1 then every element of H occurs as an entry in P if and only if 2r ≤ n+1.

Proof. Suppose first that |G| > 1. If 2r ≤ n, then given any α =

(
x1 x2 . . . xr

a1x1α a2x2α . . . arxrα

)

in H, we can take (l1, . . . , lr) = (1, 2, . . . , r) and (u1, . . . , ur) = (r + 1, . . . , 2r). Conversely,

if 2r > n, then

(
x1 x2 . . . xr
axr xr−1 . . . x1

)
, where a 6= 1G, cannot lie in P , since we would need

l1α = lr < u1.

Consider now the case where |G| = 1. If 2r ≤ n+1, then given any α =

(
x1 x2 . . . xr
x1α x2α . . . xrα

)

in H, let 1α = t and choose

(l1, . . . , lr) = (1, . . . , r) and (u1, . . . , ur) = (t, r + 1, . . . , 2r − 1).
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It follows from the discussion preceding the lemma that α ∈ P . Conversely, if 2r > n + 1,

then

(
x1 x2 . . . xr
xr xr−1 . . . x1

)
cannot lie in P , since now we would require l1α = lr ≤ u1.

�

We are now in a position to outline the proof of our main theorem, Theorem 9.13, which

states that H is isomorphic to H, and hence to G ≀ Sr.

We first claim that for any i, j ∈ I and λ, µ ∈ Λ, if pλi = pµj, then fi,λ = fj,µ. We verify our

claim via a series of steps. We first deal with the case where pλi = ε and here show that fi,λ
(and fj,µ) is the identity of H (Lemma 4.1). Next, we verify the claim in the case where µ = λ

(Lemma 5.1) or i = j (Lemma 5.3). We then show that for r ≤ n
2
− 1, this is sufficient (via

finite induction) to prove the claim holds in general (Lemma 6.1). However, a counterexample

shows that for larger r this strategy will fail.

To overcome the above problem, we begin by showing that if pλi = pµj is what we call a

simple form, that is,
(
x1 x2 · · · xk−1 xk xk+1 · · · xk+m−1 xk+m xk+m+1 . . . xr
x1 x2 · · · xk−1 xk+1 xk+2 · · · xk+m axk xk+m+1 . . . xr

)
,

for some k ≥ 1,m ≥ 0, a ∈ G, then fi,λ = fj,µ. We then introduce the notion of rising point

and verify by induction on the rising point, with the notion of simple form forming the basis

of our induction, that our claim holds. As a consequence of our claim we denote a generator

fi,λ with pλi = φ by fφ.

For r ≤ n
2
it is easy to see that every element of H occurs as some pλi and for r ≤ n

3

we have enough room for manoeuvre (the reader studying Sections 5 and 6 will come to an

understanding of what this means) to show that fφfϕ = fϕφ and it is then easy to see that

H ∼= H (Theorem 6.3).

To deal with the general case of r ≤ n− 2 we face two problems. One is that for r > n
2
, not

every element of H occurs as some element of P and secondly, we need more sophisticated

techniques to show that the multiplication in H behaves as we would like. To this end we

show that H is generated by a restricted set of elements fi,λ, such that the corresponding pλi

form a standard set of generators of H (regarded as a wreath product). We then check that

the corresponding identities to determine G ≀Sr are satisfied by these generators, and it is then

a short step to obtain our goal, namely, that H ∼= H (Theorem 9.13). We note, however, that

even at this stage more care is required than, for example, in the corresponding situation for

Tn [14] or PT n [3], since we cannot assume that G is finite. Indeed our particular choice of

Schreier system will be seen to be a useful tool.

4. Identity generators

As stated at the end of Section 3, our first step is to show that if (i, λ) ∈ K and pλi = ε, then

fi,λ = 1H . To this end we make use of our particular choice of Schreier system and function

ω. The proof is by induction on λ ∈ Λ, where we recall that Λ is ordered lexicographically.

Lemma 4.1. For any (i, λ) ∈ K with pλi = ε, we have fi,λ = 1H .
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Proof. If p(1,2,...,r)i = ε, that is, q(1,2,··· ,r)ri = ε, then by definition of q(1,2,··· ,r) we have x1ri =

x1, · · · , xrri = xr. Hence ri lies in district (1, 2, · · · , r), so that ω(i) = (1, 2, · · · , r). Condition

(R2) of the presentation P now gives that fi,(1,2,··· ,r) = fi,ω(i) = 1H .

Suppose now that p(u1,u2,...,ur)i = ε where (1, 2, . . . , r) < (u1, u2, · · · , ur). We make the

inductive assumption that for any (v1, v2, · · · , vr) < (u1, u2, · · · , ur), if p(v1,v2,··· ,vr)l = ε, for

any l ∈ I, then fl,(v1,v2,...,vr) = 1H .

With u0 = 0, pick the largest number, say j, such that uj − uj−1 > 1. By our choice of

Schreier words, we have

h(u1,u2,··· ,ur) = h(u1,u2,··· ,uj−1,uj−1,uj+1,··· ,ur)α(u1,u2,··· ,ur),

where α(u1,u2,··· ,ur) = εl(u1,u2,...,ur).

By definition,

rl =

(
x1 . . . xu1 xu1+1 · · · xu2 · · · xur−1+1 · · · xur xur+1 · · · xn
x1 . . . x1 x2 · · · x2 · · · xr · · · xr xr · · · xr

)
.

By choice of j we have uj−1 < uj − 1 < uj so that xuj−1rl = xj, giving

p(u1,u2,··· ,uj−1,uj−1,uj+1,··· ,ur)l = ε.

Since

(u1, u2, · · · , uj−1, uj − 1, uj+1, · · · , ur) < (u1, u2, · · · , uj−1, uj , uj+1, · · · , ur),

we call upon our inductive hypothesis to obtain fl,(u1,u2,··· ,uj−1,uj−1,uj+1,··· ,ur) = 1H . On the

other hand, we have fl,(u1,u2,··· ,ur) = fl,(u1,u2,··· ,uj−1,uj−1,uj+1,··· ,ur) by (R1), and so we conclude

that fl,(u1,u2,··· ,ur) = 1H .

Suppose that ri lies in district (l1, l2, · · · , lr). Since q(u1,u2,··· ,ur)ri = ε, we have xukri =

xk, so that lk ≤ uk by the definition of districts, for all k ∈ [1, r]. If lk = uk for all

k ∈ [1, r], then fi,(u1,...,ur) = fi,ω(i) = 1H by P . Otherwise, we let m be smallest such

that lm < um and so (putting u0 = l0 = 0) we have um−1 = lm−1 < lm < um. Clearly

(u1, u2, · · · , um−1, lm, um+1, · · · , ur) ∈ Λ and as um−1 < lm < um, we have xlmrl = xm by the

definition of rl. We thus have the matrix equality

(
q(u1,u2,··· ,ur)rl q(u1,u2,··· ,ur)ri

q(u1,u2,··· ,um−1,lm,um+1,··· ,ur)rl q(u1,u2,··· ,um−1,lm,um+1,··· ,ur)ri

)
=

(
ε ε

ε ε

)
.

Remember that we have already proven fl,(u1,u2,··· ,ur) = 1H . Furthermore, as lm < um by

assumption,

(u1, u2, · · · , um−1, lm, um+1, · · · , ur) < (u1, u2, · · · , um−1, um, um+1, · · · , ur),

so that induction gives that fi,(u1,u2,··· ,um−1,lm,um+1,··· ,ur) = fl,(u1,u2,··· ,um−1,lm,um+1,··· ,ur) = 1H .

From (R3) we deduce that fi,(u1,u2,··· ,ur) = 1H and the proof is completed. �
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5. Generators corresponding to the same columns or rows, and connectivity

The first aim of this section is to show that if pλi = pµj 6= 0 where λ = µ or i = j, then

fi,λ = fj,µ. We begin with the more straightforward case, where i = j.

Lemma 5.1. If pλi = pµi, then fi,λ = fi,µ.

Proof. Let λ = (u1, · · · , ur) and µ = (v1, . . . , vr). By hypothesis we have that q(u1,··· ,ur)ri =

q(v1,··· ,vr)ri = ψ ∈ H. By definition of the qλs we have xujri = xvjri for 1 ≤ j ≤ r, and

as rank ri = r it follows that uj, vj ∈ Bri

j′ where j 7→ j′ is a bijection of [1, r]. We now

define α ∈ EndFn(G) by setting xujα = xj = xvjα for all j ∈ [1, r] and xpα = x1 for all

p ∈ [1, n] \ {u1, · · · , ur, v1, · · · vr}.

Clearly α ∈ Dr, indeed α ∈ L1. Since w
α
m = 1G for allm ∈ [1, n] and min{uj, vj} <min{uk.vk}

for 1 ≤ j < k ≤ r, we certainly have that α = rl for some l ∈ I. By our choice of rl we have

the matrix equality

(
q(u1,··· ,ur)ri q(u1,··· ,ur)rl

q(v1,··· ,vr)ri q(v1,··· ,vr)rl

)
=

(
ψ ε

ψ ε

)
.

Using Lemma 4.1 and (R3) of the presentation P , we obtain fi,(u1,··· ,ur) = fi,(v1,··· ,vr) as required.

�

We need more effort for the case pλi = pλj. For this purpose we introduce the following

notions of ‘bad’ and ‘good’ elements.

For any i, j ∈ I, suppose that ri and rj lie in districts (1, k2, · · · , kr) and (1, l2, · · · , lr),

respectively. We call u ∈ [1, n] a mutually bad element of ri with respect to rj, if there exist

m, s ∈ [1, r] such that u = km = ls, but m 6= s; all other elements are said to be mutually

good with respect to ri and rj. We call u a bad element of ri with respect to rj because,

from the definition of districts, ri maps xkm to xm, and similarly, rj maps xls to xs. Hence, if

u = km = ls is bad, then it is impossible for us to find some rt to make both ri and rj ‘happy’

in the point xu, that is, for rt (or, indeed, any other element of EndFn(G)) to agree with both

ri and rj on xu.

Notice that if m is the minimum subscript such that u = km is a bad element of ri with

respect to rj and km = ls, then s is also the minimum subscript such that ls is a bad element of

rj with respect to ri. For, if ls′ < ls is a bad element of rj with respect to ri, then by definition

we have some km′ such that ls′ = km′ where s′ 6= m′. By the minimality of m, we have m′ > m

and so ls′ = km′ > km = ls, a contradiction. We also remark that since l1 = k1 = 1, the

maximum possible number of bad elements is r − 1.

Let us run a simple example. Let n = 7 and r = 4, and suppose ri lies in district (1, 3, 4, 6)

and rj lies in district (1, 4, 6, 7). By definition, x4ri = x3 and x6ri = x4, while x4rj = x2 and

x6rj = x3. Therefore, ri and rj differ on x4 and x6, so that we say 4 and 6 are bad elements

of ri with respect to rj .

Lemma 5.2. For any i, j ∈ I, suppose that ri and rj lie in districts (1, k2, · · · , kr) and

(1, l2, · · · , lr), respectively. Let q(u1,··· ,ur)ri = q(u1,··· ,ur)rj = ψ ∈ H. Suppose {1, l2, · · · , ls} is a

set good elements of ri with respect to rj such that 1 < l2 < · · · < ls < ks+1 < · · · < kr. Then
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there exists p ∈ I such that rp lies in district (1, l2, · · · , ls, ks+1, · · · , kr), q(u1,··· ,ur)rp = ψ and

fp,(u1,··· ,ur) = fi,(u1,··· ,ur). Further, if s = r then we can take p = j.

Proof. We begin by defining α ∈ Dr, starting by setting xkmα = xm, m ∈ [1, r]. Now for

m ∈ [1, s] we put xlmα = xm. Notice that for 1 ≤ m ≤ s, if km′ = lm for m′ ∈ [1, r],

then by the goodness of {1, l2, · · · , ls} we have that m′ = m. We now set xumα = xumri
for m ∈ [1, r]. Again, we need to check we are not violating well-definedness. Clearly we

need only check the case where um = lm′ for some m′ ∈ [1, s], since here we have already

defined xlm′
α = xm′ . We now use the fact that by our hypothesis, xumri = xumrj for all

m ∈ [1, r], so that xumri = xumrj = xlm′
rj = xm′ . Finally, we set xmα = x1, for all m ∈

[1, n] \ {1, l1, · · · , ls, k2, · · · , kr, u1, · · · , ur}.

We claim that α = rt for some t ∈ I. First, it is clear from the definition that α ∈ Dr, indeed,

α ∈ L1. We also have that for 1 ≤ m ≤ s, xlmα = xkmα = xm and also for s + 1 ≤ m ≤ r,

xkmα = xm. We claim that for m ∈ [1, s] we have lαm = vm where vm = min {km, lm} and for

m ∈ [s + 1, n] we have lαm = km. It is clear that 1 = lα1 . Suppose that for m ∈ [2, r] we have

xuqα = axm. By definition, xuqri = axm = xuqrj, so that km, lm ≤ uq and our claim holds. It

is now clear that α = rt for some t ∈ I and lies in district (v1, · · · , vs, ks+1, · · · , kr).

Having constructed rt, it is immediate that
(

q(1,k2,··· ,kr)ri q(1,k2,··· ,kr)rt

q(u1,u2,··· ,ur)ri q(u1,u2,··· ,ur)rt

)
=

(
ε ε

ψ ψ

)
,

so that in view of Corollary 3.6 and (R3) we deduce that fi,(u1,u2··· ,ur) = ft,(u1,u2,··· ,ur).

Notice now that if s = r then
(

q(1,l2,··· ,lr)rt q(1,l2,··· ,lr)rj

q(u1,u2,··· ,ur)rt q(u1,u2,··· ,ur)rj

)
=

(
ε ε

ψ ψ

)
,

which leads to ft,(u1,u2,··· ,ur) = fj,(u1,u2,··· ,ur), and so that fj,(u1,··· ,ur) = fi,(u1,··· ,ur) as required.

Without the assumption that s = r, we now define rp in a similar, but slightly more

straightforward way, to rt. Namely, we first define β ∈ EndFn(G) by putting xlmβ = xm
for m ∈ [1, s], xkmβ = xm for m ∈ [s + 1, r], xumβ = xumri for m ∈ [1, r] and xmβ = x1 for

m ∈ [1, n] \ {1, l1, · · · , ls, ks+1, · · · , kr, u1, · · · , ur}. It is easy to check that β = rp where rp lies

in district (1, l2, · · · , ls, ks+1, · · · , kr). Moreover, we have
(

q(1,l2,··· ,ls,ks+1,··· ,kr)rt q(1,l2,··· ,ls,ks+1,··· ,kr)rp

q(u1,u2,··· ,ur)rt q(u1,u2,··· ,ur)rp

)
=

(
ε ε

ψ ψ

)
,

which leads to ft,(u1,u2,··· ,ur) = fp,(u1,u2,··· ,ur), and so to fp,(u1,··· ,ur) = fi,(u1,··· ,ur) as required. �

Lemma 5.3. If pλi = pλj, then fi,λ = fj,λ.

Proof. Suppose that ri and rj lie in districts (1, k2, · · · , kr) and (1, l2, · · · , lr), respectively. Let

λ = (u1, . . . , ur) so that q(u1,··· ,ur)ri = q(u1,··· ,ur)rj = ψ ∈ H say. We proceed by induction on

the number of mutually bad elements. If this is 0, then the result holds by Lemma 5.2. We

make the inductive assumption that if pλl = pλt and rl, rt have k − 1 bad elements, where

0 < k ≤ r − 1, then fl,λ = ft,λ.



16 IGOR DOLINKA, VICTORIA GOULD, AND DANDAN YANG

Suppose now that rj has k bad elements with respect to ri. Let s be the smallest subscript

such that ls is bad element of rj with respect to ri. Then there exists some m such that

ls = km. Note, m is also the smallest subscript such that km is bad, as we explained before.

Certainly s,m > 1; without loss of generality, assume s > m. Then 1 = l1, l2, · · · , ls−1 are all

good elements and 1 < l2 < · · · < ls−1 < ks < · · · < kr. By Lemma 5.2, there exists p ∈ I such

that rp lies in district (1, l2, · · · , ls−1, ks, · · · , kr), q(u1,··· ,ur)rp = ψ and fp,(u1,··· ,ur) = fi,(u1,··· ,ur).

We consider the sets B and C of mutually bad elements of rj and rp, and of rj and ri,

respectively. Clearly B ⊆ {ls, ls+1, · · · , lr}. We have ls = km < ks, so that ls /∈ B. On the

other hand if lq ∈ B where s + 1 ≤ q ≤ r, then we must have lq = kq′ for some q′ ≥ s

with q′ 6= q, so that lq ∈ C. Thus |B| < |C|. Our inductive hypothesis now gives that

fp,(u1,··· ,ur) = fj,(u1,··· ,ur) and we deduce that fi,(u1,··· ,ur) = fj,(u1,··· ,ur) as required. �

Definition 5.4. Let i, j ∈ I and λ, µ ∈ Λ such that pλi = pµj . We say that (i, λ), (j, µ) are

connected if there exist

i = i0, i1, . . . , im = j ∈ I and λ = λ0, λ1, . . . , λm = µ ∈ Λ

such that for 0 ≤ k < m we have pλkik = pλk,ik+1
= pλk+1ik+1

.

The following picture illustrates that (i, λ) = (i0, λ0) is connected to (j, µ) = (im, λm):

pλ0i0 pλi1

pλ1i1 pλ1i2

pλm−1im−1 pλm−1im

pλmim

Lemmas 5.1 and 5.3 now yield:

Corollary 5.5. Let i, j ∈ I and λ, µ ∈ Λ be such that pλi = pµj where (i, λ), (j, µ) are

connected. Then fi,λ = fj,µ.

6. The result for restricted r

We are now in a position to finish the proof of our first main result, Theorem 6.3, in a

relatively straightforward way. Of course, in view of Theorem 9.13, it is not strictly necessary

to provide such a proof here. However, the techniques used will be useful in the remainder of

the paper.

Let α = pλi ∈ P and suppose that λ = (u1, · · · , ur) and ri lies in district (l1, · · · , lr). Define

U(λ, i) = {l1, · · · , lr, u1, · · · , ur} and S(λ, i) = [1, n] \ U .

Step D: moving ls down: Suppose that lj < t < lj+1 and t ∈ S(λ, i). Define rk by

xtrk = xj+1 and xsrj = xsri for s 6= t.
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It is easy to see that rk ∈ Θ, pλi = pλk and rk lies in district (l1, . . . , lj , t, lj+2, . . . , lr). Clearly,

(i, λ) is connected to (k, λ).

Step U: moving us up: Suppose that uj < t < uj+1 or ur < t, where t ∈ S(λ, i). Define rm

by

xtrm = xujri and xsrm = xsri for s 6= t.

It is easy to see that rm ∈ Θ, pλi = pλm and rm lies in district (l1, l2, . . . , lr). Let µ =

(u1, . . . , uj−1, t, uj+1, . . . , ur). Clearly, pλm = pµm so that (i, λ) is connected to (m,µ).

Step U′: moving us down: Suppose that t < uj+1 and [t, uj+1) ⊆ S(λ, i). Define rl by

xtrl = xuj+1
ri and xsrm = xsri for s 6= t.

It is easy to see that rl ∈ Θ, pλi = pλl. Further, rl lies in district (l1, l2, . . . , lr) unless

uj+1 = l(j+1)α, in which case l(j+1)α is replaced by t. Let µ = (u1, . . . , uj , t, uj+2, . . . , ur);

clearly, pλl = pµl, so that (i, λ) is connected to (l, µ).

Lemma 6.1. Suppose that n ≥ 2r + 1. Let λ = (u1, · · · , ur) ∈ Λ, and i ∈ I with pλi ∈ H.

Then (i, λ) is connected to (j, µ) for some j ∈ I and µ = (n− r + 1, · · · , n). Consequently, if

pλi = pνk for any i, k ∈ I and λ, ν ∈ Λ, then fi,λ = fk,ν.

Proof. Suppose that ri lies in district (l1, · · · , lr). For the purposes of this proof, let W (λ, i) =∑r

k=1(uk − lk); clearly W (λ, i) takes greatest value T where (l1, . . . , lr) = (1, . . . , r) and

(u1, . . . , ur) = (n − r + 1, . . . , n). We verify our claim by finite induction, with starting

point T , under the reverse of the usual ordering on N. We have remarked that our result holds

if W (λ, i) = T .

Suppose now that W (λ, i) < T and the result is true for all pairs (ν, l) where W (λ, i) <

W (ν, l) ≤ T .

If ur < n, then as certainly lr ≤ urpλi
−1 ≤ ur, we can apply Step U to show that (i, λ) is

connected to (l, ν) where ν = (u1, . . . , ur−1, ur + 1) and rl lies in district (l1, . . . , lr). Clearly

W (λ, i) < W (ν, l).

Suppose that ur = n. We know that l1 = 1, and by our hypothesis that 2r+1 ≤ n, certainly

S(λ, i) 6= ∅. If there exists t ∈ S(λ, i) with t < lw for some w ∈ [1, r], then choosing k with

lk < t < lk+1, we have by Step D that (i, λ) is connected to (l, λ), where rl lies in district

(l1, . . . , lk, t, lk+2, . . . , lr); clearly then W (λ, i) < W (λ, l). On the other hand, if there exists

t ∈ S(λ, i) with uw < t for some w ∈ [1, r], then now choosing k ∈ [1, r] with uk < t < uk+1, we

use Step U to show that (i, λ) is connected to (m, ν) where ν = (u1, . . . , uk−1, t, uk+1, . . . , ur),

and rm lies in district (l1, . . . , lr). Again, W (λ, i) < W (ν,m).

The only other possibility is that S(λ, i) ⊆ (lr, u1), in which case, W (λ, i) = T , a contradic-

tion. �

In view of Lemma 6.1 we may define, for r ≤ n−1
2

and φ ∈ H, an element fφ ∈ H, where

fφ = fλ,i for some (any) (i, λ) ∈ K with pλi = φ.

Lemma 6.2. Let r ≤ n/3. Then for any φ, θ ∈ H, we have fφθ = fθfφ and fφ−1 = f−1
φ .
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Proof. Since n ≥ 3 and r ≤ n/3 we deduce that 2r + 1 ≤ n. Define ri by

xjri = xj, j ∈ [1, r]; xjri = xj−rφθ, j ∈ [r + 1, 2r]; xjri = xj−2rθ, j ∈ [2r + 1, 3r]

and

xjri = x1, j ∈ [3r + 1, n].

Clearly, ri ∈ Θ and ri lies in district (1, · · · , r). Next we define rl by

xjrl = xj, j ∈ [1, r]; xjrl = xj−rφ, j ∈ [r + 1, 2r]; xjrl = xj−2r, j ∈ [2r + 1, 3r];

and

xjrl = x1, j ∈ [3r + 1, n].

Again, rl is well defined and lies in district (1, · · · , r). By considering the submatrix
(

q(r+1,··· ,2r)rl q(r+1,··· ,2r)ri

q(2r+1,··· ,3r)rl q(2r+1,··· ,3r)ri

)
=

(
φ φθ

ε θ

)
,

of P , Corollary 3.6 gives that fi,(r+1,··· ,2r) = fi,(2r+1,··· ,3r)fl,(r+1,··· ,2r), which in our new notation

says fφθ = fθfφ, as required.

Finally, since 1H = fε = fφφ−1 = fφ−1fφ, we have fφ−1 = f−1
φ . �

Theorem 6.3. Let r ≤ n/3. Then H is isomorphic to H under ψ, where fφψ = φ−1.

Proof. We have that H = {fφ : φ ∈ H} by Lemma 6.2 and ψ is well defined, by Lemma 6.1.

By Lemma 3.10, ψ is onto and it is a homomorphism by Lemma 6.2. Now fφψ = ε means that

φ = ε, so that fφ = 1H by Lemma 4.1. Consequently, ψ is an isomorphism as required. �

7. Non-identity generators with simple form

First we explain the motivation for this section. It follows from Section 6 that for any

r and n with n ≥ 2r + 1, all entries in the sandwich matrix P are connected. However,

this connectivity will fail for higher ranks. Hence, the aim here is to identify the connected

entries in P in the case of higher rank. It turns out that entries with simple form are always

connected. For the reason given in abstract, from now on we may assume that 1 ≤ r ≤ n− 2.

We run an easy example to explain the lack of connectivity for r ≥ n/2.

Let n = 4, r = 2, and

α =

(
x1 x2
ax1 bx2

)
,

with a, b 6= 1G ∈ G. It is clear from Lemma 3.10 that there exists i ∈ I, λ ∈ Λ such that

α = pλi ∈ P , in fact we can take

ri =

(
x1 x2 x3 x4
x1 x2 ax1 bx2

)

and λ = (3, 4).

How many copies of α occur in the sandwich matrix P? Suppose that α = pµj where rj lies

in district (l1, l2) and µ = (u1, u2). Since α is the identity of S2, and a, b 6= 1G, we must have
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1 = l1 < l2, u1 < u2, l1 < u1, l2 < u2 and {l1, l2} ∩ {u1, u2} = ∅. Thus the only possibilities

are

(l1, l2) = (1, 2), (u1, u2) = (3, 4) = λ

and

(l1, l2) = (1, 3), (u1, u2) = (2, 4) = µ.

In the first case, α = pλi and in the second, α = pµj where rj =

(
x1 x2 x3 x4
x1 ax1 x2 bx2

)
.

Clearly then, pλi = pµj ∈ H but (i, λ) is not connected to (j, µ).

We know from Lemma 3.10, that in case r ≥ n/2, not every element ofH lies in P . However,

we are guaranteed that for r ≤ n− 2 certainly all elements with simple form

φ =

(
x1 x2 · · · xk−1 xk xk+1 · · · xk+m−1 xk+m xk+m+1 . . . xr
x1 x2 · · · xk−1 xk+1 xk+2 · · · xk+m axk xk+m+1 . . . xr

)
,

where k ≥ 1,m ≥ 0, a ∈ G, lie in P . In particular, we can choose

rl =

(
x1 x2 · · · xk−1 xk xk+1 · · · xk+m xk+m+1 xk+m+2 · · · xr+1 xr+2 · · · xn
x1 x2 · · · xk−1 xk xk+1 · · · xk+m axk xk+m+1 · · · xr x1 · · · x1

)

and µ = (1, · · · , k− 1, k+1, · · · , r+1) to give pµl = qµrl = φ. We now proceed to show that

if pλi = φ 6= ε, then (i, λ) is connected to (j, µ) for some j ∈ I and hence to (l, µ).

Lemma 7.1. Let ε 6= φ be as above and suppose that φ = pλi where λ = (u1, · · · , ur) and ri

lies in district (l1, · · · , lr). Then (i, λ) is connected to (j, µ) for some j ∈ I.

Proof. Notice that as φ = pλi, we have xukri = xkφ, so that xukri = xk+1 if m > 0, and so

uk ≥ lk+1 > lk by Lemma 3.9; or if m = 0 and a 6= 1G, xukri = axk so that uk > lk by Lemma

3.9 again. Further, from the constraints on (l1, · · · , lr) it follows that

l1 < l2 < · · · < lk−1 < lk < uk.

We first ensure that (i, λ) is connected to some (j, κ) where κ = (1, . . . , k − 1, uk, . . . , ur),

by induction on (l1, · · · , lk−1) ∈ [1, n]r under the lexicographic order.

If (l1, · · · , lk−1) = (1, · · · , k−1), then clearly (i, λ) = (i, κ). Suppose now that (l1, · · · , lk−1) >

(1, · · · , k − 1) and the result is true for all (l′1, · · · , l
′
k−1) ∈ [1, n]r where (l′1, · · · , l

′
k−1) <

(l1, · · · , lk−1), namely, if pηl = φ with rl in district (l′1, · · · , l
′
r), then (l, η) is connected to some

(j, κ).

By putting ν = (l1, · · · , lk−1, uk, · · · , ur) we have pνi = pλi. Since we have (l1, · · · , lk−1) >

(1, · · · , k − 1), there must be a t ∈ (ls, ls+1) ∩ S(ν, i) for some s ∈ [0, k − 2], where l0 = 0. We

can use Step D to move ls+1 down to t, obtaining rp in district (l1, . . . , ls, t, ls+2, . . . , lr) such

that pνi = pνp. Clearly (l1, · · · , ls, t, ls+2, · · · , lk−1) < (l1, · · · , lk−1), so that by induction (p, ν)

(and hence (i, λ)) is connected to some (j, κ).

We now proceed via induction on (uk, . . . , ur) ∈ [k+ 1, n]r under the lexicographic order to

show that (j, κ) is connected to some (l, µ) where µ = (1, · · · , k− 1, k+1, · · · , r+1). Clearly,

this is true for (uk, . . . , ur) = (k + 1, · · · , r + 1).
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Suppose that (uk, . . . , ur) > (k + 1, . . . , r + 1), and the result is true for all (vk, · · · , vr) ∈

[k + 1, n]r where (vk, · · · , vr) < (u1, · · · , ur). Then we define rw by:

xlrw = xl, l ∈ [1, k], xulrw = xulrj, l ∈ [k, r] and xvrw = x1 for all other xv.

It is easy to see that rw ∈ Θ, rw lies in district (1, 2, · · · , k, uk, · · · , uk+m−1, uk+m+1, · · · , ur)

and pκj = pκw. There must be a t < uh for some h ∈ [k, r] with [t, uh) ⊆ S(κ,w). By Step U′,

we have that (w, κ) is connected to (v, ρ) where ρ = (1, . . . , k−1, uk, . . . , uh−1, t, uh+1, . . . , ur).

Clearly, (uk, . . . , uh−1, t, uh+1, . . . , ur) < (uk, · · · , uh−1, uh, uh+1, · · · , ur), so that by induction

(v, ρ) is connected to (l, µ). The proof is completed. �

The following corollary is immediate from Lemma 4.1, Corollary 5.5 and Lemma 7.1.

Corollary 7.2. Let pλi = pνk have simple form. Then fi,λ = fk,ν.

8. Non-identity generators with arbitrary form

Our aim here is to prove that for any α ∈ H, if i, j ∈ I and λ, µ ∈ Λ with pλi = pµj = α ∈ H,

then fi,λ = fj,µ. This property of α is called consistency. Notice that Corollary 7.2 tells us

that all elements with simple form are consistent.

Before we explain the strategy in this section, we run the following example by the reader,

which shows that if |G| > 1, we cannot immediately separate an element α ∈ H into a product,

βγ or γβ, where β is essentially an element of Sr, and γ is the identity in Sr.

Let 1G 6= a, n = 6 and r = 4, so that α =

(
x1 x2 x3 x4
x3 ax2 x4 x1

)
∈ H. By putting

ri =

(
x1 x2 x3 x4 x5 x6
x1 x2 x3 ax2 x4 x1

)

and λ = (3, 4, 5, 6), clearly we have pλi = α.

Next we argue that i ∈ I and λ ∈ Λ are unique such that pλi = α. Let µ = (u1, u2, u3, u4)

and rj lie in district (l1, l2, l3, l4) with pµj = α; we show that rj = ri and µ = λ. Since

xu1rj = x1α = x3 by assumption, we must have l1 < l2 < l3 ≤ u1, so that u1 ≥ 3. As

3 ≤ u1 < u2 < u3 < u4 ≤ n = 6, we have µ = (u1, u2, u3, u4) = (3, 4, 5, 6) = λ, and

(l1, l2) = (1, 2). Clearly then rj = ri.

Certainly α = γβ = βγ with

γ =

(
x1 x2 x3 x4
x3 x2 x4 x1

)
, β =

(
x1 x2 x3 x4
x1 ax2 x3 x4

)
.

Our question is, can we find a sub-matrix of P with one of the following forms:
(
γ α

ε β

)
or

(
β α

ε γ

)
.

Clearly, here the answer is in the negative, as it is easy to see from the definition ri that there

does not exist ν ∈ Λ with pνi = β or pνi = γ.
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Now it is time for us to explain our trick of how to split an arbitrary element α in H into

a product of elements with simple form (defined in the previous section), and moreover, how

this splitting matches the products of generators fi,λ in H.

Our main strategy is as follows. We introduce a notion of ‘rising point’ of α ∈ H. Now,

given pλi = α, we decompose α as a product α = βγ depending only on α such that γ is

an element with simple form, β = pλj has a lower rising point than α, γ = pµi for some

j ∈ I, µ ∈ Λ such that our presentation gives fi,λ = fi,µfj,λ.

Definition 8.1. Let α ∈ H. We say that α has rising point r + 1 if xmα = axr for some

m ∈ [1, r] and a 6= 1G; otherwise, the rising point is k ≤ r if there exists a sequence

1 ≤ i < j1 < j2 < · · · < jr−k ≤ r

with

xiα = xk, xj1α = xk+1, xj2α = xk+2, · · · , xjr−k
α = xr

and such that if l ∈ [1, r] with xlα = axk−1, then if l < i we must have a 6= 1G.

It is easy to see that the only element with rising point 1 is the identity of H, and elements

with rising point 2 have either of the following two forms:

(i) α =

(
x1 x2 · · · xr
ax1 x2 · · · xr

)
, where a 6= 1G;

(ii) α =

(
x1 x2 · · · xk−1 xk xk+1 · · · xr
x2 x3 · · · xk ax1 xk+1 · · · xr

)
, where k ≥ 2.

Note that both of the above two forms are the so called simple forms; however, elements

with simple form can certainly have rising point greater than 2, indeed, it can be r+1. From

Lemma 4.1 and Corollary 7.2 we immediately deduce:

Corollary 8.2. Let α ∈ H have rising point 1 or 2. Then α is consistent.

Next, we will see how to decompose an element with a rising point at least 3 into a product

of an element with a lower rising point and an element with simple form.

Lemma 8.3. Let α ∈ H have rising point k ≥ 3. Then α can be expressed as a product of

some β ∈ H with rising point no more than k − 1 and some γ ∈ H with simple form.

Proof. Case (0) By definition of rising point, if k = r + 1, then we have xmα = axr for some

a 6= 1G and m ∈ [1, r]. We define

γ =

(
x1 x2 · · · xr−1 xr
x1 x2 · · · xr−1 axr

)

and β by xmβ = xr and for other j ∈ [1, r], xjβ = xjα. Clearly, α = βγ, γ is a simple form,

and β has rising point no greater than r.

On the other hand, if k ≤ r there exists a sequence

1 ≤ i < j1 < j2 · · · < jr−k ≤ r

with

xiα = xk, xj1α = xk+1, xj2α = xk+2, · · · , xjr−k
α = xr
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such that if l ∈ [1, r] with xlα = axk−1, then if l < i we must have a 6= 1G. We proceed by

considering the following cases:

Case (i) If l < i, so that a 6= 1G, then define

γ =

(
x1 x2 · · · xk−2 xk−1 xk · · · xr
x1 x2 · · · xk−2 axk−1 xk · · · xr

)

and put β = αγ−1. It is easy to check that xlβ = xlαγ
−1 = xk−1 and xpβ = xpα, for other

p ∈ [1, r].

Case (ii) If i < l < j1, then define

γ =

(
x1 x2 · · · xk−2 xk−1 xk xk+1 · · · xr
x1 x2 · · · xk−2 xk axk−1 xk+1 · · · xr

)

and again, we put β = αγ−1. By easy calculation we have

xiβ = xk−1, xlβ = xk, xj1β = xk+1, · · · , xjr−k
β = xr

and for other p ∈ [1, r], xpβ = xpα.

Case (iii) If jr−k < l, then define

γ =

(
x1 x2 · · · xk−2 xk−1 xk xk+1 · · · xr−1 xr
x1 x2 · · · xk−2 xk xk+1 xk+2 · · · xr axk−1

)

and again, we define β = αγ−1. It is easy to see that

xiβ = xk−1, xj1β = xk, xj2β = xk+1, · · · , xjr−k
β = xr−1, xlβ = xr

and for other p ∈ [1, r], xpβ = xpα.

Case (iv) If ju < l < ju+1 for some u ∈ [1, r − k − 1], then define

γ =

(
x1 x2 · · · xk−2 xk−1 xk · · · xk+u−1 xk+u xk+u+1 · · · xr
x1 x2 · · · xk−2 xk xk+1 · · · xk+u axk−1 xk+u+1 · · · xr

)

and again, we put β = αγ−1. Then we have

xiβ = xk−1, xj1β = xk, . . . , xjuβ = xk+u−1, xlβ = xk+u, xju+1β = xk+u+1, . . . , xjr−k
β = xr

and for other p ∈ [1, r], xpβ = xpα.

In each of Cases (i) − (iv) it is clear that γ has simple form, α = βγ and β has a rising

point no more than k − 1. The proof is completed. �

Note that in each of Cases (ii)− (iv) of Lemma 8.3, that is, where i < l, we have xpβ = xpα

for all p < i.

Lemma 8.4. Let α, β, γ ∈ H with α = βγ and β, γ consistent. Suppose that whenever

α = pλj, we can find (t, λ), (j, µ) ∈ K with β = pλt, γ = pµj and fj,λ = fj,µft,λ. Then α is

consistent.

Proof. Let α, β, γ satisfy the hypotheses of the lemma. If α = pλj = pλ′j′ , then by assumption

we can find (t, λ), (j, µ), (t′, λ′), (j′, µ′) ∈ K with β = pλt = pλ′t′ , γ = pµj = pµ′j′ , fj,λ = fj,µft,λ
and fj′,λ′ = fj′,µ′ft′,λ′ . The result now follows from the consistency of β and γ. �
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Proposition 8.5. Every α ∈ P is consistent. Further, if α = pλj then fj,λ is equal in H to a

product fi1,λ1 · · · fik,λk , where pλt,it is an element with simple form, t ∈ [1, k].

Proof. We proceed by induction on the rising point of α. If α has rising point 1 or 2, and

pλi = α, then the result is true by Corollary 8.2 and the comments preceding it. Suppose for

induction that the rising point of α is k ≥ 3, and the result is true for all β ∈ H with rising

point strictly less than k and all fi,µ ∈ F where pµi = β.

We proceed on a case by case basis, using γ and β as defined in Lemma 8.3. Since γ has

simple form, it is consistent by Corollary 7.2 and as β has rising point strictly less than k, β

is consistent by our inductive hypothesis.

Suppose that α = pλj where λ = (u1, . . . , ur) and rj lies in district (l1, . . . , lr).

Case (0) If k = r + 1, then we have xmα = axr for some a 6= 1G. We now define rt by

xumrt = xr and xsrt = xsrj, for other s ∈ [1, n]. As xumrj = axr, it is easy to see that rt ∈ Θ.

Notice that lr−1 < lr = lmα < um. Then by setting µ = (1, l2, · · · , lr−1, um) we have
(

pλt pλj

pµt pµj

)
=

(
β α

ε γ

)

and our presentation gives fj,λ = fj,µft,λ.

We now suppose that k ≤ r. By definition of rising point there exists a sequence

1 ≤ i < j1 < j2 · · · < jr−k ≤ r

such that

xiα = xk, xj1α = xk+1, xj2α = xk+2, · · · , xjr−k
α = xr

such that if l ∈ [1, r] with xlα = axk−1, then if l < i we must have a 6= 1G.

We consider the following cases:

Case (i) If l < i we define rt by xulrt = xk−1 and for other p ∈ [1, n], xprt = xprj. As by

assumption xulrj = xlα = axk−1, clearly rt ∈ Θ. Then by putting

µ = (1, l2, · · · , lk−2, ul, ui, uj1 , · · · , ujr−k
)

we have (
pλt pλj

pµt pµj

)
=

(
β α

ε γ

)

which implies fj,λ = fj,µft,λ.

Case (ii) If i < l < j1 we define rs by

xprs = xprj for p < ui, xuwrs = xwβ for i ≤ w ≤ r and xvrs = x1 for all other v ∈ [1, n].

We must argue that rs ∈ Θ. Note that from the comment following Lemma 8.3, for any v < i

we have that

xuvrs = xuvrj = xvα = xvβ,

so that in particular, rank rs = r. Further,

xuirs = xiβ = xk−1, xulrs = xlβ = xk, xuj1rs = xj1β = xk+1, . . . , xujr−k
rs = xjr−k

β = xr
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so that

〈xui , xul , xuj1 , · · · , xujr−k
〉rs = 〈xk−1, xk, · · · , xr〉.

Thus for any v 6= {i, l, j1, · · · , jr−k}, xuvrs = xvβ ∈ 〈x1, · · · , xk−2〉.

As xuirj = xk, we have 1 = l1 < l2 < · · · < lk−1 < lk ≤ ui. Let h be the largest number with

1 = l1 < l2 < · · · < lk−1 < lk < lk+1 < · · · < l(k−1)+h < ui.

Clearly here we have h ∈ [0, r − k + 1]. Now we claim that rs ∈ Θ and lies in district

(l1, l2, · · · , l(k−1)+h, ujh , ujh+1
, · · · , ujr−k

).

To simplify our notation we put

(l1, l2, · · · , l(k−1)+h, ujh , ujh+1
, · · · , ujr−k

) = (z1, z2, · · · , z(k−1)+h, zk+h, · · · , zr),

where j0 = l. Clearly, by the definition of rs, we have xzvrs = xv for all v ∈ [1, r]. Hence,

to show rs ∈ Θ, by the definition we only need to argue that for any m ∈ [1, n] and b ∈ G,

xmrs = bxt implies m ≥ zt.

Suppose that t ∈ [1, (k− 1) + h], so that zt = lt < ui. If m < zt, then from the definition of

rs we have xmrs = xmrj, so that xmrj = bxt. As rj ∈ Θ and xltrj = xt, we have zt = lt ≤ m,

a contradiction, and we deduce that m ≥ zt.

Suppose now that t ∈ [k+ h, r]. Note that m ≥ ui; because, if m < ui, then xmrj = xmrs =

bxt. As rj ∈ Θ, lt ≤ m < ui and so t ≤ (k−1)+h, a contradiction. Thus m ≥ ui. Now, by the

definition of rs, we know there is exactly one possibility that xmrs = bxt with t ∈ [k + h, r],

that is, xztrs = xt, so that m = zt and b = 1. Thus rs ∈ Θ.

Now set

η = (1, l2, · · · , lk−2, ui, ul, uj1 , · · · , ujr−k
)

then we have (
pλs pλj

pηs pηj

)
=

(
β α

ε γ

)
,

which implies fj,λ = fj,ηfs,λ.

Case (iii) If jr−k < l, then, defining rs as in Case (ii), a similar argument gives that rs ∈ Θ

and xuvrs = xvβ for all v ∈ [1, r] (of course here β is defined differently to that given in Case

(ii) and the district of rs will have a different appearance.). Moreover, by setting

δ = (1, l2, · · · , lk−2, ui, uj1 , · · · , ujr−k
, ul)

we have (
pλs pλj

pδs pδj

)
=

(
β α

ε γ

)
.

implying fj,λ = fj,δfs,λ.

Case (iv) If ju < l < ju+1 for some u ∈ [1, r− k− 1], then again by defining rs as in Case (ii),

we have rs ∈ Θ and xuvrs = xvβ for all v ∈ [1, r]. Take

σ = (1, l2, · · · , lk−2, ui, uj1 , uju , ul, uju+1 , · · · , ujr−k
).
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Then we have (
pλs pλj

pσs pσj

)
=

(
β α

ε γ

)

so that fj,λ = fj,σfs,λ.

In each of the cases above, the consistency of α follows from Lemma 8.4. The result now

follows by induction. �

In view of Lemma 8.4, we can now denote all generators fi,λ with pλi = α by fα, where

(i, λ) ∈ K.

9. The main theorem

Our eventual aim is to show that H is isomorphic to H and hence to the wreath product

G ≀ Sr. With this in mind, given the knowledge we have gathered concerning the generators

fi,λ, we first specialise the general presentation given in Theorem 3.3 to our specific situation.

We will say that for φ, ϕ, ψ, σ ∈ P the quadruple (φ, ϕ, ψ, σ) is singular if φ−1ψ = ϕ−1σ and

we can find i, j ∈ I, λ, µ ∈ Λ with φ = pλi, ϕ = pµi, ψ = pλj and σ = pµj.

In the sequel, we denote the free group on a set X by X̃. For convenience, we use, for

example, the same symbol fi,λ for an element of F̃ and H. We hope that the context will

prevent ambiguities from arising.

Lemma 9.1. Let H be the group given by the presentation Q = 〈S : Γ〉 with generators:

S = {fφ : φ ∈ P}

and with the defining relations Γ :

(P1) f−1
φ fϕ = f−1

ψ fσ where (φ, ϕ, ψ, σ) is singular;

(P2) fε = 1.

Then H is isomorphic to H.

Proof. From Theorem 3.3, we know that H is given by the presentation P = 〈F : Σ〉, where

F = {fi,λ : (i, λ) ∈ K} and Σ is the set of relations as defined in (R1) – (R3), and where the

function ω and the Schreier system {hλ : λ ∈ Λ} are fixed as in Section 3. Note that (R3) is

reformulated in Corollary 3.6.

By freeness of the generators we may define a morphism θ : F̃ → H by fi,λθ = fφ, where

φ = pλi. We show that Σ ⊆ kerθ. It is clear from (P1) that relations of the form (R3) lie in

kerθ.

Suppose first that hλεiµ = hµ in E
∗
. Then εhλεiµ = εhµ in EndFn(G), so that from

Lemma 3.7, qλεiµ = qµ. Hence qµri = qλεiµri = qλri, so that pµi = pλi and fi,λθ = fi,µθ.

Now suppose that i ∈ I; we have remarked that pω(i)i = ε, so that fi,ω(i)θ = fε = 1θ.

We have shown that Σ ⊆ kerθ and so there exists a morphism θ : H → H such that

fi,λθ = fφ where φ = pλi.

Conversely, we define a map ψ : S̃ → H by fφψ = fi,λ, where φ = pλi. By Lemma 8.4, ψ

is well defined. Since fεψ = fi,λ where pλi = ε, we have fεψ = 1H by Lemma 4.1. Clearly
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relations (P1) lie in kerψ, so that Γ ⊆ kerψ. Consequently, there is a morphism ψ : H → H

such that fφψ = fi,λ, where φ = pλi.

It is clear that θ ψ and ψ θ are, respectively, the identity maps on the generators of H and

H, respectively. It follows immediately that they are mutually inverse isomorphisms. �

We now recall the presentation of G ≀ Sr obtained by Lavers [17]. In fact, we translate his

presentation to one for our group H.

We begin by defining the following elements of H: for a ∈ G and for 1 ≤ i ≤ r we put

ιa,i =

(
x1 · · · xi−1 xi xi+1 · · · xr
x1 · · · xi−1 axi xi+1 · · · xr

)
;

for 1 ≤ k ≤ r − 1 we put

(k k + 1 · · · k +m) =

(
x1 · · · xk−1 xk · · · xk+m−1 xk+m xk+m+1 · · · xr
x1 · · · xk−1 xk+1 · · · xk+m xk xk+m+1 · · · xr

)

and we denote (k k + 1) by τk.

It is clear that Gr has presentation V = 〈Z : Π〉, with generators

Z = {ιa,i : i ∈ [1, r], a ∈ G}

and defining relations Π consisting of (W4) and (W5) below. Using a standard presentation

for Sr, we employ the recipe of [17] to obtain:

Lemma 9.2. The group H has a presentation U = 〈Y : Υ〉, with generators

Y = {τi, ιa,j : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ r, a ∈ G}

and defining relations Υ:

(W1) τiτi = 1, 1 ≤ i ≤ r − 1;

(W2) τiτj = τjτi, j ± 1 6= i 6= j;

(W3) τiτi+1τi = τi+1τiτi+1, 1 ≤ i ≤ r − 2;

(W4) ιa,iιb,j = ιb,jιa,i, a, b ∈ G and 1 ≤ i 6= j ≤ r;

(W5) ιa,iιb,i = ιab,i, 1 ≤ i ≤ r and a, b ∈ G;

(W6) ιa,iτj = τjιa,i, 1 ≤ i 6= j, j + 1 ≤ r;

(W7) ιa,iτi = τiιa,i+1, 1 ≤ i ≤ r − 1 and a ∈ G.

Now we turn to our maximal subgroup H. From Lemma 9.1, we know that H is isomorphic

to H, and it follows from the definition of the isomorphism and Proposition 8.5 that

H = 〈fα : α has simple form〉.

We now simplify our generators further. For ease in the remainder of the paper, it is convenient

to use the following convention: for u, v ∈ [1, r+2] with u < v, we denote by ¬(u, v) the r-tuple

(1, · · · , u− 1, u+ 1, . . . , v − 1, v + 1, · · · , r + 2).
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Lemma 9.3. Consider the element

α =

(
x1 · · · xk−1 xk · · · xk+m−1 xk+m xk+m+1 · · · xr
x1 · · · xk−1 xk+1 · · · xk+m axk xk+m+1 · · · xr

)

in simple form, where m ≥ 1. Then fα = fγfβ in H, where β = ιa,k+m and γ = (k k +

1 · · · k +m).

Proof. Define rt by
(
x1 · · · xk−1 xk xk+1 · · · xk+m xk+m+1 xk+m+2 xk+m+3 · · · xr+2 xr+3 · · · xn
x1 · · · xk−1 xk xk+1 · · · xk+m xk axk xk+m+1 · · · xr x1 · · · x1

)
.

Let λ = ¬(k, k +m+ 1) and µ = ¬(k, k +m+ 2). Then pλt = α and pµt = γ.

Next we define rs by
(
x1 · · · xk−1 xk xk+1 · · · xk+m xk+m+1 xk+m+2 xk+m+3 · · · xr+2 xr+3 · · · xn
x1 · · · xk−1 xk−1 xk · · · xk+m−1 xk+m axk+m xk+m+1 · · · xr x1 · · · x1

)
.

Then pλs = β and pµs = ε. Notice that α = βγ and
(

pλs pλt

pµs pµt

)
=

(
β α

ε γ

)

which implies fα = fγfβ. �

Lemma 9.4. Let α = (k k+1 · · · k+m), where m ≥ 1. Then fα = fτkfτk+1
· · · fτk+m−1

in H.

Proof. We proceed by induction on m: clearly the result is true for m = 1. Assume now that

m ≥ 2, α = (k k + 1 · · · k +m) and that f(k k+1 ··· k+s) = fτkfτk+1
· · · fτk+s−1

for any s < m.

It is easy to check that α = τk+m−1γ, where

γ = (k k + 1 · · · k +m− 1).

Now we define rj by
(
x1 · · · xk+m−1 xk+m xk+m+1 xk+m+2 xk+m+3 · · · xr+2 xr+3 · · · xn
x1 · · · xk+m−1 xk xk+m xk xk+m+1 · · · xr x1 · · · x1

)
.

Let λ = ¬(k, k +m) and µ = ¬(k, k +m+ 2). Then pλj = α and pµj = γ.

Next we define rl by
(
x1 · · · xk−1 xk xk+1 · · · xk+m xk+m+1 xk+m+2 xk+m+3 · · · xr+2 xr+3 · · · xn
x1 · · · xk−1 xk xk · · · xk+m−1 xk+m xk+m−1 xk+m+1 · · · xr x1 · · · x1

)
.

Then pλl = τk+m−1 and pµl = ε. Thus we have
(

pλl pλj

pµl pµj

)
=

(
τk+m−1 α

ε γ

)

implying fα = fγfτk+m−1
and so fα = fτk · · · fτk+m−1

, using our inductive hypothesis applied to

γ. �
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It follows from Lemmas 9.3 and 9.4 that

H = 〈fτi , fιa,j : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ r, a ∈ G〉.

Now it is time for us to find a series of relations satisfied by these generators. These correspond

to those in Lemma 9.2, with the exception of a twist in (W5).

Lemma 9.5. For all i ∈ [1, r − 1], fτifτi = 1, and so f−1
τi

= fτi .

Proof. Notice that τiτi = ε. First we define rs by(
x1 · · · xi−1 xi xi+1 xi+2 xi+3 xi+4 · · · xr+2 xr+3 · · · xn
x1 · · · xi−1 xi xi xi+1 xi xi+2 · · · xr x1 · · · x1

)
.

Let λ = ¬(i, i+ 1) and µ = ¬(i, i+ 3). Then pλs = τi and pµs = ε.

Next, we define rt by(
x1 · · · xi−1 xi xi+1 xi+2 xi+3 · · · xr+2 xr+3 · · · xn
x1 · · · xi−1 xi xi+1 xi xi+1 · · · xr x1 · · · x1

)
.

Then pλt = ε and pµt = τi, so
(

pλs pλt

pµs pµt

)
=

(
τi ε

ε τi

)

which implies fτifτi = 1. �

Lemma 9.6. For any j ± 1 6= i 6= j we have fτifτj = fτjfτi.

Proof. Without loss of generality, suppose that i > j and i 6= j + 1. First, define rt by(
x1 · · · xj+1 xj+2 xj+3 · · · xi xi+1 xi+2 xi+3 xi+4 · · · xr+2 xr+3 · · · xn
x1 · · · xj+1 xj xj+2 · · · xi−1 xi xi+1 xi xi+2 · · · xr x1 · · · x1

)
.

Note that if i = j + 2 then the section from j + 3 to i is empty. Let λ = ¬(j, i + 1) and

µ = ¬(j, i+ 3), so that pλt = τiτj and pµt = τj. Next define rs by
(
x1 · · · xj xj+1 xj+2 · · · xi xi+1 xi+2 xi+3 xi+4 · · · xr+2 xr+3 · · · xn
x1 · · · xj xj xj+1 · · · xi−1 xi xi+1 xi xi+2 · · · xr x1 · · · x1

)
.

Then pλs = τi and pµs = ε. Thus we have
(

pλs pλt

pµs pµt

)
=

(
τi τiτj
ε τj

)

implying fτiτj = fτjfτi .

To complete the proof, we define rl by(
x1 · · · xj+1 xj+2 xj+3 · · · xi xi+1 xi+2 xi+3 xi+4 · · · xr+2 xr+3 · · · xn
x1 · · · xj+1 xj xj+2 · · · xi−1 xi xi xi+1 xi+2 · · · xr x1 · · · x1

)
.

Then pλl = τj. Put η = ¬(j + 2, i+ 1). Then pηl = ε and pηt = τi, so
(

pλl pλt

pηl pηt

)
=

(
τj τjτi
ε τi

)

which implies fτjτi = fτifτj , and hence fτjfτi = fτifτj . �
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Lemma 9.7. For any i ∈ [1, r − 2] we have fτifτi+1
fτi = fτi+1

fτifτi+1
.

Proof. Let ρ = τi+1τi = (i i+ 1 i+ 2) so that ρ2 = (i i+ 2 i+ 1).

First, we show that fρ2 = fρfρ. For this purpose, we define rj by
(
x1 · · · xi xi+1 xi+2 xi+3 xi+4 xi+5 · · · xr+2 xr+3 · · · xn
x1 · · · xi xi+1 xi+2 xi xi+1 xi+3 · · · xr x1 · · · x1

)
.

Let λ = ¬(i, i+1) and µ = ¬(i, i+4), so that pλj = (i i+2 i+1) = ρ2 and pµj = (i i+1 i+2) = ρ.

Next we define rl by
(
x1 · · · xi xi+1 xi+2 xi+3 xi+4 xi+5 · · · xr+2 xr+3 · · · xn
x1 · · · xi xi xi+1 xi+2 xi xi+3 · · · xr x1 · · · x1

)
.

Then pλl = (i i+ 1 i+ 2) = ρ and pµl = ε, so here we have
(

pλl pλj

pµl pµj

)
=

(
ρ ρ2

ε ρ

)

Hence we have fρ2 = fρfρ.

Secondly, we show that fρ = fτifτi+1
. Note that τi+1ρ = τi. Now we define rs by

(
x1 · · · xi−1 xi xi+1 xi+2 xi+3 xi+4 xi+5 · · · xr+2 xr+3 · · · xn
x1 · · · xi−1 xi xi+1 xi+2 xi xi+2 xi+3 · · · xr x1 · · · x1

)
.

Let ν = ¬(i, i+2) and ξ = (i, i+4). Then pνs = τi and pξs = ρ = (i i+1 i+2). Next, define

rt by
(
x1 · · · xi−1 xi xi+1 xi+2 xi+3 xi+4 xi+5 · · · xr+2 xr+3 · · · xn
x1 · · · xi−1 xi xi xi+1 xi+2 xi+1 xi+3 · · · xr x1 · · · x1

)
.

Then pνt = τi+1 and pξt = ε, and so we have
(

pνt pνs

pξt pξs

)
=

(
τi+1 τi
ε ρ

)

implying fτi = fρfτi+1
, so fρ = fτifτi+1

by Lemma 9.5.

Finally, we show that fρ2 = fτi+1
fτi . Note that ρ2 = (i i+ 2 i+ 1) = τiτi+1. Define ru by

(
x1 · · · xi−1 xi xi+1 xi+2 xi+3 xi+4 xi+5 · · · xr+2 xr+3 · · · xn
x1 · · · xi−1 xi xi+1 xi+2 xi xi+1 xi+3 · · · xr x1 · · · x1

)
.

Let τ = ¬(i, i+ 1) and δ = ¬(i+ 1, i+ 3). Then pτu = ρ2 and pδu = τi+1. Define rv by
(
x1 · · · xi−1 xi xi+1 xi+2 xi+3 xi+4 · · · xr+2 xr+3 · · · xn
x1 · · · xi−1 xi xi+1 xi+1 xi xi+2 · · · xr x1 · · · x1

)
.

Then pτv = τi and pδv = ε, so we have
(

pτv pτu

pδv pδu

)
=

(
τi ρ2

ε τi+1

)

Hence fρ2 = fτi+1
fτi . We now calculate:

fτifτi+1
fτi = fτifρ2 = fτifρfρ = fτifτifτi+1

fτifτi+1
= fτi+1

fτifτi+1
,
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the final step using Lemma 9.5. �

We warn the reader that the relation we find below is a twist on that in (W5).

Lemma 9.8. For all i ∈ [1, r], a, b ∈ G, fιb,ifιa,i = fιab,i , and so f−1
ιa,i

= fι
a−1,i

.

Proof. Define rj by
(
x1 · · · xi−1 xi xi+1 xi+2 xi+3 · · · xr+2 xr+3 · · · xn
x1 · · · xi−1 xi bxi abxi xi+1 · · · xr x1 · · · x1

)
.

Let λ = ¬(i, i+ 2) and µ = ¬(i, i+ 1), then pλj = ιb,i and pµj = ιab,i. Next, we define rt by
(
x1 · · · xi−1 xi xi+1 xi+2 xi+3 · · · xr+2 xr+3 · · · xn
x1 · · · xi−1 xi xi axi xi+1 · · · xr x1 · · · x1

)
.

Then pλt = ε and pµt = ιa,i, so we have
(

pµt pµj

pλt pλj

)
=

(
ιa,i ιab,i
ε ιb,i

)

implying fιab,i = fιb,ifιa,i . �

Lemma 9.9. For all i 6= j and a, b ∈ G we have fιa,ifιb,j = fιb,jfιa,i.

Proof. Without loss of generality, suppose that i > j. Recall that ιa,iιb,j = ιb,jιa,i. First define

rt by(
x1 · · · xj−1 xj xj+1 xj+2 · · · xi+1 xi+2 xi+3 · · · xr+2 xr+3 · · · xn
x1 · · · xj−1 xj bxj xj+1 · · · xi axi xi+1 · · · xr x1 · · · x1

)
.

Let λ = ¬(j, i+ 1) and µ = ¬(j, i+ 2). Then pλt = ιa,iιb,j and pµt = ιb,j.

Next, we define rs by(
x1 · · · xj−1 xj xj+1 xj+2 · · · xi+1 xi+2 xi+3 · · · xr+2 xr+3 · · · xn
x1 · · · xj−1 xj xj xj+1 · · · xi axi xi+1 · · · xr x1 · · · x1

)
.

Then pλs = ιa,i and pµs = ε. Thus we have
(

pλs pλt

pµs pµt

)
=

(
ιa,i ιa,iιb,j
ε ιb,j

)

implying fιb,jfιa,i = fιa,iιb,j .

Define rl by(
x1 · · · xj−1 xj xj+1 xj+2 · · · xi+1 xi+2 xi+3 · · · xr+2 xr+3 · · · xn
x1 · · · xj−1 xj bxj xj+1 · · · xi xi xi+1 · · · xr x1 · · · x1

)
.

Then pλl = ιb,j. On the other hand, by putting η = ¬(j + 1, i + 1) we have pηl = ε and

pηt = ιa,i, and so (
pλl pλt

pηl pηt

)
=

(
ιb,j ιb,jιa,i
ε ιa,i

)

which implies fιb,jιa,i = fιa,ifιb,j , and hence fιa,ifιb,j = fιb,jfιa,i . �

Lemma 9.10. For any i, j with i 6= j, j + 1 and a ∈ G we have fιa,ifτj = fτjfιa,i .
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Proof. Suppose that i < j; the proof for j < i is entirely similar. Then

ιa,iτj =

(
x1 · · · xi−1 xi xi+1 · · · xj−1 xj xj+1 xj+2 · · · xr
x1 · · · xi−1 axi xi+1 · · · xj−1 xj+1 xj xj+2 · · · xr

)
.

Define rt by
(
x1 · · · xi−1 xi xi+1 xi+2 · · · xj xj+1 xj+2 xj+3 xj+4 · · · xr+2 xr+3 · · · xn
x1 · · · xi−1 xi axi xi+1 · · · xj−1 xj xj+1 xj xj+2 · · · xr x1 · · · x1

)
.

Let λ = ¬(i, j + 1) and µ = ¬(i+ 1, j + 1). Then pλt = ιa,iτj and pµt = τj.

Define rs by
(
x1 · · · xi−1 xi xi+1 xi+2 · · · xj xj+1 xj+2 xj+3 xj+4 · · · xr+2 xr+3 · · · xn
x1 · · · xi−1 xi axi xi+1 · · · xj−1 xj xj xj+1 xj+2 · · · xr x1 · · · x1

)
.

Then pλs = ιa,i and pµs = ε. Hence we have
(

pλs pλt

pµs pµt

)
=

(
ιa,i ιa,iτj
ε τj

)

implying fιa,iτj = fτjfιa,i .

Next we define η = ¬(i, j + 3), so that pηt = ιa,i. Now let rl be
(
x1 · · · xi−1 xi xi+1 xi+2 · · · xj xj+1 xj+2 xj+3 xj+4 · · · xr+2 xr+3 · · · xn
x1 · · · xi−1 xi xi xi+1 · · · xj−1 xj xj+1 xj xj+2 · · · xr x1 · · · x1

)
.

Then pλl = τj and pηl = ε, so
(

pλl pλt

pηl pηt

)
=

(
τj τjιa,i
ε ιa,i

)

implying fτjιa,i = fιa,ifτj , so fτjfιa,i = fιa,ifτj . �

Lemma 9.11. For any i ∈ [1, r − 1] and a ∈ G we have fιa,ifτi = fτifιa,i+1
.

Proof. We have

ιa,iτi =

(
x1 · · · xi−1 xi xi+1 xi+2 · · · xr
x1 · · · xi−1 axi+1 xi xi+2 · · · xr

)
= τiιa,i+1.

Define rt by
(
x1 · · · xi−1 xi xi+1 xi+2 xi+3 xi+4 · · · xr+2 xr+3 · · · xn
x1 · · · xi−1 xi xi+1 axi+1 xi xi+2 · · · xr x1 · · · x1

)
.

Define λ = ¬(i, i+ 1) and µ = ¬(i, i+ 2). Then pλt = ιa,iτi and pµt = τi. Define rs by
(
x1 · · · xi−1 xi xi+1 xi+2 xi+3 · · · xr+2 xr+3 · · · xn
x1 · · · xi−1 xi xi axi xi+1 · · · xr x1 · · · x1

)
.

Then pλs = ιa,i and pµs = ε, so we have
(

pλs pλt

pµs pµt

)
=

(
ιa,i ιa,iτi
ε τi

)

so fιa,iτi = fτifιa,i .
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Now put η = ¬(i+ 1, i+ 3), so that pηt = ιa,i+1. Define rl by
(
x1 · · · xi−1 xi xi+1 xi+2 xi+3 xi+4 · · · xr+2 xr+3 · · · xn
x1 · · · xi−1 xi xi xi+1 xi xi+2 · · · xr x1 · · · x1

)
.

Then pλl = τi and pηl = ε, so
(

pλl pλt

pηl pηt

)
=

(
τi τiιa,i+1

ε ιa,i+1

)

so that fτiιa,i+1
= fιa,i+1

fτi . Thus fτifιa,i = fιa,i+1
fτi and so fιa,ifτi = fτifιa,i+1

, bearing in mind

Lemmas 9.5 and 9.8. �

We denote by Ω all the following relations we have obtained so far on the set of generators

T = {fτi , fιa,j : 1 ≤ i ≤ r − 1, 1 ≤ j ≤ r, a ∈ G}

of H:

(T1) fτifτi = 1, 1 ≤ i ≤ r − 1.

(T2) fτifτj = fτjfτi , j ± 1 6= i 6= j.

(T3) fτifτi+1
fτi = fτi+1

fτifτi+1
, 1 ≤ i ≤ r − 2.

(T4) fιa,ifιb,j = fιb,jfιa,i , a, b ∈ G and 1 ≤ i 6= j ≤ r.

(T5) fιb,ifιa,i = fιab,i , 1 ≤ i ≤ r and a, b ∈ G.

(T6) fιa,ifτj = fτjfιa,i , 1 ≤ i 6= j, j + 1 ≤ r.

(T7) fιa,ifτi = fτifιa,i+1
, 1 ≤ i ≤ r − 1 and a ∈ G.

We now have all the ingredients in place to prove the following.

Proposition 9.12. The group H with a presentation Q = 〈S : Γ〉 of Lemma 9.1 is isomorphic

to the presentation U = 〈Y : Υ〉 of H given in Lemma 9.2, so that H ∼= H.

Proof. We define a map θ : Ỹ −→ H by

τiθ = f−1
τi

(= fτi), ιa,jθ = f−1
ιa,j

(= fι
a−1,j

)

where 1 ≤ i ≤ r − 1, 1 ≤ j ≤ r, a ∈ G. Now we claim that Υ ⊆ kerθ. Clearly, the relations

corresponding to (W1)− (W4) and (W6) and (W7) lie in kerθ. Moreover, considering (W5)

(ιa,iιb,i)θ = ιa,iθιb,iθ = f−1
ιa,i
f−1
ιb,i

= fι
a−1,i

fι
b−1,i

= fι
b−1a−1,i

= fι(ab)−1,i
= ιab,iθ

so that Υ ⊆ kerθ, and hence there exists a well defined morphism θ : H −→ H given by

τiθ = f−1
τi

and ιa,jθ = f−1
ιa,j

, where 1 ≤ i ≤ r − 1, 1 ≤ j ≤ r, a ∈ G.

Conversely, we define ψ : S̃ −→ H by fφψ = φ−1. We show that Γ ⊆ kerψ. Clearly,

fεψ = ε−1 = ε = 1ψ. Suppose that (φ, ϕ, ψ, σ) is singular, giving φϕ−1 = ψσ−1. Then

(f−1
φ fϕ)ψ = (fφψ)

−1fϕψ = φϕ−1 = ψσ−1 = (fψψ)
−1fσψ = (f−1

ψ fσ)ψ

so Γ ⊆ kerψ. Thus there exists a well defined morphism ψ : H −→ H given by fφψ = φ−1.

Then

τiθ ψ = f−1
τi
ψ = (fτiψ)

−1 = τi
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and

ιa,iθ ψ = f−1
ιa,i
ψ = (fιa,iψ)

−1 = ιa,i

hence θ ψ is the identity mapping, and so θ is one-one. Since T is a set of generators for H,

it is clear that θ is onto, and so

H ∼= H ∼= H ∼= G ≀ Sr.

�

We can now state the main theorem of this paper.

Theorem 9.13. Let EndFn(G) be the endomorphism monoid of a free G-act Fn(G) on n

generators, where n ∈ N and n ≥ 3, let E be the biordered set of idempotents of EndFn(G),

and let IG(E) be the free idempotent generated semigroup over E.

For any idempotent ε ∈ E with rank r, where 1 ≤ r ≤ n − 2, the maximal subgroup H of

IG(E) containing ε is isomorphic to the maximal subgroup H of EndFn(G) containing ε and

hence to G ≀ Sr.

Note that if ε is an idempotent with rank n, that is, the identity map, then H is the trivial

group, since it is generated (in IG(E)) by idempotents of the same rank. On the other hand,

if the rank of ε is n− 1, then H is the free group as there are no non-trivial singular squares

in the D-class of ε in EndFn(G).

Finally, if G is trivial, then EndFn(G) is essentially Tn, so we deduce the following result

from [14].

Corollary 9.14. [14] Let n ∈ N with n ≥ 3 and let IG(E) be the free idempotent generated

semigroup over the biordered set E of idempotents of Tn.

For any idempotent ε ∈ E with rank r, where 1 ≤ r ≤ n − 2, the maximal subgroup H of

IG(E) containing ε is isomorphic to the maximal subgroup H of Tn containing ε, and hence

to Sr.
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